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These slides are based on Chapter 13 of the book Robotics, Vision and
Control: Fundamental Algorithms in MATLAB by Peter Corke, published
by Springer in 2011.

The Bag-of-feature section is based on a presentation by Cordelia Schmid
http://www.di.ens.fr/willow/events/cvml2011/materials/
CVML2011_Cordelia_bof .pdf

+ More recent topics:
- End-to-end learning with tree-based methods and deep learning
- The need for careful data collection for effective computer vision
- Intelligent robotics in microscopy/biomedecine

Related topics:

Marc Van Droogenbroeck’s “Computer Vision”

and

Louis Wehenkel/Pierre Geurt’s “Introduction to Machine Learning”



Motivation

Raw images contain too much data to be of direct practical use for

high(er)-level robot vision (object recognition, pose estimation, tracking,

We need to reduce the dimensionality of raw image data, ideally focusing
on
» discarding redundant information.

» extracting entities that are invariant to the conditions that typically
change while a robot is working (viewpoint, illumination, ...).

Feature extraction is an information concentration step that reduces the
data rate from 10°-10° bytes s ! at the output of a camera to something
of the order of tens of features (vectors of a few dozen scalars) per frame
that can be used as input to a robot’s control system.



1. Feature extraction

2. Object Recognition / Image classification
Challenges
Bag-of-features
End-to-end learning
Dataset quality control

3. Intelligent robotics / Al in Biomedecine



Classification of features

corner

Edge refers to pixel at which the image intensities change abruptly. Image
pixels are discontinuous at different sides of edges.

Corner refers to the point at which two different edge directions occur in

the local neighborhood. It is the intersection of two connected contour lines.

Region refers to a closed set of connected points. Nearby and similar
pixels are grouped together to compose the interest region

Others (random, landmarks,...)

region

(Y. Li et al., Neurocomputing, 2015)



Region Features

. Refer to a closed set of connected points with a similar
Re gion Features homogeneity criteria, usually the intensity value
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Thresholding
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mination of the scene means that the thresholds we chose would no longer be
appropriate. In most real scenes there is no simple mapping from pixel values
to particular objects — we cannot for example choose a threshold that would

select a motorbike or a duck. Distinguishing an object from the background
remains a hard computer vision problem.
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Thresholding-based techniques are notoriously brittle — a slight change in illu-
mination of the scene means that the thresholds we chose would no longer be
appropriate. In most real scenes there is no simple mapping from pixel values
to particular objects — we cannot for example choose a threshold that would
select a motorbike or a duck. Distinguishing an object from the background
remains a hard computer vision problem.

I\/Iany thresholding alternatives (see Sezgin, J. Electronic Imaging 2004).

e Histogram shape-based
e Convex-hull, peak-and-valley, ...

 Clustering-based
e lterative (K-means), Minimum error, ...

« Entropy-based
e €.0. maximize entropy of the thresholded image, minimize the
cross-entropy between input & output

« Spatial, locally adaptive thresholding
 Local variance/contrast, ...



Spatial, locally adaptive thresholding
« Athreshold is calculated at each pixel, which depends on some
local statistics :

variance

variance

contrast

contrast

Center-surround

Surface-fitting

Center-surround

contrast

Table 6 Thresholding functions for locally adaptive methods.

Local Niblack''®

Local_Sauvola'

Local_White''?

Local_Bernsen''®

Local_Palumbo?®'

Local Yanowitz''"®

Local_Kamel'

Local_Oh™

Local Yasuda''

T(i,)y=m(i,j)+k.o(i,))
where k= —0.2 and local window size is b=15

I
Tlij=miij+ “(R’)—1]}
where k=0.5 and R=128

1+k.

_ 1 0f My n(i,))<I(i,j)*bias

B(ij)= .

0 otherwise
where m,,«,(/,j) is the local mean over a w=15-sized
window and bias=2.
T(i,j) =0.5{max,[ [(i+m,j+n)]+min,[ [(i+m,j+n)]}
where w=31, provided contrast C(/,j)= lgn(/.))
~ lowl1,j) = 15.

(ij)_1 if I(ij) T1 or mnelghT3+ T5>mcenterT4
where T,=20, T,=20, T;=0.85, T,=1.0, T5=0,
neighborhood size is 3X3.

im_ Tali,)= Ta-1(i.) + Ral(i,j)/4

where R,(i,j) is the thinned Laplacian of the image.
B(i,j)=1if {[L(i+ b, ))AL(i=b,)) IV[L(i,j+b)AL(i,]
—b)1} {[L(i+b,j+b)AL(i—b,j=b)]V[L(i+b,j
—b)AL(i—b,j+b)]}

where

I, )]=To
, w=17, T,=40

1 if [mwxw(isj)‘
L(ip= .

