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Abstract. Combination of decision procedures is at the heart of Sat-
isfiability Modulo Theories (SMT) solvers. It provides ways to compose
decision procedures for expressive languages which mix symbols from var-
ious decidable theories. Typical combinations include (linear) arithmetic,
uninterpreted symbols, arrays operators, etc. In [7] we showed that any
first-order theory from the Bernays-Schönfinkel-Ramsey fragment, the
two variable fragment, or the monadic fragment can be combined with
virtually any other decidable theory. Here, we complete the picture by
considering the Ackermann fragment, and several guarded fragments. All
theories in these fragments can be combined with other decidable (com-
binations of) theories, with only minor restrictions. In particular, it is
not required for these other theories to be stably-infinite.

1 Introduction

Devising satisfiability decision procedures for the combination of logical theories
has been a very active research subject during the last fifteen years. It is the
theoretical background on which Satisfiability Modulo Theories (SMT) solvers
are built. For instance, the set of literals

L = {a ≤ b, b ≤ a+ f(a), P (h(a)− h(b)),¬P (0), f(a) = 0}

can be shown to be unsatisfiable by an SMT solver, implementing the Nelson-
Oppen framework [16] combining a decision procedure for the theory of unin-
terpreted symbols and a decision procedure for linear arithmetic. SMT solvers
(see [2] for a thorough presentation of the techniques behind SMT solvers) are
now widely used, notably for model-checking and formal verification.

Initial combination results (e.g., [16, 17]) imposed strong conditions to en-
sure decidability of the satisfiability problem for the combined theories, such as
requiring the theories to be stably infinite, i.e., requiring any satisfiable set of
literals within the theories to have an infinite model. Many theories, and spe-
cially, many theories interesting for formal verification of hardware and software,
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are expressive enough to restrict the size of a model to be finite and, hence, are
not stably infinite. In other words, stable infiniteness is a sufficient condition for
theory combination, but it is too restrictive.

In recent years, much of the research in the area has focused on finding more
relaxed conditions for combination that would ensure decidability of the com-
bined theories. Tinelli and Zarba introduced in [19] the notion of shiny theories
(see Definition 4) and proved that the disjoint combination of one shiny theory
with an arbitrary (that is, not necessarily stably infinite) decidable theory is
decidable. In [7] we considered the Bernays-Schönfinkel-Ramsey fragment, the
two variables fragment, and the monadic fragment. These fragments include non
stably infinite theories. We introduced the notion of gentleness (see Definition 5)
and proved that the disjoint combination of one gentle theory with an arbitrary
decidable theory (modulo a minor restriction1) is also decidable. All theories in
the considered fragments are gentle.

In this article we first investigate the combination of guarded fragments of
first-order logic with other decidable fragments. Guarded fragments, originally
introduced in [1] as first-order counterparts of modal languages, are very ex-
pressive. In contrast to other well-known decidable classes, the guarded frag-
ments impose no restriction on the number of variables, alternations of quan-
tifiers, or symbol arity. Instead, quantification is restricted to occur only in
guarded form. Relational properties such as symmetry of a relation (written
as ∀xy .R(x, y) → R(y, x)) can readily be expressed with these fragments, as
well as various graph properties such as ∀xy .R(x, y)→ ∃z .R(y, z) stating that
every node with an incoming edge has an outgoing edge, or constraints such as
∀yz .R(y, y, z)→ ⊥ which forbids certain kinds of tuples to appear in a relation.

In this article we will show that the guarded fragment [1], the loosely guarded
fragment [20] and the packed guarded fragment [15] are shiny, and hence, they
can be combined in a decidable way, with an arbitrary decidable theory. This
can be seen as further explanation of the good computational behavior of many
modal logics [21, 9].

To complete the picture of combination of theories from decidable first-order
fragments, we also consider the well-known Ackermann fragment, i.e. formulas
of the form ∃∗∀x∃∗ϕ, where ϕ is a function- and quantifier-free first-order for-
mula. In this paper we will show that this fragment is gentle and, thus, easily
combinable with arbitrary theories (with a minor restriction).

