
INFO0948
Time and Motion

Bernard Boigelot
boigelot@montefiore.ulg.ac.be

February 16th, 2017

1 / 33



These slides are partly based on Chapters 3 and 4 of the book Robotics,
Vision and Control: Fundamental Algorithms in MATLAB by Peter
Corke, published by Springer in 2011, on course material prepared by
Renaud Detry in 2016, and on Stéphane Lens’s PhD thesis (ULg, 2015).

2 / 33



Basic notions

I Pose: the position and orientation ξ of an object.

I Path: a varying pose ξ(s), for some parameter s ∈ [s0, sT ].

I Trajectory: a path with specified timing: ξ(s(t)), for t ∈ [0, T ].

Note: The notions of path and trajectory can also be generalized to
motion in the configuration space or joint space of a robot.

3 / 33



Basic notions

I Pose: the position and orientation ξ of an object.

I Path: a varying pose ξ(s), for some parameter s ∈ [s0, sT ].

I Trajectory: a path with specified timing: ξ(s(t)), for t ∈ [0, T ].

Note: The notions of path and trajectory can also be generalized to
motion in the configuration space or joint space of a robot.

3 / 33



Generating trajectories: 1D case

Illustration:

I The path is imposed by the geometry of the track.
I At t = 0, the train must leave the departure station: s(0) = s0.
I At t = T , it must reach the destination station: s(T ) = sT .

4 / 33



Solution 1: Linear interpolation

s(t) =
(
1− t

T

)
s0 +

t

T
sT .

0.0

0.2

0.4

0.6

0.8

1.0

50 10 15 20 25 30 35 40 45
t

s

Problem: Not physically feasible, since the train would experience infinite
acceleration or deceleration at t = 0 and t = T .

5 / 33



Solution 1: Linear interpolation

s(t) =
(
1− t

T

)
s0 +

t

T
sT .

0.0

0.2

0.4

0.6

0.8

1.0

50 10 15 20 25 30 35 40 45
t

s

Problem: Not physically feasible, since the train would experience infinite
acceleration or deceleration at t = 0 and t = T .

5 / 33



Solution 2: Polynomial interpolation

Requirements:
I at t = 0: s(0) = s0, ṡ(0) = ṡ0, s̈(0) = s̈0.
I at t = T : s(T ) = sT , ṡ(T ) = ṡT , s̈(T ) = s̈T .
I the trajectory must be smooth: the first few derivatives of s(t) have

to be continuous.

Solution: Since there are 6 constraints, use a 5-th order polynomial:

s(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F

We thus have:

ṡ(t) = 5At4 + 4Bt3 + 3Ct2 + 2Dt+ E

s̈(t) = 20At3 + 12Bt2 + 6Ct+ 2D

6 / 33



Solution 2: Polynomial interpolation

Requirements:
I at t = 0: s(0) = s0, ṡ(0) = ṡ0, s̈(0) = s̈0.
I at t = T : s(T ) = sT , ṡ(T ) = ṡT , s̈(T ) = s̈T .
I the trajectory must be smooth: the first few derivatives of s(t) have

to be continuous.

Solution: Since there are 6 constraints, use a 5-th order polynomial:

s(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F

We thus have:

ṡ(t) = 5At4 + 4Bt3 + 3Ct2 + 2Dt+ E

s̈(t) = 20At3 + 12Bt2 + 6Ct+ 2D

6 / 33



Solution 2: Polynomial interpolation

Requirements:
I at t = 0: s(0) = s0, ṡ(0) = ṡ0, s̈(0) = s̈0.
I at t = T : s(T ) = sT , ṡ(T ) = ṡT , s̈(T ) = s̈T .
I the trajectory must be smooth: the first few derivatives of s(t) have

to be continuous.

Solution: Since there are 6 constraints, use a 5-th order polynomial:

s(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F

We thus have:

ṡ(t) = 5At4 + 4Bt3 + 3Ct2 + 2Dt+ E

s̈(t) = 20At3 + 12Bt2 + 6Ct+ 2D

6 / 33



The values of A, B, C, D, E and F can thus be obtained by solving the
system: 

s0
sT
ṡ0
ṡT
s̈0
s̈T

 =



0 0 0 0 0 1
T 5 T 4 T 3 T 2 T 1
0 0 0 0 1 0

5T 4 4T 3 3T 2 2T 1 0
0 0 0 2 0 0

20T 3 12T 2 6T 2 0 0





A
B
C
D
E
F


(Toolbox function: tpoly.)

7 / 33



Examples: (a: ṡ0 = ṡT = 0, b: ṡ0 = 0.5 and ṡT = 0).

8 / 33



Drawbacks:

I The train may overshoot the destination (Example b).

I The maximum velocity is much higher than the average one
(Example a).

9 / 33



Solution 3: Line segments with parabolic blends

Principles:

I The trajectory is composed of
I an initial segment at constant acceleration
I a middle segment at constant velocity
I a final segment at constant deceleration

I The velocity curve thus takes the form of a trapezoid.

I If the acceleration and deceleration constants are equal, then their
value can be computed from the velocity at the middle segment.

(Toolbox function: lsbp.)

10 / 33



Examples:

11 / 33



Advantages:

I The solution is efficient.
I The generated trajectory is physically feasible.

Drawbacks:
I Since the acceleration s̈(t) is not continuous, a high level of jerk ...s(t)

is experienced at the boundaries between segments.
I One has to check that physical acceleration bounds are not exceeded.

