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These slides are based on Chapter 6 and Appendix H of the textbook
Robotics, Vision and Control: Fundamental Algorithms in MATLAB by
Peter Corke, published by Springer in 2011.
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Means Of Localization

Dead Reckoning, Maps and Landmarks

Dead Reckoning:
Estimation of location based on
estimated speed, direction and time
of travel.

Using a compass, a map, and
landmarks: (flashing) lighthouses,
stars, islands, ...
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Means Of Localization

GPS

Distance to one satellite: sphere. Distance to two satellites: circle.

Distance to three satellites: point. A fourth satellite is required for clock
sync.

The European Galileo system has 5
satellites up and running. The

remaining 24 or 25 are expected to
launch before 2019.

http://www.montana.edu/gps/understd.html
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Means Of Localization

Means Of Robot Localization

GPS-like systems (GPS, ultrasound beacons, ...): useful when available,
but not always available, and sometimes not sufficiently precise.

Odometry: for instance, integrating the rotation speed of a wheel.

Using a map and observing landmarks.
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The Kalman Filter

The Localization Problem

We denote by x the true but unknown robot position.

x̂ is our estimate of the robot’s position.

Need for a formalization of the uncertainty of x̂. For instance: stdev of a
Gaussian.

How do we integrate the observation of new landmarks or odometry into
this representation? → Via the Kalman Filter.
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The Kalman Filter

The Kalman Filter

Example use: tracking the position of a robot, tracking the ball in a
football game, tracking people moving on the platforms of a train station.

Mathematically:

I We track (over time) the value of a state vector x that cannot be
observed directly.

I We can predict a future value of x via a dynamic model.

I We can obtain observations (measurements) that are a function of
the state.

I The Kalman filter merges the estimates obtained from the dynamic
model and the observations.
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The Kalman Filter

Discrete-time Linear Time-invariant System Model

I x is the state vector

I u is the system input

I z are the sensor measurements

I F describes the dynamics of the system

I G describes the coupling between the inputs and the state

I H describes how the state is mapped to the sensory channels

I v is the Gaussian and zero-mean process noise (cf. F and G)

I w is the Gaussian and zero-mean measurement noise (cf. H)
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The Kalman Filter

Discrete-time Linear Time-invariant System Model

Our problem

Given a model of the system, the known inputs u and some noisy sensor
measurements z, estimate x.
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The Kalman Filter

Example: Omnidirectional Robot

The input u controls the velocity along x and y.
The measurement z give the position of the robot (ultrasound beacons).

F =

(
1 0
0 1

)
G =

(
∆t 0
0 ∆t

)
H =

(
1 0
0 1

)
x〈k〉 =

(
x0〈k〉
x1〈k〉

)
u〈k〉 =

(
u0〈k〉
u1〈k〉

)
z〈k〉 =

(
z0〈k〉
z1〈k〉

)
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The Kalman Filter

Localizing The Robot

At every timestep:

I Predict the current state from the previous state.

I Read the sensor data.

I Correct the current state in light of measurements.
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The Kalman Filter

The Kalman Filter: Prediction and Correction

System model:

Prediction

Rather: x̂〈k+1|k〉 = F x̂〈k|k〉 + Gu〈k〉

Correction

Initial conditions: x̂〈0|0〉, P̂ 〈0|0〉
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The Kalman Filter

The Kalman Filter: Prediction

I The covariance matrix P̂ models the state uncertainty.

I With only prediction, the Kalman filter is open-loop (relies on the
accuracy of the model).

I During prediction, P̂ (typically) increases.
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The Kalman Filter

The Kalman Filter: Correction

I During correction, P̂ decreases.
I The Kalman Gain specifies how strongly

I x is drawn towards the measurement
I The state uncertainty is reduced
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The Kalman Filter

Example: Walking In The Mountains

The input u controls the size of a step.
The measurement z gives my position along the path when I see a
mountaintop.

F = 1

G = 1

H = 1

x〈k〉 = x〈k〉
u〈k〉 = u〈k〉
z〈k〉 = z〈k〉

V̂ = 0.12

Ŵ = 502
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The Kalman Filter

Notes On The Kalman Filter

I Recursive and Asynchronous

I Requires a starting estimate of the state and state uncertainty.

I Requires a reasonable estimate of the process and measurement noise.

I Theoretical properties/justifications (in a nutshell)
I Under the linear dynamical and observation models, and with the

gaussian noise assumptions, all states and observations form actually a
jointly gaussian random vector

I The Kalman filter computes exactly the conditional expectation and
the conditional covariance matrix of states given observations, hence
the state estimate is also a ‘least mean-square error’ estimate.