After introducing notations and definitions in Section 2, we discuss combina-
tion of decision procedures in the disjoint case in Section 3. Section 4 introduces
the guarded fragments we will consider. The status of constants and equality in
these fragments is sometimes unclear in the literature; since these are of foremost
importance in our context, they will be handled with special care. Section 5 con-
siders the Ackermann fragment. The proofs we present are straightforward but,
to our knowledge, this is the first time that these fragments have been explored
in the framework of combined theories.

1 This theory should fall in one of the three cases of Theorem 3. These cases are such
that unsuitable theories would be very particular.



2 Notations and Basic Definitions

A first-order language is a tuple L = 〈V,F ,P〉 such that V is an enumerable set
of variables, while F and P are sets of function and predicate symbols. Every
function and predicate symbol has an arity. Nullary predicates symbols are called
proposition symbols, and nullary function symbols are called constant symbols.
A first-order language is called relational if it only contains function symbols of
arity zero. A relational formula is a formula in a relational language.

Terms and formulas over the language L are defined in the usual way. An
atomic formula is either an equality statement (t = t′) where t and t′ are terms,
or a predicate symbol applied to the right number of terms. Formulas are built
from atomic formulas, Boolean connectives (¬, ∧, ∨, →, ↔), and quantifiers (∀,
∃). A literal is an atomic formula or the negation of an atomic formula. The set
of free variables Free(ϕ) in a formula ϕ is defined as usual. A formula with no
free variables is closed. A theory is a set of closed formulas. Two theories are
disjoint if no predicate or function symbol appears in both theories; the theories
can however share constants.

An interpretation I for a first-order language L provides a non empty domain
D, a total function I[f ] : Dr → D of appropriate arity for every function symbol
f , a predicate I[p] : Dr → {>,⊥} of appropriate arity for every predicate symbol
p, and an element I[x] ∈ D for every variable x. By extension, an interpretation
defines a value in D for every term, and a truth value for every formula. The
cardinality of an interpretation is the cardinality of its domain. The notation
Ix1/d1,...,xn/dn

for x1, . . . , xn different variables stands for the interpretation that
agrees with I, except that it associates di ∈ D to the variable xi, 1 ≤ i ≤ n.
Given an interpretation I on domain D, an extension I ′ of I is an interpretation
on a domain including D such that I ′ restricted to the domain D is exactly I.

A model of a formula (or a theory) is an interpretation in which the formula
(resp., every formula in the theory) evaluates to true. A formula or theory is
satisfiable if it has a model, and it is unsatisfiable otherwise. A formula G is
T -satisfiable if it is satisfiable in the theory T , that is, if T ∪ {G} is satisfiable.
A T -model of G is a model of T ∪ {G}. A formula G is T -unsatisfiable if it
has no T -models. A decidable theory T is a theory such that the T -satisfiability
problem for sets of literals in the language of T is decidable.

The bold notation x denotes a tuple, and stands for a sequence of variables or
constants (or both) depending on the context. For instance, in ∀xϕ, formula ϕ
is quantified universally over all variables in x. Expressions such as p(x), p(y, c),
p(z,d) and Ix/d, where p is a predicate and I an interpretation, may be used,
with straightforward meaning. When used with set operators, tuples behave like
the set of the elements in the tuple, whereas |x| gives the length of the tuple.

3 Combination of Theories

To study the satisfiability of a set of literals like

L = {a ≤ b, b ≤ a+ f(a), P (h(a)− h(b)),¬P (0), f(a) = 0}



that mixes symbols from the integer linear arithmetic theory T1 and the theory of
uninterpreted symbols T2, one uses a combination framework to design a decision
procedure for the joint language from the simple component decision procedures
for one theory only. To divide the above satisfiability problem into problems
for the component decision procedures, a separation is first built by introducing
fresh uninterpreted constants2, to produce an equisatisfiable problem:

L1 =
{
a ≤ b, b ≤ a+ v1, v1 = 0, v2 = v3 − v4, v5 = 0

}
L2 =

{
P (v2), ¬P (v5), v1 = f(a), v3 = h(a), v4 = h(b)

}
.