12 / 33



Multi-segment trajectories

Illustration:

https://www.youtube.com/watch?v=JIGilyQ5I_o

13 / 33

https://www.youtube.com/watch?v=JIGilyQ5I_o


Solution:

The trajectory is composed of:
I Constant-velocity segments (in blue).
I Transition segments of fixed duration tacc around waypoints (in red).

Since each transition segment must satisfy six constraints (position,
velocity and acceleration at each of its two endpoints), a good strategy is
to interpolate them using a 5-th order polynomial.

(Toolbox function: mstraj, also for the n-dimensional case.)
14 / 33



Drawback: The value of tacc has to be carefully chosen, so as to
I keep the path close to the waypoints, and
I respect acceleration bounds.

15 / 33



Generating trajectories: n-dimensional case

Illustration:

https://www.youtube.com/watch?v=bxbjZiKAZP4

16 / 33

https://www.youtube.com/watch?v=bxbjZiKAZP4


Solution: Interpolate separately each axis.

Example 1:

17 / 33



Example 2 (multi-segment):

18 / 33



Notes:

I Each axis usually has its own velocity and acceleration bounds.

I This means that the timing of a segment will usually be determined
by the slowest axis, or the one that has to travel the longest distance.

I This interpolation strategy is the one mainly used in industrial
robots.

19 / 33



Example: Albert (Eurobot)

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/albert.mov

20 / 33

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/albert.mov


Cartesian motion

Problem statement: Interpolate smoothly between two given poses.

21 / 33



2D case: Interpolate separately
I the position (x, y) (e.g., straight path with lspb trajectory).
I the orientation θ (1D problem).

Note: The orientation difference should be kept within [−π, π].

3D case: We can follow the same approach, but we need a method for
interpolating 3D orientations.

22 / 33



2D case: Interpolate separately
I the position (x, y) (e.g., straight path with lspb trajectory).
I the orientation θ (1D problem).

Note: The orientation difference should be kept within [−π, π].

3D case: We can follow the same approach, but we need a method for
interpolating 3D orientations.

22 / 33



Interpolation in SO(3)

First solution: Interpolate separately Euler or Tait-Bryan angles.

I OK for small rotations.
I Problematic near singularities.

Illustration: (x, y, z) : (0◦, 0◦, 0◦) −→ (180◦, 180◦, 90◦).

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/ulg-1.avi

23 / 33

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/ulg-1.avi


Better solution: Interpolate quaternions.

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/ulg-2.avi

Principles:
I Recall that unit quaternions represent 3D orientations (with ◦

q and
− ◦
q being equivalent).

I Unit quaternions form a 3-sphere in 4D space.
I One can move from ◦

q0 to ◦
q1 by following the shortest path between

them on this 3-sphere: Spherical linear interpolation (Slerp).

24 / 33

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/ulg-2.avi


Better solution: Interpolate quaternions.

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/ulg-2.avi

Principles:
I Recall that unit quaternions represent 3D orientations (with ◦

q and
− ◦
q being equivalent).

I Unit quaternions form a 3-sphere in 4D space.
I One can move from ◦

q0 to ◦
q1 by following the shortest path between

them on this 3-sphere: Spherical linear interpolation (Slerp).

24 / 33

http://www.montefiore.ulg.ac.be/~boigelot/tunnel/ulg-2.avi


Toolbox functions:

I interp for interpolating quaternions.
I trinterp for interpolating Cartesian motion.
I ctraj for combining trinterp with lspb.

25 / 33



Non-holonomic mobile robots

Some robotic drives are not able to achieve Cartesian motion.
Example: A car must keep at all times its orientation tangent to its travel
path.

I A holonomic drive is sufficiently actuated to be able to follow any
path in its configuration space.

I A non-holonomic drive has restricted mobility.

26 / 33



Differential drive

r

M

2

M

2

OO

I The path followed by the robot can be described by the motion of a
single reference point O in a 2D plane (velocity v, rotational velocity
θ̇).

I Motion is entirely determined by the velocities vL(t) and vR(t) of
the two wheels.

27 / 33



I If vL = vR, then v = vL = vR and θ̇ = 0.

I If vL 6= vR:
I The radius r of the circle followed by O satisfies

vL
(
r +

M

2

)
= vR

(
r − M

2

)
I We thus have

r =
M

2
· vR + vL
vR − vL

v =
vR + vL

2

θ̇ =
vR − vL
M

28 / 33



Tricycle platform

r

γ

O O

L

γ

I The reference point O is located at the middle of the rear axle.
I Motion is entirely characterized by the velocity vS of the steering

wheel and the steering angle γ ∈ [−π
2 ,

π
2 ].

29 / 33



I If γ = 0, then v = vS and θ̇ = 0.

I If γ 6= 0:
I The radius r of the circle followed by O satisfies

r = L cot γ

I We thus have

v = vS cos γ

θ̇ =
vS
L

sin γ

30 / 33



Car-like robot

O

r

L

M

γL γRγ

I The principles are similar to the tricycle platform.

31 / 33



I In order for the center of rotation to exist, the steering angles must
satisfy

tan γL =
L

r − M
2

tan γR =
L

r + M
2

(This is usually achieved by mechanical means.)

I An equivalent tricycle steering angle can be computed:

tan γ =
L

r
.

Note: Unlike the tricyle drive, in-place turns (v = 0 and θ̇ 6= 0) are
usually impossible with this platform.

32 / 33



Holonomic mobile robots

O

By using swedish wheels, a robot drive can be made holonomic:

I Each wheel exerts a longitudinal reaction force with the ground, and
remains free to slide sideways.

I Three wheels are thus potentially able to generate any (2D) global
force and global torque at O.

33 / 33


