INFO0948 Image Processing

Renaud Detry

University of Liège, Belgium

Updated November 20, 2013

These slides are based on Chapter 12 of the book *Robotics, Vision and Control: Fundamental Algorithms in MATLAB* by Peter Corke, published by Springer in 2011.

Plan

Light and Color

Image Processing Monadic Operations Diadic Operations Spatial Operations Shape Changing

The Spectral Representation of Light, Color, and RGB

Human visual system, light and colors II

color	wavelength interval $\lambda[m]$	frequency interval <i>f</i> [<i>Hz</i>]
purple	\sim 450–400 [nm]	\sim 670–750 [<i>THz</i>]
blue	\sim 490–450 [nm]	\sim 610–670 [<i>THz</i>]
green	\sim 560–490 [nm]	\sim 540–610 [<i>THz</i>]
yellow	\sim 590–560 [nm]	\sim 510–540 [<i>THz</i>]
orange	\sim 635–590 [<i>nm</i>]	\sim 480–510 [<i>THz</i>]
red	~ 700–635 [<i>nm</i>]	\sim 430–480 [<i>THz</i>]

Figure : Visible colors (remember that $\lambda = \frac{3 \times 10^8}{f}$).

 $L(\lambda) d\lambda$

Frequency representation of colors

Solution: use colorspaces

Figure : Equalization experiment for colors. The aim is to mix A, B, and C to get as close as possible to X.

Marc Van Droogenbroeck

Computer Vision

(1)

 $L(\lambda) d\lambda$

Frequency representation of colors

Solution: use colorspaces

Figure : Equalization experiment for colors. The aim is to mix A, B, and C to get as close as possible to X.

Marc Van Droogenbroeck

(1)

The **RGB** additive colorspace

Three fundamental colors: red R (700 [*nm*]), green G (546, 1 [*nm*]) and blue B (435, 8 [*nm*]),

Figure : Equalization curves obtained by mixing the three fundamental colors to simulate a given color.

Marc Van Droogenbroeck

Computer Vision

Images: Computer Representation

A color image is a 2D array of pixels.

Each pixel encodes a color, typically with a triplet (R, G, B).

A color pixel is usually encoded into 24 bits (8 bits per color).

As a result, the R, G, and B components take values between 0 and 255.

In image processing, it is not uncommon to represent colors with floating-point variables. In this case, R, G, and B usually scale between 0 and 1. Be careful that when converting back to 24-bit color, or writing to disk, the components must be scaled back to 0–255.

In Matlab, the commands iread and idisp read images from disk and display them.

Other colorspaces

- ► a subtractive colorspace: Cyan, Magenta, and Tellow (CMY)
- Luminance + chrominances (YIQ, YUV or YC_bC_r)

In practice, most of the time, we use 8 bits to describe a color:

Hexadecimal			Decimal				
00	00	00	0	0	0		
00	00	FF	0	0	255		
00	FF	00	0	255	0		
00	FF	FF	0	255	255		
FF	00	00	255	0	0		
FF	00	FF	255	0	255		
FF	FF	00	255	255	0		
FF	FF	FF	255	255	255		

Table : Definition of RGB color values (8 bits) and conversion table between an hexadecimal notation and decimal notation.

Light and Color

Hue-Saturation-Value: an Intuitive Represenation of RGB

Hue is more robust to common changes of lighting conditions than saturation or value.

Resolution

Marc Van Droogenbroeck

The bitplanes of an image

Table : An original image and its 8 bitplanes starting with the Most Significant Bitplane (MSB).

Marc Van Droogenbroeck

Computer Vision

Academic year: 2017-2018 31 / 513

Technologies for dealing with 3D information

Acquisition

- Single monochromatic/color camera
- Multiple cameras (stereoscopy, network of cameras)
- Depth (range) cameras

Rendering

- Glasses
 - Color anaglyph systems

- Polarization systems
- Display
 - Autostereoscopic display technologies

3D vision

Depth cameras

There are two *acquisition* technologies for depth-cameras, also called range- or 3D-cameras:

measurements of the deformations of a pattern sent on the scene (structured light).

