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These slides are based on Chapter 12 of the book Robotics, Vision and
Control: Fundamental Algorithms in MATLAB by Peter Corke, published
by Springer in 2011.
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Light and Color

The Spectral Representation of Light, Color, and RGB
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Fundamentals of 2D imaging Color perception and representation

Human visual system, light and colors II

color wavelength interval λ [m] frequency interval f [Hz]

purple ∼ 450–400 [nm] ∼ 670–750 [THz]

blue ∼ 490–450 [nm] ∼ 610–670 [THz]

green ∼ 560–490 [nm] ∼ 540–610 [THz]

yellow ∼ 590–560 [nm] ∼ 510–540 [THz]

orange ∼ 635–590 [nm] ∼ 480–510 [THz]

red ∼ 700–635 [nm] ∼ 430–480 [THz]

Figure : Visible colors (remember that λ = 3×108

f ).
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Fundamentals of 2D imaging Color perception and representation

Frequency representation of colors∫
λ

L(λ) dλ (1)

Impossible from a practical perspective because this would require one
sensor for each wavelength.
Solution: use colorspaces

? X

aA bB

cC

Figure : Equalization experiment for colors. The aim is to mix A, B, and C to get as close as

possible to X .
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Fundamentals of 2D imaging Color perception and representation

The RGB additive colorspace

Three fundamental colors: red R (700 [nm]), green G (546, 1 [nm]) and
blue B (435, 8 [nm]),

400 500 600 700 λ[nm]

r(λ)
b(λ)

0

-0,1

0,1

0,2

0,3

0,4

v(λ)

Figure : Equalization curves obtained by mixing the three fundamental colors to
simulate a given color.
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Light and Color

Images: Computer Representation

A color image is a 2D array of pixels.

Each pixel encodes a color, typically with a triplet (R,G,B).

A color pixel is usually encoded into 24 bits (8 bits per color).

As a result, the R, G, and B components take values between 0 and 255.

In image processing, it is not uncommon to represent colors with
floating-point variables. In this case, R, G, and B usually scale between 0
and 1. Be careful that when converting back to 24-bit color, or writing to
disk, the components must be scaled back to 0–255.

In Matlab, the commands iread and idisp read images from disk and
display them.
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Fundamentals of 2D imaging Color perception and representation

Other colorspaces

I a subtractive colorspace: Cyan, Magenta, and Y ellow (CMY)
I Luminance + chrominances ( YIQ, YUV or YCbCr )

In practice, most of the time, we use 8 bits to describe a color:

Hexadecimal Decimal
00 00 00 0 0 0
00 00 FF 0 0 255
00 FF 00 0 255 0
00 FF FF 0 255 255
FF 00 00 255 0 0
FF 00 FF 255 0 255
FF FF 00 255 255 0
FF FF FF 255 255 255

Table : Definition of RGB color values (8 bits) and conversion table between an
hexadecimal notation and decimal notation.

Marc Van Droogenbroeck Computer Vision Academic year: 2017-2018 19 / 513



Light and Color

Hue-Saturation-Value: an Intuitive Represenation of RGB

Hue is more robust to common changes of lighting conditions than
saturation or value.
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Fundamentals of 2D imaging Data representations

Resolution
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Fundamentals of 2D imaging Data representations

The bitplanes of an image

Table : An original image and its 8 bitplanes starting with the Most Significant
Bitplane (MSB).
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3D vision

Technologies for dealing with 3D information

Acquisition

I Single monochromatic/color camera

I Multiple cameras (stereoscopy, network of cameras)

I Depth (range) cameras

Rendering

I Glasses

Color anaglyph systems

Polarization systems

I Display

Autostereoscopic display technologies
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3D vision

Depth cameras

There are two acquisition technologies for depth-cameras, also called
range- or 3D-cameras:
I measurements of the deformations of a pattern sent on the scene

(structured light).

first generation of the Kinects

I measurements by time-of-flight (ToF). Time to travel forth and back
between the source led (camera) and the sensor (camera).