The set L1 only contains arithmetic symbols and uninterpreted constants.
The symbols in L2 are all uninterpreted. The decision procedure for linear arith-
metic and the one for uninterpreted symbols can thus handle the sets L1 and L2

respectively. However, although L is unsatisfiable in T1 ∪T2, L1 is T1-satisfiable,
and L2 is T2-satisfiable; it is not sufficient for the decision procedures for T1 and
T2 to only examine the satisfiability of their part of the separation. Indeed, the
decision procedures also have to “agree” on the symbols that are shared, namely
the uninterpreted constants in the set S = {a, b, v1, v2, v3, v4, v5}. In order to
make sure that both decision procedures will interpret those shared symbols
coherently, the notion of arrangement is useful:

Definition 1. An arrangement A for a set of constant symbols S is a maximal
satisfiable set of equalities and inequalities a = b or a 6= b, with a, b ∈ S.

That is, an arrangement A for S cannot be extended with any equality or in-
equality over S and remain consistent.

The following theorem (other formulations can be found in [18, 19, 8]) then
states the completeness of the combination of decision procedures:

Theorem 1. Assume T1 and T2 are theories over the disjoint languages L1 and
L2, and Li (i = 1, 2) is a set of literals in Li augmented by a finite set of
fresh constant symbols S. Then L1 ∪L2 is T1 ∪ T2-satisfiable if and only if there
exists an arrangement A of S, a cardinality k, and two models M1 and M2 of
cardinality k, such that M1 is a T1-model of A ∪ L1 and M2 is a T2-model of
A ∪ L2.

Intuitively, if a set of literals is satisfiable in the combination of theories, a model
of this set defines in a straightforward way an arrangement and two models
with the same cardinality for the two parts of the separation. The converse is
also true: from models of the two parts of the separation (augmented with the
arrangement), it is possible to build a unique model for both parts, since both
models agree on the cardinality, and on the interpretation of the shared constants
in S (thanks to the arrangement). The cardinality condition is essential to be
able to map elements in both domains together into a unique domain.

2 Traditionally, combination schemes use variables for this role. Since variables will
be used in quantifiers in the following sections, for consistency and clarity we will
rather use uninterpreted constants here.



Relying on the above theorem, an algorithm implementing a satisfiability
decision procedure for the combination of two disjoint decidable theories T1 and
T2 could be as follows:

1. Build a separation (L1, L2) for the set of literals L which mix symbols from
T1 and T2. L1 contains symbols from T1 only and symbols from a finite set
of fresh constant symbols S, and likewise for L2;

2. Guess an arrangement A for the set of constants shared between L1 and L2;
3. If A∪Li is Ti-satisfiable for i = 1, 2, then, if there exists a (finite or infinite)

cardinality k such that A∪Li has a model of cardinality k for i = 1, 2, then
L is T1 ∪ T2-satisfiable. Otherwise, A ∪ L is T1 ∪ T2-unsatisfiable.

If we want to ensure that the above algorithm is indeed a decision procedure,
two issues needs to be solved. First, as we presented it above the algorithm is
non-deterministic but this is not fundamental. Since the number of arrangements
for a fixed finite set of constants is finite (although large), the non-deterministic
choice can be turned into a loop over this set. The second issue is, however,
essential. It involves being able to compare the cardinalities of the models for
both parts of the arrangement. To handle this problem, combination of decision
procedures and SMT solvers usually consider only stably infinite theories:

Definition 2. A theory T is said to be stably infinite when every T -satisfiable
set of literals has a model with cardinality ℵ0.

By definition, when dealing with stably infinite theories, if both parts of
the separation are satisfiable in their corresponding theory, then both have an
infinite model of cardinality ℵ0.

Consider again the above example. As both the theory for uninterpreted
symbols and the theory of integer linear arithmetic are stably infinite, the set
of literals L in our example is T1 ∪ T2-satisfiable if and only if there exists an
arrangement A of the seven variables in S such that A ∪ Li is Ti-satisfiable for
i = 1 and i = 2. No such arrangements exist. Indeed, consider an arrangement A
such thatA∪L1 is T1-satisfiable andA∪L2 is T2-satisfiable. Such an arrangement
contains a = b, otherwise A ∪ L1 would not be T1-satisfiable. It also contains
v3 = v4 since A∪L2 is T2-satisfiable, and as a consequence, v2 = v5 should also
be in A. But if A contains v2 = v5, A ∪ L2 is not T2-satisfiable.