@) 0 otherwise
Define the optimal threshold value (T,) by using a
global thresholding method, such as the Kapur®
method, then locally fine tune the pixels between [T,
— T4] considering local covariance (To<<Ty<T;).
B(i,))=11f My y(1,J) < T3 OF 0yn(i,))> Ty
where w=3, T,=50, b=16, T,=16, T; 128, T,=35
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The k_means A|gorithm (see “Introduction to machine learning” course)
Given a set of observations (1,2, ..., Ty),

where each observation is a d-dimensional
real vector, k-means clustering aims to

partition the n observations into £ sets Sl o Cheer ..
(k<n)S={5,5,...,5;} so as to e R
. . . . . - &0 " 'h..ﬁ
minimize the within-cluster sum of squares R A AT T
- ... - :‘ ' *
(WCSS) of NEPCIT IR P Aoy
At .--.-‘Q pa v
Tt - . * - *
ke Al * . n; ';:---31‘ .’ *
: 2 5l .t
arg min SJ SJ 1% — ] .
4 1 ! I
S 1=1 x;€5; 4 2 0 2 4

where p; is the mean of points in .S;.

In each round, pixels are partitioned by identifying the best matching cluster, based on
Euclidean distance along color dimensions (e.g. R,G,B). Centroids are then updated by re-
computing cluster averages.



Region Features

Color Clustering and Classification

>> [cls, cxy, resid] = colorkmeans(im_targets, 4);
50 50
100 100
150 150
% 200 % 200
5_250 5250 TRy s . B j )
> S G i ¢ Each pixel
300 300 F e e o ] .
A ' color value is
350 350 g .
wob w0 assigned
- s , - based on its
100 “2('110 300 400 500 600 100 200 30 00 500 0 : Correspondlng
a u (pixels) b u (pixels)

centroid color
value.

30
u (pixels)




Defective Eddy Current image

Cluster_Kittler method, T=124,
S=0.217

Entrop_Kapur method, T=123,
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Spatial_Abutaleb method, T=112,
$=0.502

- _"‘\-\l
- S
=¥ - @ e ‘e
o . w, et 4
a o, . .
e, LS
= " =
LS
- -
2 A ‘o
. = a = .
N -
. e .
. e -
."',_n . -
- " —
L,oe W A 'c" P
tow i -
T T ey ’
) - 2 .

Attribute_Tsai method, T=75,
S$=0.944

Defective Cloth image
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Cluster_Kittler method, T=180,
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Shape_Olivio method, T=160,
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Spatial_ Beghdadl method T=111,
$=0.649

Cluster. Kimor method, T=235,
$=0.896

(Sezgin, J.
Electronic
Imaging
2004)
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Edges, corners

Category

Classification

Methods and Algorithms

Edge-based

Differentiation based

Sobel, Canny

Corner-based

Gradient based

Harris (and its derivatives), KLT, Shi-Tomasi, LOCOCO, S-LOCOCO

Corner-based

Template based

FAST, AGAST, BRIEF, SUSAN, FAST-ER

Corner-based

Contour based

ANDD, DoG-curve, ACJ, Hyperbola fitting, etc.

Corner-based

Learning based

NMX, BEL, Pb, MS-Pb, gPb, SCG, SE, tPb, DSC, Sketch Tokens, etc.

(Y. Li et al., Neurocomputing, 2015)

« Edges: refer to pixel patterns at which the intensities abruptly change (with a

strong gradient magnitude)

{a) original image

{i)Canny: ¢ =8

Parameter: standard deviation of the Gaussian function. Small value to
detect sharp intensity transitions, large value to detect gradual transitions.

« Corners: refer to the point at which two (or more) edge intersect in the local
neighborhood




Corner detection

(a point for which there are two dominant and different edge directions
In a local neighbourhood of tfgoe point)

Harris detector:

K Computed from
Image gradients

v (pixels)
[\%]
3

* Robust to

| illumination

offsets and
rotation

600 700
u (pixels)

No scale
invariance
(gradients
around the
corner point
become lower)

v (pixels)
v (pixels)
)]

8

Responds
strongly to fine
. . , ‘ , texture, not to
o0 ™ |arge structures

u (pixels) u (pixels)




