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These slides are based on Chapter 2 of the book Robotics, Vision and
Control: Fundamental Algorithms in MATLAB by Peter Corke, published
by Springer in 2011.
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Position and Orientation

Positions and Orientations

I Need for representing positions and orientations in space.

I The position of a point is represented by a vector of coordinates.
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Position and Orientation

Representing a set of points

I Method 1: Represent the position and orientation of each point
separately

I Method 2: Represent the points in the set’s reference frame and
represent the position and orientation of that frame (with ξB).

5 / 43



Position and Orientation

Representing a set of points
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Position and Orientation

Representing a set of points

I The position and orientation of a coordinate frame is known as its
pose.

I Two interpretations for AξB:
I Picking up A and transforming it with AξB leaves A at B’s place.
I Let Bp be the coordinates of point P in the coordinate system B.

Transforming Bp with AξB gives the coordinates of P in A, denoted by
Ap.

In mathematical objects terms poses

constitute a group – a set of objects that

supports an associative binary operator

(composition) whose result belongs to

the group, an inverse operation and an

identity element. In this case the group

is the special Euclidean group in either

2  or 3 dimensions which are commonly

referred to as SE(2) or SE(3) respectively.
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Position and Orientation

Composition of relative poses
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Position and Orientation

A 3D example
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Position and Orientation

In mathematical objects terms poses

constitute a group – a set of objects that

supports an associative binary operator

(composition) whose result belongs to

the group, an inverse operation and an

identity element. In this case the group

is the special Euclidean group in either

2  or 3 dimensions which are commonly

referred to as SE(2) or SE(3) respectively.

There are just a few algebraic rules:

where 0 represents a zero relative pose. A pose has an inverse

which is represented graphically by an arrow from Y to X. Relative poses can also
be composed or compounded

It is important to note that the algebraic rules for poses are different to nor-
mal algebra and that composition is not commutative

with the exception being the case where ξ1⊕ ξ2= 0. A relative pose can transform a
point expressed as a vector relative to one frame to a vector relative to another
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Position and Orientation

Recap

1. A point is described by a coordinate vector that represents its displacement from a
reference coordinate system;

2. A set of points that represent a rigid object can be described by a single coordinate
frame, and its constituent points are described by displacements from that coordinate
frame;

3. The position and orientation of an object’s coordinate frame is referred to as its
pose;

4. A relative pose describes the pose of one coordinate frame with respect to another
and is denoted by an algebraic variable ξ;

5. A coordinate vector describing a point can be represented with respect to a different
coordinate frame by applying the relative pose to the vector using the · operator;

6. We can perform algebraic manipulation of expressions written in terms of relative
poses.
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Representing Poses in 2D

Representing poses in 2D

Is this a good representation?
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Representing Poses in 2D

Representing orientations in 2D: rotation matrices

I The rotation matrix that applies a {V }-to-{B} coordinate change
corresponds to a counter-clockwise rotation by θ.

I The lines of VRB correspond to the unit vectors that define {V } with
respect to {B}.
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Representing Poses in 2D

Representing orientations in 2D: rotation matrices
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Representing Poses in 2D

Representing poses in 2D: transformation matrices

          

          

16 / 43



Representing Poses in 2D

Now we can define a concrete representation of 2D poses

A concrete representation of relative pose ξ is ξ∼ T∈ SE(2) and T1⊕ T2֏ T1T2

which is standard matrix multiplication.

One of the algebraic rules from page 18 is ξ⊕ 0= ξ. For matrices we know
that TI= T, where I is the identify matrix, so for pose 0֏ I the identity matrix.
Another rule was that ξ⊖ξ= 0. We know for matrices that TT

−1
= I which im-

plies that ⊖T֏ T
−1

For a point p∈ P2 then T·p֏ Tp which is a standard matrix-vector product.
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Representing Poses in 2D

Peter Corke’s Robotics Toolbox

Homepage: http://petercorke.com/Robotics_Toolbox.html

The file you need to download is: http://www.petercorke.com/RTB/dl-zip.php?file=current/robot-9.8.zip

To install the Toolbox simply unpack the archive which will create the
directory rvctools, and within that the directories robot, simulink, and
common:

I Adjust your MATLABPATH to include rvctools:
I Either via the Matlab menu
I or via

>> path(path, "/home/username/.../rcvtools")

I Run
>> rvctools/startup rvc.m

I Run the demo command (website’s rtdemo is incorrect)
>> rtbdemo
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Representing Poses in 3D Rotation Matrices
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Representing Poses in 3D Rotation Matrices

Representing 3D Orientations with Rotation Matrices

3D rotations around the origin of R3 form the rotation group.

3D rotations can be uniquely parametrized by special orthogonal matrices
(rotation matrices).

Compounding still holds: CRA = CRB
BRA.

Rows of a rotation matrix give the directions of the new frame’s axes
relative to the current frame.

More parameters than degrees of freedom.