• first generation of the Kinects

- Mesa Imaging, PMD cameras
- second generation of Kinects

3D vision

Illustration of a depth map acquired with a range camera

Plan

Light and Color

Image Processing Monadic Operations Diadic Operations Spatial Operations Shape Changing

Plan

Light and Color

Image Processing Monadic Operations

Diadic Operations Spatial Operations Shape Changing

Monadic Image Operations

Simple Monadic Operations in Matlab

- >> imd = idouble(im);
- >> im = iint(imd);
- >> grey = imono(im);
- >> color = icolor(grey);
- >> color = icolor(grey, [1 0 0]);
- >> color = flipdim(im,3);

Intensity Histograms

- >> street = iread('street.png');
- >> ihist(street);
- >> shadows = (street >= 30) & (street<= 80);

Plan

Light and Color

Image Processing Monadic Operations Diadic Operations Spatial Operations Shape Changing

Diadic Operations

 $\boldsymbol{O}[\boldsymbol{u},\boldsymbol{v}] = f(\boldsymbol{I}_1[\boldsymbol{u},\boldsymbol{v}],\boldsymbol{I}_2[\boldsymbol{u},\boldsymbol{v}]), \ \forall (\boldsymbol{u},\boldsymbol{v}) \in \boldsymbol{I}_1$

Chroma-keying

```
>> subject = iread('greenscreen.jpg', 'double');
>> r = subject(:,:,1);
>> g = subject(:,:,2);
>> b = subject(:,:,3);
>> mask = (g < r) | (g < b);
>> mask3 = icolor( idouble(mask) );
>> bg = isamesize(iread('road.png', 'double'), subject);
>> idisp( subject.*mask3 + bg.*(1-mask3) );
```


Chroma-keying

With a more sophisticated keying (see book)

Plan

Light and Color

Image Processing

Monadic Operations Diadic Operations Spatial Operations

Shape Changing

Spatial Operations

Convolution

Computational cost: $O(h^2WH)$

Convolution

Properties of convolution. Convolution obeys the familiar rules of algebra, it is commutative

 $A \otimes B = B \otimes A$

associative

 $A \otimes B \otimes C = (A \otimes B) \otimes C = A \otimes (B \otimes C)$

distributive (superposition applies)

 $A \otimes (B + C) = A \otimes B + A \otimes C$

linear

 $A \otimes (\alpha B) = \alpha (A \otimes B)$

and shift invariant – if $S(\cdot)$ is a spatial shift then

 $A\otimes S(B)=S(A\otimes B)$

that is, convolution with a shifted image is the same as shifting the result of the convolution with the unshifted image.

Smoothing

Gaussian kernel:

$$\mathbf{G}(u,v)=\frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}}$$

Popular Kernels

If *n* is odd, the $k = \frac{1}{2}(\sharp(B) + 1)$ choice leads to the definition of a self-dual operator, that is a filter that produces the same result as if applied on the dual function. This operator, denoted med_B, is the *median filter*.

f(x)	25	27	30	24	17	15	22	23	25	18	20
1		25	24	17	15	15	15	22	18	18	18
med _B	25	27	27	24	17	17	22	23	23	20	20
3	27	30	30	30	24	22	23	25	25	25	
$f \ominus B(x) = \min$		25	24	17	15	15	15	22	18	18	
$f\oplus B(x)=\max$		30	30	30	24	22	23	25	25	25	

Filtering

Median filter II

(a) Original image f + noise

(b) Opening with a 5×5 square

(c) Low-pass Butterworth ($f_c = 50$) (d) Median with a 5 \times 5 square

Marc Van Droogenbroeck

207 / 513

Filtering

Non-linear filtering

Effect of the size of the median filter

Edge Detection

Linear operators

Practical expressions of gradient operators and convolution/multiplication masks I

Practical expression are based on the notion of convolution masks

corresponds to the following non-centered approximation of the first derivate:

$$\frac{(-1) \times f(x, y) + (+1) \times f(x+h, y)}{h}$$
(191)

This "convolution mask" has an important drawback. Because it is not centered, the result is shifted by half a pixel. One usually prefers to use a centered (larger) convolution mask such as

$$+1 \quad 0 \quad -1 \quad] \tag{192}$$

/ 513
Edge detection

Linear operators

Practical expressions of gradient operators and convolution/multiplication masks II

In the y (vertical) direction, this becomes

$$\left. \begin{array}{c} +1 \\ 0 \\ -1 \end{array} \right]$$

(193)

But then, it is also possible to use a diagonal derivate:

$$\begin{bmatrix} +1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
(194)

Edge detection

Linear operators

Practical expressions of gradient operators and convolution/multiplication masks III

Figure : (a) original image, (b) after the application of a horizontal mask, (c) after the application of a vertical mask, and (d) mask oriented at 135° .

Prewitt gradient filters

$$[h_{x}] = \frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
(195)
$$[h_{y}] = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
(196)

Figure : Original image, and images filtered with a horizontal and vertical Prewitt filter respectively.