Interest point detection

~2005 2006 2007 2008 2009 2010 2011 2012 2013
= - - - = = - = -
Differentiation. Sobel,Prewitt, OE,LoG, Interpolation based Shearlet transform | D-ISEF|(Ext-Canny) RM-Sobel
«__based Canny subpixel detection Subset hysteresis thresholds LeMeurmodel+AutoScale
Ed | Histogram hysteresis thresholds T
99 3 Moment based subpixel detection v
detection 4 Leaming
- based Pb BEL MS-Pb NMX gPb SCG _ Sketch tokens
DSC SFE, tPb
Gradient Harris, KLT, LOCOCO S-LOCOCO
4. based Q;—Tomasi
- Comer |, Template USAN FAST FAST-ER, AGAST
ion | based
detection| Eurve-DoG.
4 Contour Hyperbola Fitting GCM+RoS Discrete line+RoS | ANDD, ACJ
based Chord-to-point distance accumulation Geometrical ta nbent
Affine-Length Parameterized Cufvature formulation
LoG,DoG,DoH
Interest | 4 PDE based ) _Hessian-__SURF CerSURF DART KAZE A-KAZE, WADE
point Laplacian,SIFT : Rank-SIFT ~ MO-GP ~ RLOG
Blop |/ | detection |4 Timp'z‘e ORB,BRISK  FREAK
delectlon |nlerest ase
region | .4 Intensity/color MSER,IBR PCBR, | Beta-stable MFD Saliency
| detection based Salient region MCBR | feature S-MSER detection
¥ Boundary EBR MFD, FLOG,BPLR
based

SIFT: maxima in a difference of Gaussian sequence (patented)
SURF: maxima in an approximate Hessian of Gaussian sequence (patented)
ORB: FAST keypoint detector and BRIEF descriptor

(Y. Li et al., Neurocomputing, 2015)
(S. Krig, Computer vision metrics, 2014)



Interest point detection




Interest Point detection

Features Detector . Invariance — . anlities :
Rotation | Scale | Affine | Repeatability | Localization | Robustness | Efficiency

Harris H - - + + + ++ + + + + + +
Hessian H - - + + + + + + +
SUSAN H - - + + + + + + + + +
Harris-Laplace B | - + + + ++ + + + +
Hessian-Laplace H H - + + + ++ + + + + +
DoG | B - + + + + + + + +
Salient Regions H H | + + + + +
SURF H H - + + ++ + + + + + +
SIFT | | - + + + + + + + + + +
MSER | | | + 4+ + + + + + + + + +

(T. Tuytelaars et al., Foundations and trends in computer graphics and vision, 2008)

Invariance: in scenarios where a large deformation is expected (scale, rotation, etc.), the detector algorithm should
model this deformation mathematically as precisely as possible so that it minimizes its effect on the extracted features.

Repeatability: given two frames of the same object (or scene) with different viewing settings, a high percentage of the
detected features from the overlapped visible part should be found in both frames.

Efficiency: features should be efficiently identified in a short time that makes them suitable for real-time (i.e. time-critical)

applications.

Locality: features should be local so as to reduce the chances of getting occluded as well as to allow simple estimation of
geometric and photometric deformations between two frames with different views.

Robustness: not too much sensitive to small deformations (noise, blur, discretization effects, compression artifacts, etc.)




Line features

» Convolution (see chapter 11)

a) b) c) d)
~1/-1]-1 -1 2 |-1 -1|-1]2 2(-1 -1
2022 -1 2 |-1 -1]2 (-1 -1] 2([-1
-1|-1|-1 -1| 2 |-1 2 (-1|-1 -1|-1| 2

Four line detection kernels which respond maximally to horizontal, vertical and oblique (+45 and - 45 degree) single pixel wide lines.

* Hough transform for lines, circles, ellipses

(requires that the desired features be specified in some parametric form)




Specific (supervisely learned)
landmarks

-

LANDMARK . e
i (Vandaele et al., Nature Scientific Reports, 2017)

R RADIUS

RMAX RADIUS




Random features (patches)

Parameters :

Nsw = nb subwindows
MinSize = [0%-100%]
MaxSize = [0%-100%]
Resize = 16x16
Colorspace = HSV/GRAY

Pixel-001 | Pixel-002 Pixel-256 [ CLASS
Subwindow-00 34 201 255 1
Subwindow-01 78 31 204 1
Subwindow-02 145 167 32 c2
Subwindow-Nw 14 4 134 CC

Extract Nw subwindows of
random sizes, at random
locations

Resize each subwindowto a
fixed size (16x16)

Describe by raw pixel
values (768 values in HSV or
256 values in gray levels),
and a discrete output class



Deep-network based features

* A pre-built deep network can be seen as a
feature extractor

Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts Fe8: Object Classes



resized centered
maximum
square CTOP

Deep-network based features

Last layer
N # feat.
Mobile 1024
DenseNet 1920
IncResV?2 1536
ResNet 2048
IncV3 2048
VGG19 512
VGG16 512
Proramed | 4SBT Dimens.
on source task S reduction

f € RF

Classifier

[

Features extraction

[

Classification



1. Feature extraction

2. Object Recognition / Image classification
Challenges
Bag-of-features
End-to-end learning
Quality control

3. Intelligent robotics / Al in Biomedecine



Bag-of-features for Image Classification

Object/Category Recognition

Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

Object localization: define the location and the category

Location

Category

22 /43



Bag-of-features for Image Classification

Challenge 1: Intra-instance Variations

Viewpoint, illumination, kinematic configuration, ...