The rotation group is often referred to as the special orthogonal group
SO(3).
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Representing Poses in 3D Three-angles
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Representing Poses in 3D Three-angles

Representing 3D Orientations with Three Angles
Three-angle representation with intrinsic rotations

Given three angles (α, β, γ), let a-b′-c′′ denote the
application of

I a rotation of α around axis a,

I a rotation of β around axis b′,
b′ is b rotated by α around a

I and a rotation of γ around axis c′′ (in that
order), c′′ is c rotated by α around a, then by β
around b′

x', x''

xx

yy

z, z'z, z'

z'', z'''

x'''

y'''

α

β

γ

Three angles (α, β, γ), 12 representations of a 3D rotation:

I Euler angles: z-x′-z′′, x-y′-x′′, y-z′-y′′, z-y′-z′′, x-z′-x′′, y-x′-y′′.

I Tait–Bryan angles: x-y′-z′′, y-z′-x′′, z-x′-y′′, x-z′-y′′, z-y′-x′′,
y-x′-z′′.

This is called the three-angle representation with intrinsic rotations.
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Representing Poses in 3D Three-angles

Representing 3D Orientations with Three Angles
Three-angle representation with extrinsic rotations

Given three angles (α, β, γ), let a-b-c denote the application of

I a rotation of α around axis a,

I a rotation of β around axis b,

I and a rotation of γ around axis c (in that order).

Three angles (α, β, γ), another 12 representations of a 3D rotation:

I Euler angles: z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y.

I Tait–Bryan angles: x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z.

This is called the three-angle representation with extrinsic rotations.
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Representing Poses in 3D Three-angles

Visualizing Intrinsic Three-angles

Example: Given three angles (α, β, γ), z-x′-z′′ denotes the application of

I a rotation of α around axis z,
I a rotation of β around axis x′,
x′ is x rotated by α around z

I and a rotation of γ around axis z′′ (in that order),
z′′ is z rotated by α around z, then by β around x′

x', x''

xx

yy

z, z'z, z'

z'', z'''

x'''

y'''

α

β

γ
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Representing Poses in 3D Three-angles

Three-angles: Matrix Equivalents

Intrinsic rotations equivalent with rotation matrices:

I x-y′-z′′: Rx(α)Ry(β)Rz(γ)

I z-x′-z′′: Rz(α)Rx(β)Rz(γ)

Compare with:

Extrinsic rotations equivalent with rotation matrices:

I x-y-z: Rz(γ)Ry(β)Rx(α)

I z-x-z: Rz(γ)Rx(β)Rz(α)
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Representing Poses in 3D Three-angles

Converting Between Three-angle Representations

Let R be a rotation whose Euler angles are (.1, .2, .3) (intrinsic y-z′-y′′).
Give at least one extrinsic Euler representation of R.

R = Ry(.1)Rz(.2)Ry(.3)
(.3, .2, .1) is the Euler y-z-y (extrinsic) representation of R.
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Representing Poses in 3D Three-angles
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Representing Poses in 3D Three-angles

There Are 24 Three-angles Representations

Extrinsic Euler: z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y.
Intrinsic Euler: z-x′-z′′, x-y′-x′′, y-z′-y′′, z-y′-z′′, x-z′-x′′, y-x′-y′′.
Extrinsic Tait-Bryan: x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z.

Intrinsic Tait-Bryan: x-y′-z′′, y-z′-x′′, z-x′-y′′, x-z′-y′′, z-y′-x′′, y-x′-z′′.

When you read a book, or code documentations, you almost never know if
the author is using intrinsic or extrinsic (′ and ′′ are omitted). The Corke
book doesn’t say it’s using intrinsic rotations.

Often, you will not know which of the Euler or TB representation the
author is using.

With TB representations, some authors give the three angles in inverse
order (i.e., in the order of the rotation matrix form).

All of the above are the first reason why three-angles are horrible.
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Representing Poses in 3D Three-angles

Why Three-angles Are Horrible

1. 24 representations, plus different names (TB also called
yaw-pitch-roll, TB sometimes referred to as Euler).

2. Singularities: Assuming Euler z-y′-z′′,
(α, 0, γ) ∼ (α+ c, 0, γ − c)∀c ∈ R

3. Numerical instability.

Three-angle representations are horrible.

You must not use them in this class.

However, you will come across them outside of this class. Thus you must
know how to read them.
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Representing Poses in 3D Axis-angles
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Representing Poses in 3D Axis-angles

Representing Rotations with Axis-angles

Any 3D rotation can be expressed as a rotation of θ around an axis v.

This is an intuitive representation, but compositions are not as easy as
with rotation matrices.

31 / 43



Representing Poses in 3D Unit Quaternions
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Representing Poses in 3D Unit Quaternions

Quaternions: History & Definition

I Extension of complex numbers:

◦
q = w︸︷︷︸

scalar

+xi+ yj + zk︸ ︷︷ ︸
pure,vector

∈ H

= w 〈x, y, z〉

with
i2 = j2 = k2 = ijk = −1,

ij = k, ji = −k,
jk = i, kj = −i,
ki = j, ik = −j.