I The recursive ‘left-right’ formulas are justified by fact that the process
is actually a Hidden-Markov process.
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Dead Reckoning

Odometry

Odometer: sensor that measures the distance travelled by the robot –
typically: wheel rotation angles.

Keeping track of the direction of movement: differential odometry,
compass, gyro.

Affected by systematic error (wheel radius slightly off) and random errors
(slippage).
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Dead Reckoning

Modeling A Non-holonomic Vehicle
Discrete-time Model Of The Robot’s Configuration

Odometry reading for the preceding time interval:

ite a discrete-tim

re δhki= (δd, δ θ) 

Pose at time k:

ξ〈k〉 ∼
(

cos θ〈k〉 − sin θ〈k〉 x〈k〉
sin θ〈k〉 cos θ〈k〉 y〈k〉

0 0 1

)
Pose at time k + 1:

ξ〈k + 1〉 ∼
(

cos θ〈k〉 − sin θ〈k〉 x〈k〉
sin θ〈k〉 cos θ〈k〉 y〈k〉

0 0 1

)(
cos δθ − sin δθ 0
sin δθ cos δθ 0
0 0 1

)(
1 0 δd
0 1 0
0 0 1

)
∼

(
cos(θ〈k〉+δθ) − sin(θ〈k〉+δθ) x〈k〉+δd cos(θ〈k〉+δθ)
sin(θ〈k〉+δθ) cos(θ〈k〉+δθ) y〈k〉+δd sin(θ〈k〉+δθ)

0 0 1

)

21 / 35



Dead Reckoning

Modeling A Non-holonomic Vehicle With Noisy Odometry

Error model: continuous random variables vd and vθ.

Compare with
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Dead Reckoning

EKF: The Extended Kalman Filter

System Model

Local linear approximation:
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Dead Reckoning

EKF: Precition

Compare to the regular KF prediction:
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Dead Reckoning

Open-loop EKF: Illustration

Left: trajectory “guessing” via odometry (with uncertainty ellipses)

Right: uncertainty growth with time (more quickly if sensors are less accurate)
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Using And Building A Map
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Using And Building A Map

Using A Map

With Dead-reckoning, position uncertainty constantly grows.

Solution:

I bring a map of prominent landmarks

I look around for landmarks

I incorporate this information into our position estimate via the Kalman
correction stage:
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Using And Building A Map

Working With A Nonlinear Observation Model

Let us assume a general expression for the observation model:

where xv is the world vehicle coordinates, xf is the world coordinates of
an observed feature.

With a range/bearing sensor:

with z = (r, β), and
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Using And Building A Map

Working With A Nonlinear Observation Model

The innovation is written as

which requires to linearize the observation model
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Using And Building A Map

The Extended Kalman Filter

The EKF linearizes the dynamic and measurement models about the
current state estimate, then applies the linear Kalman filter.

Risk of quick divergence if the initial conditions or dynamic/measurement
models are incorrect.

The state is modeled with a Gaussian distribution. Result: can only hold
one hypothesis, problem with data association in the measurement stage.
For multi-hypothesis: particle filters.

Still de facto standard in navigation systems such as car GPS.
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Using And Building A Map

Creating A Map
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Using And Building A Map

Creating A Map

Assuming a perfect odometry,
creating a map is straightforward.

I Kalman filter state: landmark
positions

I Kalman prediction:
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Using And Building A Map

Simultaneous Localization And Mapping (SLAM)

SLAM: a chicken-and-egg problem
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Using And Building A Map

Particle Filtering

By contrast to the (Extended) Kalman Filter: handles non-Gaussian state
representations (Multiple hypotheses, non-Gaussian uncertainty), does not
care about model linearity.

I Maintain several states concurrently

I Randomly perturb states when updating them with the dynamics
model

I Get rid of particles that do not explain new measurements well
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Using And Building A Map

Particle Filtering For Localization

Goal: track the vehicle’s pose (x, y, θ).

The filter maintains N particles xv,i.

Loop:

1. Use the dynamic model to update all particles:

2. Weight all particles in light of new observation z:

wi = e−
1
2
νTi Lνi + a, νi = h(xv,i,xf )− z

3. Resample particle set: draw N times from the particle set, where at
each draw the probability of selecting particle i is proportional to wi.

Pose estimate: mean of all particles.
Pose uncertainty: standard deviation around mean.
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