Variations in “biomedecine”

Image acquistion conditions can not be fully controlled

@ lllumination, viewpoint, position, scale changes
@ Noise, cluttered background, occlusions
@ Staining, imaging kits, microscopes, ...

These simple variations yield different image matrices




Bag-of-features for Image Classification

Challenge 1: Intra-instance Variations

large view

. ‘: T 4 noint ¢ m-i'i &

= ?_

Iarge view
A hoint change

Viewpoint, illumination, kinematic configuration,

23 /43



Challenge 2: Intra-class Variations

24 /43



Bag-of-features for Image Classification

Challenge 2: Intra-class Variations

Large-vehicle Swimming pool Helicopter Bridge Ship Soccer-ball field | Basketball court

(DOTA
dataset)

Ground track field| Small-vehicle Harbor Baseball diamond Tennis court Roundabout Storage tank

24 /43



Variations in « biomedecine »

Intra-class / inter-class variations
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1. Feature extraction

2. Object Recognition / Image classification

Challenges

Approaches:
Bag-of-features, End-to-end learning

Dataset quality control

3. Intelligent robotics / Al in Biomedecine



Computer vision approaches

- Traditional : hand-crafted, specific, features +learning

— Hypothesis : the researcher is very imaginative, and smart
— Pros : exploitation of domain knowledge
— Cons : need to be adapted when the problem changes

researchers are indeed imaginative which features to choose ?
limited evaluation

e

Binary image by Binary image by B'lnaryimége by
Otsu’s method (Do) 50 percentile (T50)  Mean intensity (M)

Threshold Boundary Obtain
- Completion

Original i |mage [0}
e VN

IP'

= o =

Sobel filtered
image (S)

= o Haar features
Binary image by Bi inary image by Blnar\,r image by

Otsu’smethod (So) 50 percentile (ST50) Mean intensity (SM) Minor axis
Image correlation A v g oeee|

Spectrometry (ICS)

Major axis Ray features



Computer vision approaches

- Traditional : hand-crafted, specific, features +learning

— Hypothesis : the researcher is very imaginative, and smart

— Pros : exploitation of domain knowledge
— Cons : need to be adapted when the problem changes

researchers are indeed imaginative

limited evaluation

v\
-2 - - %-
re “_

0 27

Input Image (image.jpg)

i
| 125 122
AT T
4

Qutput PHOG descriptor (image.jpg.txt)

Harris-Affine, Hessian-Affine, EBR, IBR, MSER,
SFOP,DAISY, GIST, GLOH, LBP, OSID, PHOG,

PHOW, SIFT, RIFT, PCA-SIFT, Spin Image, SURF,
VLAD, Shape contexts, Textons, ...

Li & Allison, Neurocomputing 2008

} which features to choose ?

=lis

Scholarpedia



Computer vision approaches

- Recent : Combine many features + learning

— Hypothesis : the good features should be among them

— Pros : take advantage of previous research efforts

— Cons : computationally intensive

Group A
High Contrast Features

Group B

Polynomial Decompositions

Group C
Statistics & Textures

Group D

Statistics & Textures + Radon

Edge Statistics

Chebyshev-Fourier

Feature values: 28

Statistics

First Four Moments

Feature values: 48

Feature values: 32

Gabor Textures

Haralick Textures

Feature values: 7

Chebyshev Statistics

Feature values: 28

Feature values: 32

Object Statistics

Multiscale Histogram

Zernike Polynomials

Feature values: 34

Feature values: 24

Feature values: 72

Tamura Textures

Feature values: 6

Group C

Feature values: 106

Radon Transform Statistics

Feature values: 12

Raw image

— 7 O\

Wavelet Chebyshev FFT
Transform Transform
Wavelet Chebyshev
Transform Transform
i \

‘ Group C Group D ‘ Group C ‘ Group D ‘ Group B ‘ Group D Group A Group B ‘ Group D ‘
3 = 3 = = 2 2 o =
[=2] =] [=2] [=+] [=2] o) (3] [ws]
= = = = = = 5 = =
o S o 9 @ o = o o

c c c c c s c c
Y 2y 2y i oy oy ) o oy

Bl

Feature Vector (1025 feature values)

v

Predicted
Result

— = Haralick Zernike
textures features 1
Input [ zHar | [ HarLP |
Image
| HarLTP | | HarTAS |
I y
==Pp-|| Haralick || Zernike LBP LTP TAS
textures features
2 4
lin-SVM || poly-SVM RBF SVM || sig-5VM
Tahir et al.,