I First described by the Irish mathematician Sir W. Hamilton in 1843.

I Now replaced by vectors in most applications...

I Except for representing 3D rotations, where they work very well.

33 / 43



Representing Poses in 3D Unit Quaternions

Quaternion Arithmetic: Sum, Product

Let
◦
x = 3 + i
◦
y = 5i+ j − 2k

Then
◦
x+

◦
y = 3 + 6i+ j − 2k

◦
x

◦
y = (3 + i)(5i+ j − 2k)

= 15i+ 3j − 6k + 5i2 + ij − 2ik
= 15i+ 3j − 6k − 5 + k + 2j
= −5 + 15i+ 5j − 5k

◦
y

◦
x = (5i+ j − 2k)(3 + i)

= 15i+ 5i2 + 3j + ji− 6k − 2ki
= 15i− 5 + 3j − k − 6k − 2j
= −5 + 15i+ j − 7k
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Representing Poses in 3D Unit Quaternions

Quaternion Arithmetic: Product

Let
◦
p = a+ bi+ cj + dk and

◦
q = w + xi+ yj + zk.

I Usual non-commutative multiplication “Grassmann product”:

◦
p

◦
q = (aw − bx− cy − dz) + (bw + ax+ cz − dy)i+

(cw + ay + dx− bz)j + (dw + az + by − cx)k
∈ H

I Dot product:
I

◦
p · ◦
q = aw + bx+ cy + dz ∈ R

I Also denoted by
◦
pT ◦
q
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Representing Poses in 3D Unit Quaternions

Quaternion Arithmetic: Conjugate, Absolute value, Inverse

◦
z = a+ bi+ cj + dk

I Conjugate:
◦
z∗ = a− bi− cj − dk.

I Absolute value: | ◦z| =
√ ◦
z

◦
z∗ =

√
a2 + b2 + c2 + d2.

I Inverse:
◦
z−1 =

◦
z∗
◦
z
◦
z∗

(
◦
z−1

◦
z = 1)

For unit quaternions,
◦
q∗ =

◦
q−1
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Representing Poses in 3D Unit Quaternions

Representing 3D Rotations with Unit Quaternions

I A rotation of θ rad about unit vector v = (vx, vy, vz) is represented
with

◦
q = cos

θ

2
+ sin

θ

2
(vxi+ vyj + vzk)

I Intuitively equivalent to a rotation of −θ about −v.

I Unit quaternions
◦
q ∈ S3 ⊂ H form a double cover of SO(3),

◦
q and

− ◦
q represent the same rotation.
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Representing Poses in 3D Unit Quaternions

Unit quaternions for a 3D rotation

Rotating s = (sx, sy, sz) with
◦
q:

isrx + jsry + ksrz =
◦
q(isx + jsy + ksz)

◦
q−1

Composing
◦
q1 and

◦
q2:

◦
q1

◦
q2

Inverse rotation of
◦
q:

◦
q−1
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Representing Poses in 3D Unit Quaternions

Distance Between Two Rotations

The distance between two rotations
◦
q and

◦
q′ is often defined as the angle

of the 3D rotation that maps
◦
q onto

◦
q′.

This angle is equal to twice the shortest path between
◦
q and

◦
q′ on the

3–sphere:

distance(
◦
q,

◦
q′) = 2 arccos

∣∣∣ ◦q> ◦
q′
∣∣∣ ,

Caution: we take the absolute value | ◦q> ◦
q′| to take into account the double

cover issue mentioned above.
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Representing Poses in 3D Unit Quaternions

Benefits of Unit Quaternions for Representing 3D
Rotations

Not even speaking about three-angles.
Axis-angles are awkward to compose.

Compared to rotation matrices:

I Compact representation;

I More efficient for composition;

I Intuitive metric;

I Smooth interpolation;

I Robustness to numerical drift
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Plan

Position and Orientation

Representing Poses in 2D

Representing Poses in 3D
Rotation Matrices
Three-angles
Axis-angles
Unit Quaternions
3D Poses

41 / 43



Representing Poses in 3D 3D Poses

Representing 3D transformation/poses with 3-vectors and
Quaternions

For the vector-quaternion case ξ∼ (t, h) where t∈R3 is the Cartesian position
of the frame’s origin with respect to the reference coordinate frame, and h∈Q is
the frame’s orientation with respect to the reference frame.

Composition is defined by

and negation is

and a point coordinate vector is transformed to a coordinate frame by
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Representing Poses in 3D 3D Poses

Representing 3D transformations/poses with Homogeneous
Transformations

A concrete representation of relative pose ξ  is ξ∼ T∈ SE(3) and T1⊕ T2֏ T1T2

which is standard matrix multiplication.

(2.20)

One of the rules of pose algebra from page 18 is ξ⊕0= ξ . For matrices we
know that TI= T, where I is the identify matrix, so for pose 0֏ I the identity
matrix. Another rule of pose algebra was that ξ⊖ξ= 0. We know for matrices
that TT

−1
= I which implies that ⊖T֏ T

−1

(2.21)
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