Mesa Imaging, PMD cameras
second generation of Kinects
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3D vision

Illustration of a depth map acquired with a range camera
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Image Processing Monadic Operations
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Image Processing Monadic Operations

Monadic Image Operations
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Image Processing Monadic Operations

Simple Monadic Operations in Matlab

>> imd = idouble(im);

>> im = iint(imd);

>> grey = imono(im);

>> color = icolor(grey);

>> color = icolor(grey, [1 0 0]);

>> color = flipdim(im,3);
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Image Processing Monadic Operations

Intensity Histograms

>> street = iread(’street.png’);

>> ihist(street);

>> shadows = (street >= 30) & (street<= 80);
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Image Processing Diadic Operations
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Image Processing Diadic Operations

Diadic Operations
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Image Processing Diadic Operations

Chroma-keying

>> subject = iread(’greenscreen.jpg’, ’double’);

>> r = subject(:,:,1);

>> g = subject(:,:,2);

>> b = subject(:,:,3);

>> mask = (g < r) | (g < b);

>> mask3 = icolor( idouble(mask) );

>> bg = isamesize(iread(’road.png’, ’double’), subject);

>> idisp( subject.*mask3 + bg.*(1-mask3) );
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Image Processing Diadic Operations

Chroma-keying
With a more sophisticated keying (see book)
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Image Processing Spatial Operations
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Image Processing Spatial Operations

Spatial Operations
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Image Processing Spatial Operations

Convolution

Computational cost: O(h2WH)
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Image Processing Spatial Operations

Convolution

Properties of convolution. Convolution obeys the familiar rules of algebra, it is commutative

associative

distributive (superposition applies)

linear

and shift invariant – if S(·) is a spatial shift then

that is, convolution with a shifted image is the same as shifting the result of the convolution with
the unshifted image.
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Image Processing Spatial Operations

Smoothing

Gaussian kernel:
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Image Processing Spatial Operations

Popular Kernels
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Filtering Non-linear filtering

Median filter I

If n is odd, the k = 1
2 (](B) + 1) choice leads to the definition of a self-dual

operator, that is a filter that produces the same result as if applied on the
dual function. This operator, denoted medB , is the median filter.

f (x) 25 27 30 24 17 15 22 23 25 18 20

1 25 24 17 15 15 15 22 18 18 18

medB 25 27 27 24 17 17 22 23 23 20 20

3 27 30 30 30 24 22 23 25 25 25

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25
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Filtering Non-linear filtering

Median filter II

(a) Original image f + noise (b) Opening with a 5× 5 square

(c) Low-pass Butterworth (fc = 50) (d) Median with a 5× 5 square
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Filtering Non-linear filtering

Effect of the size of the median filter

(a) Image f (b) 3× 3 median (c) 5× 5 median
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Image Processing Spatial Operations

Edge Detection

>> Du = ksobel

Du =

    -1     0     1

    -2     0     2

    -1     0     1
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Edge detection Linear operators

Practical expressions of gradient operators and
convolution/multiplication masks I

Practical expression are based on the notion of convolution masks

[
+1 −1

]
(190)

corresponds to the following non-centered approximation of the first
derivate:

(−1)× f (x , y) + (+1)× f (x + h, y)

h
(191)

This “convolution mask” has an important drawback. Because it is not
centered, the result is shifted by half a pixel. One usually prefers to use a
centered (larger) convolution mask such as[

+1 0 −1
]

(192)
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Edge detection Linear operators

Practical expressions of gradient operators and
convolution/multiplication masks II

In the y (vertical) direction, this becomes +1
0
−1

 (193)

But then, it is also possible to use a diagonal derivate: +1 0 0
0 0 0
0 0 −1

 (194)
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Edge detection Linear operators

Practical expressions of gradient operators and
convolution/multiplication masks III

Figure : (a) original image, (b) after the application of a horizontal mask, (c) after the

application of a vertical mask, and (d) mask oriented at 1350.
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Edge detection Linear operators

Prewitt gradient filters

[hx ] =
1

3

[
1 0 −1
1 0 −1
1 0 −1

]
=

1

3

[
1
1
1

] [
1 0 −1

]
(195)

[hy ] =
1

3

[
1 1 1
0 0 0
−1 −1 −1

]
=

1

3

[
1
0
−1

] [
1 1 1

]
(196)

Figure : Original image, and images filtered with a horizontal and vertical Prewitt
filter respectively.
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Edge detection Linear operators

Sobel gradient filters

[hx ] =
1

4

[
1 0 −1
2 0 −2
1 0 −1

]
=

1

4

[
1
2
1

] [
1 0 −1

]
(197)

Figure : Original image, and images filtered with a horizontal and vertical Sobel
filter respectively.
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Image Processing Spatial Operations

Edge Detection

>> Du = ksobel

Du =

    -1     0     1

    -2     0     2

    -1     0     1
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Edge detection Linear operators

Second derivate: basic filter expressions

[
1 −2 1

] [
1
−2
1

] [
0 1 0
1 −4 1
0 1 0

] [
1 1 1
1 −8 1
1 1 1

]
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Image Processing Spatial Operations

Noise-robust Edge Detection with Smoothing

I Noise is a stationary random process

I Edge pixels are correlated over large regions

→ we can reduce the effect of noise with spatial smoothing.