Bioinformatics 2011

Orlov et al., Pattern Recognition letters, 2008 : « ...poor performance in terms of
computational complexity, making this method unsuitable for real-time or other
types of applications in which speed is a primary concern. »




Computer vision approaches

- Generic : « end-to-end » learning

— Hypothesis : human brain learn from raw data, let's design such an algorithm
— Pros : it should work on everything with minimal tuning

— Cons : <> architectures

many parameters to optimize: need large training data, time-consuming
does it work ? Is it generic ?
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Marée, Geurts, Wehenkel, et al. 2003 ...

2
,_Ln

Lecun et al. 1989..., Hinton et al., Ciresan et al. (GPU) 2011



bag-or-reatures tor Image Classification

BoF Origin: Texture Classification
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002,

2003; Lazebnik, Schmid & Ponce, 2003
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>ag-or-reatures Tor Image

Texture Classification: Histograms over Textons
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bag-or-reatures tor Image Classification

Bag-of-features for Image Classification

293234% :
B ee00000 W DDDDHHH d(8,. 8)
Q000D DO >
O®e0Ceeco QCOC80e
S
2000000 "
w 5222222 w |lInalia
000008 e >
00088l S lSIelo] 18]
Extract regions Compute Find clusters Compute distance  Classification
descriptors and frequencies matrix

Image 1 contains a bike, image 2 contains a horse, image 3 contains a car,
etc...

[Csurka et al., ECCV Workshop’04], [Nowak, Jurie, Triggs, ECCV’'06], [Zhang, Marszalek, Lazebnik, Schmid, 1JCV'07]



bag-or-reatures tor Image Classification tep 1: Extract reatures

Step 1: Extract Features

2932355 X
B eecc000 |W) HDHDDHH d(s,. 8)
0000089 >
OeOC8@eca® OCCE80e®
_ 8
s2222 L Tumn
880@0O&0 H H
‘ 0000000 ‘ HDD DD>
CO08@coO S ISISIO] 1e]
Extract regions Compute Find clusters Compute distance  Classification
descriptors and frequencies matrix
Step 1 Step 2 Step 3

Corners / Point / Random / ...
+

Descriptors (statistics, pixels,...)



>ag-or-reatures Tor Image
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Extract regions Compute Find clusters Compute distance Classification
descriptors and frequencies matrix
Step 1 Step 2 Step 3
Unsupervised Supervised

(e.g. k-means) (e.g. trees)
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Because of viewpoint and lighting changes, it is unlikely that two images
of even the same object will produce exactly the same features.

This gets even worse when working with different instances of a class (e.g.,
different cars).

As a result, it is not a good idea to model an object (or object class) with
a histogram over all the features that the object produces.

Instead, we cluster all the features that come from the training images (of
all classes), and keep only the cluster centers. The set of cluster centers is
called a codebook, or dictionary. The elements of the codebook are called

codewords.

Clustering



bag-of-Tfeatures Tor Image assitication : eatures, CLompute Feature Frequencies

Examples of Clusters of Features

Airplanes

Motorbikes i \

Faces

Wild Cats |82

| eaves

People

Bikes

Average of these  Average of these
becomes one becomes one
codeword codeword
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Bag-of-features for Image Classification Step 2: Cluster Features, Compute Feature Frequencies

Object/Class Instance Representation: Codeword
Frequencies

—awy

frequency

| HHHH

PLOERLS, Bl -

codewords

Typically: 1000-4000 codewords:

» More codewords: towards object representation

» Less codewords: towards object class representation
One image of an instance of an object/class is represented with a vector V
of frequencies of the codewords. (L1/L2 normalization)



>ag-or-reatures Tor Image
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Extract regions Compute Find clusters Compute distance Classification
descriptors and frequencies matrix
Step 1 Step 2 Step 3
Unsupervised Supervised

(e.g. k-means) (e.g. trees)




Extra-Trees for Feature Learning :
training

Split_a_node(S)

r i . . .
g j Input: the local learning subset S corresponding to the node we want to split
‘ ‘ | Output: a split [a < ac] or leaf

- If Stop_split(S) is TRUE then attach predictions (ET-DIC) or nothing (ET-BOF).
M ‘ . . - Otherwise select randomly K attributes {a{, ..., ai } among all non constant (in S) candidate attributes;
- m - Draw K splits {sg, ..., sk }. where s; = Pickca_randomosplit(S, a;), Vi =1, ..., K,

m . H [ - Return a split s; such that Score(s;, S) = max;j—; K Score(s;, S).

