
INFO0948
Control and Navigation of Mobile Robots

Bernard Boigelot
boigelot@montefiore.ulg.ac.be

February 23rd, 2018

1 / 44

These slides are partly based on Chapters 4 and 5 of the book Robotics,
Vision and Control: Fundamental Algorithms in MATLAB by Peter
Corke, published by Springer in 2011, on course material prepared by
Renaud Detry in 2016, and on Stéphane Lens’s PhD thesis (ULg, 2015).

2 / 44

Control and Navigation

Problem statement: How to drive a mobile robot so as to
I reach a goal,
I as efficiently as possible,
I while satisfying various constraints?

Illustration 1: Solving a maze.

https://www.youtube.com/watch?v=_9Y4ODmweYA

3 / 44

https://www.youtube.com/watch?v=_9Y4ODmweYA

Illustration 2: Skid parking.

https://www.youtube.com/watch?v=_piO849uRdI

4 / 44

https://www.youtube.com/watch?v=_piO849uRdI

Controlling a Mobile Robot

Approach:

1. Develop a kinematic model of the mobile robot.

2. Build a control loop around this model.

5 / 44

Kinematic Model: Bicycle Drive

r

γ

O

L

γ

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v

L
tan γ

(Toolbox model: Bicycle.)
6 / 44

Kinematic Model: Other Platforms

Tricycle drive:

r

γ

O

L

γ

v = vS cos γ ⇒
{
ẋ = vS cos γ cos θ
ẏ = vS cos γ sin θ

θ̇ =
vS
L

sin γ

Differential drive:

r

O

M/2M/2

v =
vR + vL

2
⇒

{
ẋ = vR+vL

2 cos θ
ẏ = vR+vL

2 sin θ

θ̇ =
vR − vL

2

7 / 44

Control Loop: Moving to a Point

Control strategy:

I The target velocity is proportional to the distance from the goal:

v∗ = Kv

√(
x∗ − x

)2
+
(
y∗ − y

)2
I The steering angle γ is proportional to the angular difference

between the direction to the goal and the current orientation θ:

γ = Kh

(
θ∗ 	 θ

)
,

with
θ∗ = arctan

y∗ − y
x∗ − x

.

(Matlab and toolbox functions: atan2 for the four-quadrant arctan,
angdiff for the bounded angle difference 	.)

8 / 44

Moving to a Point: Simulink Model

(Toolbox model: sl_drivepoint.)
9 / 44

Following a Line

Control strategy:

I The goal is to follow the line ax+ by + c = 0.

I Steering controller 1: Steer towards the line:

αd = −Kdd

with
d =

ax+ by + c√
a2 + b2

.

I Steering controller 2: Keep our orientation parallel to the line:

αh = Kh

(
θ∗ 	 θ),

with
θ∗ = arctan

−a
b
.

I Combined steering controller: γ = αd + αh.
10 / 44

Result:

−

(Toolbox model: sl_driveline.)

11 / 44

Following a Path

Control strategy:

I The robot follows a goal (x∗, y∗) that moves along a path.

I The distance d∗ between the robot and the moving goal is kept
constant by a velocity controller

v∗ = Kve+Ki

∫
e dt

with
e =

√(
x∗ − x

)2
+
(
y∗ − y

)2 − d∗.
I The steering controller orients the robot towards the moving goal:

γ = Kh

(
θ∗ 	 θ

)
,

with
θ∗ = arctan

y∗ − y
x∗ − x

.

12 / 44

Result:

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/bull.mov

(Toolbox model: sl_pursuit.)

13 / 44

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/bull.mov

Reactive Navigation 1: Braitenberg Vehicles

Principles:

I Direct connection between sensors and actuators.

I No internal memory.

I No internal representation of the environment.

Example:

I Two sensors sR and sL returning values in [0, 1]. The goal is to
reach the location where sR = sL = 1.

I Velocity law:
v = 2− sR − sL.

I Steering law:
γ = k(sL − sR).

14 / 44

Result:

Notes:
I The command strategy remains simple.
I With additional sensors, more complex behaviors can be

implemented (e.g., obstacle avoidance).
I Toolbox model: sl_braitenberg

15 / 44

Reactive Navigation 2: Simple Automata

Principles:

I The command logic is implemented as a state machine.

I At each step, the current state and the sensor values determine
I the immediate motion of the robot, and
I the next state.

Example:

I Bug robot operating in a grid world.

I The basic mode of operation is to move in a straight line towards
the goal.

I If an obstacle is detected, the bug moves around it
(counter-clockwise), until it reaches a point on the original line that
is closer to the goal.

16 / 44

Result:

This solution is far from being optimal!

(Toolbox model: Bug2.)
17 / 44

Map-based Planning

I The robot uses a map of its environment to plan its paths.

I The main problem is to find a path from a location to another that
I is physically feasible (in particular, it must avoid obstacles), and
I minimizes a cost function (traveled distance, time, energy, . . .).

I In some applications, the parameters of the problem (initial location,
goal, constraints, map contents, . . .) may change over time.

18 / 44

Distance Transform

I Simple model where the robot
I occupies one cell in a grid world,
I knows precisely its position, and
I moves in a holonomic way.

I The map labels each cell with its precomputed distance to the goal.

I A simple strategy thus consists in always moving to the neighboring
cell for which the distance to the goal is minimal.

19 / 44

Illustration:

∆ = −

∆ = −

∆ ∆

|∆ | + |∆ |

I With this solution, the initial location can easily be modified.
I However, a new map has to be computed for every new goal.
I The distance transform computation algorithm implemented in the

toolbox (DXform) is inefficient, but there exist better solutions.