σ can be chosen to

I remove noise

I extract edges of different scales
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Image Processing Spatial Operations

Mathematical Morphology
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Image Processing Spatial Operations

Opening: Erosion then Dilatation

Erosion:

Dilatation:

Relation between
erosion and dilatation:

26 / 34



Mathematical morphology Morphology on sets/objects

Basic morphological operators I

Erosion

Definition (Morphological erosion)

X 	 B = {z ∈ E|Bz ⊆ X}. (42)

The following algebraic expression is equivalent to the previous definition:

Definition (Alternative definition for the morphological erosion)

X 	 B =
⋂
b∈B

X−b. (43)

B is named “structuring element”.

Marc Van Droogenbroeck Computer Vision Academic year: 2017-2018 143 / 513



Mathematical morphology Morphology on sets/objects

Erosion with a disk

B

X

X 	 B

Figure : Erosion of X with a disk B. The origin of the structuring element is
drawn at the center of the disk (with a black dot).
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Mathematical morphology Morphology on sets/objects

Dilation I

Definition (Dilation)

From an algebraic perspective, the dilation (dilatation in French!), is the
union of translated version of X :

X ⊕ B =
⋃
b∈B

Xb =
⋃
x∈X

Bx = {x + b|x ∈ X , b ∈ B}. (44)
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Mathematical morphology Morphology on sets/objects

Morphological opening I

Definition (Opening)

The opening results from cascading an erosion and a dilation with the
same structuring element:

X ◦ B = (X 	 B)⊕ B. (47)
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Mathematical morphology Morphology on sets/objects

Interpretation of openings (alternative definition)

The interpretation of the opening operator (which can be seen as an
alternative definition) is based on

X ◦ B =
⋃
{Bz |z ∈ E and Bz ⊆ X}. (48)

In other words, the opening of a set by structuring element B is the set of
all the elements of X that are covered by a translated copy of B when it
moves inside of X .
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Mathematical morphology Morphology on sets/objects
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Image Processing Spatial Operations

Opening: Erosion then Dilatation

Erosion:

Dilatation:

Relation between
erosion and dilatation:
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Image Processing Spatial Operations

Closing: Dilatation then Erosion

Erosion:

Dilatation:

Relation between
erosion and dilatation:
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Image Processing Spatial Operations

Noise Removal: Closing then Opening
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Image Processing Spatial Operations

Boundary Detection: Erosion then Substraction
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Mathematical morphology Geodesic operators

Neighboring transforms

The Hit or Miss transform is defined such as
X ⇑ (B,C ) = {x |Bx ⊆ X , Cx ⊆ X c} (62)

If C = ∅ the transform reduces to an erosion of X by B.
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Image Processing Spatial Operations

Hit and Miss Transform, Skeletonization
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Object description and analysis Shape description

The morphological skeleton to describe a shape II

Figure : Shapes and their skeleton S(X ).

Skeletons are sensitive to noise on the object.

Marc Van Droogenbroeck Computer Vision Academic year: 2017-2018 283 / 513



Object description and analysis Shape description

Formal definition of the skeleton II

Figure : Some skeletons obtained with Lantuéjoul’s formula.
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Object description and analysis Shape description

Alternative skeleton formulas III

Figure : Some skeletons obtained with Vincent’s algorithm.
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Mathematical morphology Geodesic operators

Geodesy and reconstruction I

Geodesic dilation
A geodesic dilation is always based on two sets (images).

Definition

The geodesic dilation of size 1 of X conditionally to Y , denoted D
(1)
Y (X ),

is defined as the intersection of the dilation of X and Y :

∀X ⊆ Y , D
(1)
Y (X ) = (X ⊕ B) ∩ Y (63)

where B is usually chosen according to the frame connectivity (a 3× 3
square for a 8-connected grid).
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Mathematical morphology Geodesic operators

Geodesy and reconstruction II
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(a) Set to be dilated (b) Geodesic mask

(c) Elementary dilation (d) Geodesic dilation

Figure : Geodesic dilation of size 1.