Pick_a_random_split(S$,a)

Pixel-057 > 213 ? Inputs: a subset S and an attribute a

Qutput: a split

- Let a>__ and aiin denote the maximal and minimal value of a in S;

max
- Draw a random cut-point a,. uniformly in ]as 2> I

. min’ “max
- Return the split [a < ac].

Stop_split(S)

Input: a subset S

Qutput: a boolean

- If |S| < npin. then return TRUE;

- If if all attributes are constant in S, then return TRUE;
- If the output is constant in S, then return TRUE;

- Otherwise, return FALSE.

Complexity: O(T KN log,(N))

Pixel-034 > 154 ¢

F A A ! \
r \ r LY F L]
MO OO
LEAF’I r’ ‘\ ." 1 t? "\. l'E"ﬂ‘Fi :’ "\
| Vo ! Vo I} ! \

Parameters :

K = nb random tests
Nmin = minimum node size

Marée, Geurts, Wehenkel, 2016



Extra-Trees for Feature Learning :
training
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Parameters :
T=nb trees

K = nb random tests

Nmin = minimum node size

Coding = binary/frequency

FinalC = liblinear Marée, Geurts, Wehenkel, 2016



Bag-of-features for Image Classification

Extract regions

Step 1

Compute
descriptors

Step 3: Image Classification

= TUDDEDUH\

COCO80e

= THDD‘EHDD}

SOCEO8eCe

Find clusters
and frequencies

Step 2

Step 3: Classification

acs,, S)

= |SVM

Compute distance Classification
matrix

Step 3




Bag-of-features for Image Classification Step 3: Classification

Image Classification

Goal: Learn a decision rule (classifier) to assign V' to an object/class.

.......................
------------
"""""
'''''
‘.

Decision .’ ' Zebra
boundary ’_\_/

,. Non-zebra
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Bag-of-features for Image Classification Step 3: Classification

Linear Classification

® X, positive: X, w+b=0

X, negative: X, w+b<0

Which hyperplane
is best?

For instance: support vector machines (SVM), logistic regression, linear
discriminant analysis (LDA), naive Bayes classification, ...

(see “Introduction to
Machine Learning”)



Bag-of-features for Image Classification Step 3: Classification

Nonlinear Classification

Datasets that are linearly separable work out great:

*—& f@l@—. b)C

But what if the data set is just too hard?

(see “Introduction to
Machine Learning”)



Extra-Trees for Feature Learning :

prediction
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Overall results (error rates)
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397 classes

Overall results (error rates)
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Deep Transfer learning

ImageNet Dataset Last layer
N y

# feat.

Mobile 1024
DenseNet 1920
> | IncResV2 1536
ResNet 2048

IncV3 2048

Russakovsky, Clga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang et al. *Imaganat VG( i 1 9 S l 2

large scale visual recognition challenge.” International Joumal of Computer Vision 115, no. 3 (2015): 211-252. [wabl 3

Pre-trained haxwaxd k
resized centered aeR Bimnene] fER

. Ry X Wy X C network >
maximum e N*'»*Wp .
l p on source task S reduction

Classifier

square crop

| [

Features extraction Classification




Deep features / transfer learning

Dataset Domain | Cls Train | Validatiop Test ‘ Total '

Images Slides | Images Slides | Images Slides || Images Slides
Necrosis (N) Histo 2 695 9 96 1 91 3 882 13
ProliferativePattern (P) Cyto 2 1179 19 167 4 511 13 1857 36
CellInclusion (C) Cyto 2 1644 21 173 2 1821 22 3638 45
MouselLba (M) Cyto 8 1722 9 716 4 1846 7 4284 20
HumanLba (H) Cyto 9 4051 50 346 5 1023 9 5420 64
Lung (L) Histo 10 4881 669 562 73 888 140 6331 882
Breast (B) Histo 2 14055 22 4206 8 4771 4 23032 34
Glomeruli (G) Histo 2 12157 91 2448 12 14608 102 29213 205

Table 1. Sizes and splits of the datasets.
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(d) Breast (f) MouseLba  (g) HumanLba

(a) Necrosis (b) Celllnclu- (e) Glomeruli (h) Lung

tivePattern

Prolifera- (c¢)
sion

(Mormont et al., 2018)