Marc Van Droogenbroeck

Computer Vision

Academic year: 2017-2018 392 / 513

Sobel gradient filters

$$[h_{x}] = \frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
(197)

Figure : Original image, and images filtered with a horizontal and vertical Sobel filter respectively.

Edge Detection

Linear operators

Second derivate: basic filter expressions

$$\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Marc Van Droogenbroeck

Computer Vision

Academic year: 2017-2018 394 / 513

Noise-robust Edge Detection with Smoothing

- Noise is a stationary random process
- Edge pixels are correlated over large regions

 \rightarrow we can reduce the effect of noise with spatial smoothing.

$$\mathbf{I}_{u} = \mathbf{D} \otimes (\mathbf{G}(\sigma) \otimes \mathbf{I})$$
$$\nabla \mathbf{I} = \mathbf{D} \otimes (\mathbf{G}(\sigma) \otimes I) = \underbrace{(\mathbf{D} \otimes \mathbf{G}(\sigma))}_{\text{DoG}} \otimes \mathbf{I}$$
$$\mathbf{G}_{u}(u, v) = -\frac{u}{2\pi\sigma^{2}}e^{-\frac{u^{2}+v^{2}}{2\sigma^{2}}}$$

 σ can be chosen to

- remove noise
- extract edges of different scales

Spatial Operations

Mathematical Morphology

 $\mathbf{O}[u,v] = f(\mathbf{I}[u+i,v+j]), \ \forall (i,j) \in \mathbb{S}, \ \forall (u,v) \in \mathbf{I}$

Opening: Erosion then Dilatation

Erosion: $O = I \ominus S$

Dilatation: $O = I \oplus S$

Relation between erosion and dilatation: $A \oplus B = \overline{A} \oplus \overline{B}$ $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

 $I \circ S = (I \ominus S) \oplus S$

Basic morphological operators I

Erosion

Definition (*Morphological erosion*)

$$X \ominus B = \{ z \in \mathcal{E} | B_z \subseteq X \}.$$
(42)

The following algebraic expression is equivalent to the previous definition:

Definition (Alternative definition for the morphological erosion)

$$X \ominus B = \bigcap_{b \in B} X_{-b}.$$
 (43)

B is named "**structuring element**".

Erosion with a disk

Figure : Erosion of X with a disk B. The origin of the structuring element is drawn at the center of the disk (with a black dot).

Dilation I

Definition (Dilation)

From an algebraic perspective, the *dilation* (*dilatation* in French!), is the union of translated version of X:

$$X \oplus B = \bigcup_{b \in B} X_b = \bigcup_{x \in X} B_x = \{x + b | x \in X, b \in B\}.$$
 (44)

Morphological opening I

Definition (Opening)

The *opening* results from cascading an erosion and a dilation with the same structuring element:

$$X \circ B = (X \ominus B) \oplus B. \tag{47}$$

Interpretation of openings (alternative definition)

The interpretation of the opening operator (which can be seen as an alternative definition) is based on

$$X \circ B = \bigcup \{ B_z | z \in \mathcal{E} \text{ and } B_z \subseteq X \}.$$
(48)

In other words, the opening of a set by structuring element B is the set of all the elements of X that are covered by a translated copy of B when it moves inside of X.

Morphological opening I

Definition (Opening)

The *opening* results from cascading an erosion and a dilation with the same structuring element:

$$X \circ B = (X \ominus B) \oplus B. \tag{47}$$

Opening: Erosion then Dilatation

Erosion: $O = I \ominus S$

Dilatation: $O = I \oplus S$

Relation between erosion and dilatation: $A \oplus B = \overline{A} \oplus \overline{B}$ $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

 $I \circ S = (I \ominus S) \oplus S$

Closing: Dilatation then Erosion

Erosion: $\mathbf{0} = \mathbf{I} \ominus \mathbb{S}$

Dilatation: $O = I \oplus S$

Relation between erosion and dilatation: $A \oplus B = \overline{A} \oplus \overline{B}$ $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

 $I \bullet S = (I \oplus S) \ominus S$

Spatial Operations

Noise Removal: Closing then Opening

Boundary Detection: Erosion then Substraction

Neighboring transforms

The Hit or Miss transform is defined such as $X \Uparrow (B, C) = \{x | B_x \subseteq X, \ C_x \subseteq X^c\}$ (62)

If $C = \emptyset$ the transform reduces to an erosion of X by B.

160 / 513

Spatial Operations

Hit and Miss Transform, Skeletonization

Object description and analysis

Shape description

The morphological skeleton to describe a shape II

Figure : Shapes and their skeleton S(X).