Definition

The geodesic dilation of size n of a set X conditionally to Y , denoted

D
(n)
Y (X ), is defined as n successive geodesic dilation of size 1:

∀X ⊆ Y , D
(n)
Y (X ) = D

(1)
Y (D

(1)
Y (. . . D

(1)
Y︸ ︷︷ ︸

n times

(X ))) (64)

where B is usually chosen according to the frame connectivity.
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Mathematical morphology Geodesic operators

Morphological reconstruction

Definition

The reconstruction of X conditionally to Y is the geodesic dilation of X
until idempotence. Let i be the iteration during which idempotence is
reached, then the reconstruction of X is given by

RY (X ) = D
(i)
Y (X ) with D

(i+1)
Y (X ) = D

(i)
Y (X ). (65)

(a) Blobs (b) Marking blobs (c) Reconstructed blobs

Figure : Blob extraction by marking and reconstruction.
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Edge detection Hough’s transform

Detecting lines

Challenge: detect lines in an image

Marc Van Droogenbroeck Computer Vision Academic year: 2017-2018 400 / 513



Edge detection Hough’s transform

Towards the Hough transform

I Difficulty: matching a set of points arranged as a line
I Idea: instead of considering the family of points (x , y) that belong to

a line y = ax + b, consider the two parameters
1 the slope parameter a (but a is unbounded for vertical lines)
2 the intercept parameter b (that is for x = 0)
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Edge detection Hough’s transform

Definition of the Hough transform I

x

y

r

θ

With the Hough transform, we consider the (r , θ) pair where

I the parameter r represents the distance between the line and the
origin,

I while θ is the angle of the vector from the origin to this closest point
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Edge detection Hough’s transform

Definition of the Hough transform II

We have several ways to characterize a line:

1 Slope a and b, such that y = ax + b.

2 The two parameters (r , θ), with θ ∈ [0, 2π[ and r ≥ 0.

Link between these characterizations:
The equation of the line becomes

y =

(
−cos θ

sin θ

)
x +

(
r

sin θ

)
(200)

Check:

I For x = 0, r = y sin θ → ok.

I For x = r cos θ, y = r sin θ → ok.

Marc Van Droogenbroeck Computer Vision Academic year: 2017-2018 403 / 513



Edge detection Hough’s transform

Families of lines passing through a given point (x0, y0)

x

y

r

θ

(x0, y0)

By re-arranging terms of y =
(
− cos θ

sin θ

)
x +

( r
sin θ

)
, we get that, for an

arbitrary point on the image plane with coordinates, e.g., (x0, y0), the
family of lines passing through it are given by

r = x0 cos θ + y0 sin θ (201)
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Edge detection Hough’s transform

Example

For three points (x0, y0), we explore the Hough’s space.
That is, we compute r for a given set of orientations θ:
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Edge detection Hough’s transform

Hough space

Thus, the problem of detecting colinear points can be converted to the
problem of finding concurrent curves.
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Edge detection Hough’s transform

Hough space
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Edge detection Hough’s transform

Algorithm for detecting lines

Algorithm

1 Detect edges in the original image.

2 Select “strong edges” for which there is enough evidence that they
belong to lines.

3 For each point, accumulate values in the corresponding bins of the
Hough space.

4 Threshold the accumulator function to select bins that correspond to
lines in the original image.

5 Draw the corresponding lines in the original image.
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Edge detection Hough’s transform

“Toy” example
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Edge detection Hough’s transform

Real example
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Segmentation

Image segmentation I

Segmentation of a color image Segmentation of a depth image

I Problem statement

I Segmentation by thresholding
I Segmentation by region detection (region growing)

Watershed

I Segmentation by classification (semantic classification)
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Segmentation Problem statement

Problem statement II

Segmented image Labelled image
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Segmentation Segmentation by region growing: illustration with the watershed

Illustration: segmentation of cells

[Source]

Marc Van Droogenbroeck Computer Vision Academic year: 2017-2018 246 / 513

http://stackoverflow.com/questions/6691991/watershed-algorithm-in-matlab


Segmentation Segmentation by region growing: illustration with the watershed

Semantic segmentation (based on deep learning)

I Based on classification techniques and machine learning
I Pixel-based
I A series of semantic notions (persons, cars, bicycles, etc)
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