Deep features / transfer learning

Datasets

Strategy C P G N B M L H

Baseline (ET-FL) || 0.9250 | 0.8268 | 0.9551 | 0.9805 | 0.9345 || 0.7568 | 0.8547 | 0.6960
Last layer 0.9822 | 0.8893 | 0.9938 | 0.9982 | 0.9603 || 0.7996 | 0.9133 | 0.7820
Feat. select. 0.9676 | 0.8861 | 0.9843 | 0.9994 | 0.9597 || 0.7438 | 0.8941 | 0.7703
Merg. networks 0.9897 | 0.8984 | 0.9948 | 0.9864 | 09549 || 0.8169 | 0.9155 | 0.7928
Merg. layers 0.9808 | 0.8906 | 0.9944 | 0.9964 | 0.9639 || 0.7941 | 0.9268 | 0.7977
Inner ResNet 0.9748 | 0.8959 | 0.9949 | 0.9964 | 0.9664 || 0.8131 | 0.9291 | 0.8113
Inner DenseNet 0.9862 | 0.8984 | 0.9962 | 0.9917 | 0.9699 || 0.8012 | 0.9268 | 0.7967
Inner IncResV?2 0.9873 | 0.8948 | 0.9962 | 0.9982 | 0.9720 || 0.8137 | 0.9234 | 0.7713
Fine-tuning 0.9926 | 0.8797 | 0.9977 | 09970 | 0.9873 || 0.8727 | 0.9405 | 0.8641
Metric Roc AUC Accuracy (multi class)

A 4 b~
(a) Necrosis (b) Prolifera- (c) Celllnclu- (d) Breast (e) Glomeruli  (f) MouseLba (g) HumanLba (h) Lung
tivePattern sion

(Mormont et al., 2018)



1. Feature extraction

2. Object Recognition / Image classification
Challenges
Bag-of-features
End-to-end learning
Dataset quality control

3. Intelligent robotics / Al in Biomedecine



Benchmark dataset quality issues

Int J Comput Vis (2008) 79: 225-230
DOI 10.1007/s11263-008-0143-7

SHORT PAPER

Evaluation of Face Datasets as Tools for Assessing
the Performance of Face Recognition Methods

Lior Shamlr -




Benchmark dataset quality issues

Int J Comput Vis (2008) 79: 225-230
DOI 10.1007/s11263-008-0143-7

SHORT PAPER

Evaluation of Face Datasets as Tools for Assessing
the Performance of Face Recognition Methods

L10r Shamlr B
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Benchmark dataset issues : hidden artefacts

Int J Comput Vis (2008) 79: 225-230
DOI 10.1007/s11263-008-0143-7

SHORT PAPER

Evaluation of Face Datasets as Tools for Assessing
the Performance of Face Recognition Methods

Lior Shamlr B

aeacaasasclN TETL

Table 1 Classification accuracy of the face datasets using a small non-facial area

Dataset Subjects Images per Original Non-facial Random Non-facial
subject image size area accuracy accuracy

ORL 40 10 92 x 112 20 x 20 (bottom right) 0.025 0.788

JAFFE 10 22 256 x 256 25 x 200 (top left) 0.1 0.94

Indian Face 22 11 160 x 120 42 x 80 (top left) 0.045 0.73

Dataset (Females)

Indian Face 39 11 160 x 120 42 x 80 (top left) 0.0256 0.58

Dataset (Males)

Essex 100 20 196 x 196 42 x 100 (top left) 0.01 0.97

Yale B 10 576 640 x 480 100 x 300 (top left) 0.1 0.99

Color FERET 994 5 512 x 768 100 x 100 (top left) ~(0.001 0.135




Benchmark dataset issues : hidden artefacts

Journal of Microscopy, Vol. 243, Pt 3 2011, pp. 284-292 doi: 10.1111/j.1365-2818.2011.03502.x
Received 11 January 2011; accepted 17 March 2011

Assessing the efficacy of low-level image content descriptors

for computer-based fluorescence microscopy image analysis
L. SHAMIR

Department of Computer Science, Lawrence Technological University, Southfield, Michigan, U.S.A.

— 88 % recognition rate using images without protein patterns !




Benchmark dataset issues : hidden artefacts

WANG dataset (PAMI, 2001) : 10 categories (beach, dinosaur, flower, horse, food, city, ...)

— 44 % recognition rate using only 50x50 background data... OK ?

NO ! Two classes (dinosaurs & horses) are almost perfectly recognized using background only !



Benchmark dataset Issues : hidden artefacts

ALL-IDB: the acute lymphoblastic leukemia image database
for image processing, Proc. IEEE Int. Conf. on Image

Processing (ICIP 2011).

Examples of the images contained in ALL-IDB2: healthy cells from non-ALL patients (a-d), probable

lymphoblasts from ALL patients (e-h).

— 90 % recognition rate using only 50x50 background regions !