20 / 44

Graph-based Planning

I The reachable locations are represented by the nodes of a graph
(e.g., every free cell in a grid world).

I The graph contains an edge (n, n′) whenever n′ is directly reachable
from n.

I Edges are labeled by the cost of the corresponding move (e.g., 1 for
horizontal or vertical neighbors in a grid,

√
2 for diagonal ones).

I The problem is to find a path from an initial node n0 to a goal nG
that minimizes the total cost of its edges.

21 / 44

Dijkstra’s Algorithm

I For each node n, one keeps the current best estimate g(n) of the
minimum cost from n0 to n.

I One maintains a set OPEN containing the nodes that still need to
be processed.

I Initially: g(n0) = 0

g(n) = +∞ for all n 6= n0

OPEN = the set of all nodes.

I While OPEN 6= ∅:
1. Remove from OPEN the node n with the smallest g(n).

2. For each neighbor n′ of n, if g(n) + cost(n, n′) < g(n′), then set
g(n′) := g(n) + cost(n, n′).

22 / 44

Notes:

I Upon completion, g(n) contains the smallest cost from n0 to n, for
every node n. (Thus, changing goals are easily dealt with.)

I In order to compute shortest paths, a simple approach is to keep a
backpointer in each node, linking to its best predecessor.

I This algorithm runs in O(N logN) time, where N is the number of
nodes, if cleverly implemented (priority queue for the set OPEN).

23 / 44

A∗ Algorithm

I Variant of Dijkstra’s, in which one considers at each step the node n
with the smallest value of

g(n) + h(n),

where h(n) is a heuristic function that estimates the cost from n to
the goal node nG.

I If h(n) is always lower than or equal to the true cost of moving from
n to nG, then the algorithm is always able to compute the shortest
path from n0 to nG, in O(N logN) time.

I Depending on the quality of the heuristic function h, this
computation can be much faster.

I A simple choice for h is to use the Euclidean distance between node
locations.

24 / 44

Drawbacks: The A∗ algorithm cannot easily deal with

I modifying the goal or the initial node.

I changing edge costs.

25 / 44

D∗ Algorithm

I Yet another variant of Dijkstra’s.

I Instead of computing for each node n the best cost from n0 to n,
one computes the smallest cost from n to nG. (In other, words, the
algorithm computes a distance transform.)

I The algorithm supports incremental replanning: The cost of an edge
can be modified at any time, leading to propagating the change to
the relevant subset of nodes.

I The time cost is O(N logN) without replanning. Replannings have
a worst-case cost of O(N logN), but are usually much cheaper.

I Toolbox implementation: Dstar.

26 / 44

Illustration:

(The cost of the edges in the dashed rectangle have been increased.)

27 / 44

Notes: The D∗ algorithm

I is still unable to handle changing goals, and

I lacks a heuristic function, and can thus be less efficient than A∗ in
some cases.

28 / 44

Voronoi Roadmaps

Goal: Handling efficiently queries in which the initial and goal locations
are frequently modified.

Idea:

I Precompute a graph of the paths that clear the obstacles at the
largest possible distance.

I Connect the initial and goal locations to the nearest nodes in this
graph, and compute the shortest path between them.

I Perform local optimization on the resulting path.

29 / 44

Illustration:

30 / 44

Notes:

I The main advantage is that the resulting roadmap is much smaller
than the graph linking all feasible locations.

I The reference book completely misses the fact that Voronoi
roadmaps can be constructed and exploited in a very efficient way:

I The Voronoi diagram of N points can be computed in O(N logN)
time (and is the dual graph of their Delaunay triangulation).

I For a set of polygonal obstacles, the procedure is a bit more complex,
but still runs in O(N logN) time.

I Once a shortest path has been extracted from a Voronoi roadmap, it
can be simplified in O(N) time into a locally optimal solution.

31 / 44

Illustration (Stéphane Lens’s thesis):

1. Problem statement and initial triangulation.

32 / 44

2. Refined triangulation.

33 / 44

3. Roadmap graph and shortest path.

34 / 44

4. Locally optimal solution.

35 / 44

5. Solution with larger clearance.

36 / 44

6. Smoothed path.

(Total computation time: 1.5 ms.)

37 / 44

A more complex example:

(Total computation time: 4.8 ms.)

38 / 44

Yet another complex example:

(Total computation time: 82.6 ms.)

39 / 44

Example: Wilbur (Eurobot)

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/wilbur.mov

40 / 44

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/wilbur.mov

Probabilistic Roadmaps

Procedure:

I Build a graph by placing N random points in free space, and
connecting them together (making sure that edges do not cross
obstacles).

I Set the cost of edges according to the distance between their
corresponding nodes.

I Connect the initial and goal locations to their nearest node, and
compute the shortest path between them.

Advantage: The method is simple and efficient.

Drawback: It is difficult to ensure that

I all areas of interest are explored, and

I the resulting roadmap is a connected graph.
41 / 44

Illustration:

(Toolbox implementation: PRM.)

42 / 44

Rapidly-exploring Random Trees (RRT)

Procedure: Build a roadmap tree by repeatedly

I placing a random point p′ in free space,
I locating the nearest point p in the existing tree, (initially, this tree

only contains the initial location),
I simulating a move of the robot from p to p′, stopping after a given

time or traveled distance,
I connecting p to the reached location p′′.

Advantages:

I This approach can take into account constraints on robot motion
(e.g., non-holonomicity).

I The procedure is also applicable to n-dimensional planning problems.

43 / 44

Illustration:

±

±

(Toolbox implementation: RRT.)

44 / 44

