INFO0948
Control and Navigation of Mobile Robots

Bernard Boigelot

boigelot@montefiore.ulg.ac.be

February 23rd, 2018

1/44

These slides are partly based on Chapters 4 and 5 of the book Robotics,
Vision and Control: Fundamental Algorithms in MATLAB by Peter
Corke, published by Springer in 2011, on course material prepared by
Renaud Detry in 2016, and on Stéphane Lens's PhD thesis (ULg, 2015).

2/ 44

Control and Navigation

Problem statement: How to drive a mobile robot so as to
» reach a goal,
» as efficiently as possible,

» while satisfying various constraints?

lllustration 1: Solving a maze.

https://www.youtube.com/watch?v=_9Y40DmweYA

3/44

https://www.youtube.com/watch?v=_9Y4ODmweYA

[llustration 2: Skid parking.

https://www.youtube.com/watch?v=_pi0849uRdI

4/ 44

https://www.youtube.com/watch?v=_piO849uRdI

Controlling a Mobile Robot

Approach:

1. Develop a kinematic model of the mobile robot.

2. Build a control loop around this model.

5/44

Kinematic Model: Bicycle Drive

£ = wcosh
= osinf

Bicycle kil ti del fe bile robot
% V’—V‘ icycle kinematic model for mobile robof
S /

Vel Accelreration
limit limit cos

Product

&

gamma

Integrator —‘ y
Steering g

angle '@
limit theta
Handbrake

(Toolbox model: Bicycle.)

6/44

Kinematic Model: Other Platforms

Tricycle drive:

Differential drive:

&
vgcosy = {

s .
— sin vy

L

VR — VUL,

UR + UL N {

(]

Vg COS "y cos ¢
= wgcosvysinf

= rIUL o5

Msine
2

7/44

Control Loop: Moving to a Point

Control strategy:

» The target velocity is proportional to the distance from the goal:

K\/x—x y—y)

» The steering angle is proportional to the angular difference
between the direction to the goal and the current orientation 6:

v =Ky(0°9),
with .
0* = arctan y* _ y'
¥ —

(Matlab and toolbox functions: atan2 for the four-quadrant arctan,
angdiff for the bounded angle difference ©.)

8/44

Moving to a Point: Simulink Model

s>
Xy
XY
X q
v 12
y >
gamma
FIB_ | the(a.
angdiff icyce
theta
theta
theta
10
9l-
8-
71
6l
>N 5o
4}
3l
ol
1r-
o :
0 2 4 6 8 10

(Toolbox model: s1_drivepoint.)
9/44

Following a Line

Control strategy:

» The goal is to follow the line az + by + ¢ = 0.

» Steering controller 1: Steer towards the line:
ag = —Kgd

with
ar +by+c

T VErE
» Steering controller 2: Keep our orientation parallel to the line:
ap = Kh(H* ©0),
with

0* = arctan —.
b

» Combined steering controller: v = ayg + ay,.

10/ 44

Result:

(Toolbox model: s1_driveline.)

11/ 44

Following a Path

Control strategy:

» The robot follows a goal (z*,y*) that moves along a path.

» The distance d* between the robot and the moving goal is kept
constant by a velocity controller

v* :Kve+Ki/edt

with

e = \/(m*—x)2+ (y*—y)Q—d*.
» The steering controller orients the robot towards the moving goal:
v =K (9* © 9)7

with
*

Y
0* = arctan .
Tt —x

12/ 44

Result:

15 ; ; ; ; ;
s -1 -05 0 05 1 15

http://www.montefiore.ulg.ac.be/ boigelot/tunnel/bull.mov

(Toolbox model: s1_pursuit.)

13 /44

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/bull.mov

Reactive Navigation 1: Braitenberg Vehicles

Principles:
» Direct connection between sensors and actuators.
» No internal memory.

» No internal representation of the environment.

Example:

» Two sensors si and sy, returning values in [0,1]. The goal is to
reach the location where sp = s, = 1.

» Velocity law:
v=2—SR— S[.

» Steering law:
v =k(sp — sg).

14/ 44

Result:

Notes:
» The command strategy remains simple.

» With additional sensors, more complex behaviors can be
implemented (e.g., obstacle avoidance).

» Toolbox model: s1_braitenberg

15/ 44

Reactive Navigation 2: Simple Automata

Principles:
» The command logic is implemented as a state machine.

» At each step, the current state and the sensor values determine

» the immediate motion of the robot, and
» the next state.

Example:

» Bug robot operating in a grid world.

» The basic mode of operation is to move in a straight line towards
the goal.

» If an obstacle is detected, the bug moves around it
(counter-clockwise), until it reaches a point on the original line that
is closer to the goal.

16 / 44

Result:

This solution is far from being optimal!

(Toolbox model: Bug?2.)

17/ 44

Map-based Planning

» The robot uses a map of its environment to plan its paths.

» The main problem is to find a path from a location to another that

» is physically feasible (in particular, it must avoid obstacles), and
> minimizes a cost function (traveled distance, time, energy, ...).

> In some applications, the parameters of the problem (initial location,
goal, constraints, map contents, ..) may change over time.

18/ 44

Distance Transform

» Simple model where the robot
» occupies one cell in a grid world,

» knows precisely its position, and
» moves in a holonomic way.

» The map labels each cell with its precomputed distance to the goal.

» A simple strategy thus consists in always moving to the neighboring
cell for which the distance to the goal is minimal.

19/ 44

Illustration:

» With this solution, the initial location can easily be modified.

» However, a new map has to be computed for every new goal.

» The distance transform computation algorithm implemented in the
toolbox (DXform) is inefficient, but there exist better solutions.

20/ 44

Graph-based Planning

The reachable locations are represented by the nodes of a graph
(e.g., every free cell in a grid world).