Skeletons are sensitive to noise on the object.

Marc Van Droogenbroeck

Computer Vision

Academic year: 2017-2018 283 / 513

Formal definition of the skeleton II

Figure : Some skeletons obtained with Lantuéjoul's formula.

290 / 513

Alternative skeleton formulas III

Figure : Some skeletons obtained with Vincent's algorithm.

Geodesy and reconstruction I

Geodesic dilation

A geodesic dilation is always based on two sets (images).

Definition

The geodesic dilation of size 1 of X conditionally to Y, denoted $D_Y^{(1)}(X)$, is defined as the intersection of the dilation of X and Y:

$$\forall X \subseteq Y, \ D_Y^{(1)}(X) = (X \oplus B) \cap Y$$
(63)

where *B* is usually chosen according to the frame connectivity (a 3×3 square for a 8-connected grid).

Geodesy and reconstruction II

Marc Van Droogenbroeck

Computer Vision

162 / 513

Morphological reconstruction

Definition

The *reconstruction* of X conditionally to Y is the geodesic dilation of X until idempotence. Let i be the iteration during which idempotence is reached, then the reconstruction of X is given by

$$R_Y(X) = D_Y^{(i)}(X)$$
 with $D_Y^{(i+1)}(X) = D_Y^{(i)}(X).$ (65)

Figure : Blob extraction by marking and reconstruction.

163 / 513

Detecting lines

Challenge: detect lines in an image

Towards the Hough transform

- Difficulty: matching a set of points arranged as a line
- Idea: instead of considering the family of points (x, y) that belong to a line y = ax + b, consider the two parameters
 - the slope parameter *a* (but *a* is unbounded for vertical lines)
 - 2) the intercept parameter b (that is for x = 0)

401 / 513

Definition of the Hough transform I

With the Hough transform, we consider the (r, θ) pair where

- the parameter r represents the distance between the line and the origin,
- while θ is the angle of the vector from the origin to this closest point

Definition of the Hough transform II

We have several ways to characterize a line:

- **1** Slope *a* and *b*, such that y = ax + b.
- **2** The two parameters (r, θ) , with $\theta \in [0, 2\pi[$ and $r \ge 0$.

Link between these characterizations: The equation of the line becomes

$$y = \left(-\frac{\cos\theta}{\sin\theta}\right)x + \left(\frac{r}{\sin\theta}\right)$$
(200)

Check:

• For
$$x = 0$$
, $r = y \sin \theta \rightarrow \text{ok}$.

For
$$x = r \cos \theta$$
, $y = r \sin \theta \rightarrow \text{ok}$.

Hough's transform

Families of lines passing through a given point (x_0, y_0)

By re-arranging terms of $y = \left(-\frac{\cos\theta}{\sin\theta}\right)x + \left(\frac{r}{\sin\theta}\right)$, we get that, for an arbitrary point on the image plane with coordinates, e.g., (x_0, y_0) , the family of lines passing through it are given by

$$r = x_0 \cos \theta + y_0 \sin \theta \tag{201}$$

Example

For three points (x_0, y_0) , we explore the Hough's space. That is, we compute *r* for a given set of orientations θ :

Hough space

Thus, the problem of detecting colinear points can be converted to the problem of finding concurrent curves.

Hough space

Angle

407 / 513

Algorithm for detecting lines

Algorithm

- Detect edges in the original image.
- Select "strong edges" for which there is enough evidence that they belong to lines.
- For each point, accumulate values in the corresponding bins of the Hough space.
- Threshold the accumulator function to select bins that correspond to lines in the original image.
- Solution Draw the corresponding lines in the original image.

Real example

410 / 513

Image segmentation I

Segmentation of a color image

Segmentation of a depth image

- Problem statement
- Segmentation by thresholding
- Segmentation by region detection (region growing)
 - Watershed
- Segmentation by classification (semantic classification)

Problem statement II

Segmented image

Labelled image

Illustration: segmentation of cells

[Source]

Segmentation

Segmentation by region growing: illustration with the watershed

Semantic segmentation (based on deep learning)

- Based on classification techniques and machine learning
- Pixel-based
- A series of semantic notions (persons, cars, bicycles, etc)

Original image (hover to highlight segmented parts)

AAAAA

Semantic segmentation

Objects appearing in the image:

Objects not appearing in the image:

Aeroplane	Bird	Boat	Bottle	Bus	Car	Cat	Chair	Cow
Dining table	Dog	Horse	Motorbike	Potted plant	Sheep	Sofa	Train	TV/Monitor