Summary

* Many features have been designed to ease vision tasks
* Many learning approaches have been designed
* Dataset collection should be controlled

* Several (controlled) vision tasks can be solved with end-to-
end learning / deep transfer learning but it requires tuning
and accuracy is still not high enough



1. Feature extraction

2. Object Recognition / Image classification
Challenges
Bag-of-features
End-to-end learning
Quality control

3. Intelligent robotics / Al in Biomedecine



Cervical Cancer screening : hybrid workflow

......

v.
T
~ 60K cells per slide
i ~ 65K x 135K pixel
120 slides/hour X pixels l

=) CellSolutions’

INNOVATORS IN CYTOLOGY

0¢“." g 0‘4".“’0‘» » ® o.v't:."! '@71‘
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Final diagnosis 473‘!3%-‘3’!% | TN ) S @
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Cytotechnologist + pathologist web review of most suspicious Classify & rank every cells (3min/slide)
cells according to our image recognition algorithms

Evaluation of CellSolutions BestPrep Automated Thin-Layer Liquid-Based Cytology
Papanicolaou Slide Preparation and BestCyte Cell Sorter Imaging System,

Delga et al. , Acta Cytologica, 2014;58(5):469-77


file:///home/maree/Documents/_students/CoursRobotiqueIntelligente/2018/CS30%20Operation.mp4
file:///home/maree/Documents/_projets-recherche-collaborations/ongoing/2010-2016-cytomine-DGO6/backup/maree/2015/_pasteur/_papers_presentations/PAP-USA/knesel-nguyen/3dhistech/R215.mrxs
file:///home/maree/Documents/_projets-recherche-collaborations/ongoing/2010-2016-cytomine-DGO6/backup/maree/2015/_pasteur/_papers_presentations/_me_me_me_my_work_papers_presentations/Intro-ML-Cytomine-octobre2014/video-pap-3.ogv
http://demo.bestcyte.com/
http://beta.cytomine.be/#tabs-image-67-377608-2099022

An Augmented Reality Microscope for
Realtime Automated Detection of Cancer

semi transparent
mirror
-
-
. g Camera to
AR Displa
o i capture A

Compute unit 4
/w Accelerator Display

(Chen et al., Google, 2018)

image projection as
overlay

frame grabbing

A o

algorithm inference

pred iction heatmap


https://www.youtube.com/watch?v=9Mz84cwVmS0&t=0m45s

CARE : Content-Aware Image Restoration: Pushing the Limits of

Fluorescence Microscopy

Problem : Imaging spatial/temporal trade-offs : too much laser power or exposure time is usually

detrimental to the sample

Solution :

Acquisition of well-registered pairs of images (fixed samples):
* Alow-SNR image at a laser power compatible with live imaging
* A high-SNR image serving as ground-truth

— Train CARE networks (residual version of a U-Net type topology), and apply the trained
networks to remove noise in previously unseen live data.

(Weigert et al., 2017)

Training

e, _ A

Application




CARE : Content-Aware Image Restoration: Pushing the Limits of
Fluorescence Microscopy

50 i aht ke dfuges¥e A . RO b e A 50 um

Network fsres oo 00, Network

Restoration 1024x1024x100 < 20 seconds (single GPU)

(Weigert et al., 2017)



Intelligent high content imaging

High content imaging at high resolution (possibly multispectral) can quickly generate an

overwhelming amount of data and require a prohibitive acquisition time.

Figure 1. Hardware setup.

q User action
Configure primary HEETHIREHE
and secondary jobs. Application specific

Define scan grid.

—> Refine selection

. 2

Launch macro yes
START]
Trigger primary scan yes
Trigger secondary

scan (1 field per target)

Scan .

Scan .

complete? no

yes complete? no
Tile and display
primary scan images yes
Display secondary
Detect targets — scan images
Figure 2a. FIXED SAMPLE

2-step acquisition

(Tosi et al., 2018)



Intelligent high content imaging

Figure 3. Primary scan of
the GFP channel of a
stained mouse kidney
slice (left), imaging con-
ditions: 2x3 images grid,
20x lens, zoom=1. The
detected targets are
marked with a yellow
cross. Preview montage
of the selected targets
(right): the user can
select or deselect the
targets by clicking them
on the montage.

(Tosi et al., 2018)



Intelligent high content imaging

igure 4. Pri
n of the
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ing con
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(Tosi et al., 2018)




cytomine enables collaboration through the web

- Machine
e.g. R Learnlng
100K x 100K pixels, il
0.23um/pixel

http://I$CYTOMINE_URL/api/annotation.json?&project=idproject&users=idusers f

(Marée et al. Bioinformatics, 2016)


http://demo.cytomine.be/#tabs-image-528050-528132-
http://localhost-core/#tabs-image-4022-4122-0

cytomine is versatile and scalable

Appl_ications in research and education : > 5000 users, > 50 000 images, > 1M annotations
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