The graph contains an edge (n,n’) whenever n’ is directly reachable
from n.

Edges are labeled by the cost of the corresponding move (e.g., 1 for
horizontal or vertical neighbors in a grid, /2 for diagonal ones).

The problem is to find a path from an initial node ng to a goal ng
that minimizes the total cost of its edges.

21/ 44

v

v

v

Dijkstra’'s Algorithm

For each node n, one keeps the current best estimate g(n) of the
minimum cost from ng to n.

One maintains a set OPEN containing the nodes that still need to
be processed.

Initially: g(ng) = 0
g(n) = oo forall n# ng
OPEN = the set of all nodes.

While OPEN # :
1. Remove from OPEN the node n with the smallest g(n).

2. For each neighbor n' of n, if g(n) + cost(n,n’) < g(n'), then set
g(n') := g(n) + cost(n,n’).

22 /44

Notes:

» Upon completion, g(n) contains the smallest cost from ng to n, for
every node n. (Thus, changing goals are easily dealt with.)

» |n order to compute shortest paths, a simple approach is to keep a
backpointer in each node, linking to its best predecessor.

» This algorithm runs in O(N log N) time, where N is the number of
nodes, if cleverly implemented (priority queue for the set OPEN).

23 /44

A* Algorithm

Variant of Dijkstra's, in which one considers at each step the node n
with the smallest value of

g(n) + h(n),

where h(n) is a heuristic function that estimates the cost from n to
the goal node ng.

If h(n) is always lower than or equal to the true cost of moving from
n to n¢, then the algorithm is always able to compute the shortest
path from ng to ng, in O(Nlog N) time.

Depending on the quality of the heuristic function h, this
computation can be much faster.

A simple choice for h is to use the Euclidean distance between node
locations.

24 /44

Drawbacks: The A* algorithm cannot easily deal with

» modifying the goal or the initial node.

» changing edge costs.

25 /44

D* Algorithm

Yet another variant of Dijkstra’s.

Instead of computing for each node n the best cost from ng to n,
one computes the smallest cost from n to ng. (In other, words, the
algorithm computes a distance transform.)

The algorithm supports incremental replanning: The cost of an edge
can be modified at any time, leading to propagating the change to
the relevant subset of nodes.

The time cost is O(N log N') without replanning. Replannings have
a worst-case cost of O(N log N), but are usually much cheaper.

Toolbox implementation: Dstar.

26 / 44

I[lustration:

20 40 60 80 100 20 40 60 80 100

(The cost of the edges in the dashed rectangle have been increased.)

27 /44

Notes: The D* algorithm

» is still unable to handle changing goals, and

» lacks a heuristic function, and can thus be less efficient than A* in
some cases.

28 / 44

Voronoi Roadmaps

Goal: Handling efficiently queries in which the initial and goal locations
are frequently modified.

Idea:

» Precompute a graph of the paths that clear the obstacles at the
largest possible distance.

» Connect the initial and goal locations to the nearest nodes in this
graph, and compute the shortest path between them.

» Perform local optimization on the resulting path.

29/ 44

[llustration:

v (pixels)

v (pixels)

100

90

80

70

50
u (pixels)

v (pixels)

v (pixels)

u (pixels)

50
u (pixels)

30/ 44

Notes:

» The main advantage is that the resulting roadmap is much smaller
than the graph linking all feasible locations.

» The reference book completely misses the fact that Voronoi
roadmaps can be constructed and exploited in a very efficient way:

» The Voronoi diagram of N points can be computed in O(N log N)
time (and is the dual graph of their Delaunay triangulation).

» For a set of polygonal obstacles, the procedure is a bit more complex,
but still runs in O(N log N) time.

» Once a shortest path has been extracted from a Voronoi roadmap, it
can be simplified in O(N) time into a locally optimal solution.

31/44

[llustration (Stéphane Lens's thesis):

1. Problem statement and initial triangulation.

32/44

2. Refined triangulation.

33 /44

3. Roadmap graph and shortest path.

34 /44

4. Locally optimal solution.

35/44

5. Solution with larger clearance.

36 /44

6. Smoothed path.

(Total computation time: 1.5 ms.)

37 /44

A more complex example:

(Total computation time: 4.8 ms.)

38/44

Yet another complex example:

0 4o, OB AL .
ke SR (L 24 4
RN AT e S A R L

i

- ' h :
s S04 10.:::%'3%4';_' ¢
=T ;
3 ! B

(Total computation time: 82.6 ms.)

39/44

Example: Wilbur (Eurobot)

http://www.montefiore.ulg.ac.be/ boigelot/tunnel/wilbur.mov

40 / 44

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/wilbur.mov

Probabilistic Roadmaps

Procedure:

» Build a graph by placing N random points in free space, and
connecting them together (making sure that edges do not cross
obstacles).

» Set the cost of edges according to the distance between their
corresponding nodes.

» Connect the initial and goal locations to their nearest node, and
compute the shortest path between them.

Advantage: The method is simple and efficient.

Drawback: It is difficult to ensure that

» all areas of interest are explored, and

» the resulting roadmap is a connected graph.
41/ 44

Illustration:

100

90

80

70

60

50

40

30

20

(Toolbox implementation: PRM.)

60

70

80

90

100

42/44

Rapidly-exploring Random Trees (RRT)

Procedure: Build a roadmap tree by repeatedly

» placing a random point p’ in free space,

» locating the nearest point p in the existing tree, (initially, this tree
only contains the initial location),

» simulating a move of the robot from p to p/, stopping after a given
time or traveled distance,

» connecting p to the reached location p”.
Advantages:

» This approach can take into account constraints on robot motion
(e.g., non-holonomicity).
» The procedure is also applicable to n-dimensional planning problems.

43/ 44

I[lustration:

44 /44