Considering stably infinite theories only is one way to fulfill the cardinality
requirement for disjoint combination. It is, however, very restrictive. While some
very useful theories are stably infinite, many are not. For instance, there exist
theories that only have finite models. Many first-order decidable classes allow
to write formulas that constrain the cardinality of the models. Consider, for
example, the Ackermann theory ϕ = {∀x . p(c)→ (x = a∨ x = b)} that requires
the cardinality of the model to be at most two whenever p(c) is true. While
ϕ ∪ {¬p(c)} does have infinite models, ϕ ∪ {p(c)} only has finite models.

Of course, there are other ways to ensure that the cardinality requirement is
fulfilled. They allow to build decision procedures for union of theories that are



not all stably infinite. To examine the cardinality requirements in Theorem 1,
the notion of spectrum3 is convenient

Definition 3. The spectrum of a theory T is the set of cardinalities k such that
T is satisfiable in a model of cardinality k.

Theorem 1 now becomes: L1 ∪ L2 is T1 ∪ T2-satisfiable if and only if there
exists an arrangement A of S, such that the spectra of T1∪A∪L1 and T2∪A∪L2

have a non-empty intersection. The intersection of spectra is the crucial difficulty
for combination frameworks. Fortunately, the spectrum for many theories (as
we will see for guarded fragments and the Ackermann class) is such that the
computation of the intersection with another spectrum is easy.

Some theories (e.g., the empty theory, the theory of partial orders, the theory
of total orders) have spectral properties that allow combination with any other
decidable disjoint theory; these are called shiny theories [19].

Definition 4. A decidable theory T is shiny if, for every T -satisfiable set of
literals L, there is a finite computable number k such that the spectrum of T ∪L
is the set of cardinalities greater than or equal to k.

In the following sections, we show that the guarded, the loosely guarded, and
the packed guarded fragments are all shiny. They can thus be combined with
any disjoint theory:

Theorem 2. Let T1 and T2 be two disjoint decidable theories sharing only con-
stants. If T1 is shiny then T1 ∪ T2 is decidable.

In [7], we show that theories in the Bernays-Schönfinkel-Ramsey class, the
two variables fragment, and the monadic fragment have interesting spectral prop-
erties, though weaker than shininess. Every theory T in these classes is gentle:

Definition 5. A theory T is gentle if, for every T -satisfiable set of literals L,
the spectrum of T ∪ L can be computed and is either

– a finite set of finite cardinalities
– the union of a finite set of finite cardinalities and all the (finite and infinite)

cardinalities greater than a computable finite cardinality; it is thus co-finite.

The definition of shininess and gentleness are quite similar; considering only
sufficiently large cardinalities, both notions express the same property. Notice
that a shiny theory is also gentle. Furthermore, the union of disjoint gentle
theories is also a gentle theory [7]. Some widely used theories are not gentle, but
in practical cases they can be combined with gentle theories [7]:

Theorem 3. Given a gentle theory T and another disjoint theory T ′, the T ∪T ′-
satisfiability problem for sets of literals written in the union of their language is
decidable if one of the following cases holds:

3 The spectrum of a theory is usually defined as the set of the finite cardinalities of
its models. We here slightly extend the definition for convenience.



– T ′ is gentle;
– T ′ is a decidable finitely axiomatized first-order theory;
– T ′ is a decidable theory that only admits a fixed finite (possibly empty) known

set of finite cardinalities for its models, and possibly infinite models.

In the next sections we will prove that guarded fragments are shiny, and that
the Ackermann theories are gentle.

4 The Guarded Fragments

The guarded fragment (gf) was originally introduced in [1] as a suitable coun-
terpart and generalization of modal logics. To make this article self contained, let
us start with a brief recapitulation of modal logics (see [3, 4] for further details).
Consider the language defined as

BML := pi | ¬ϕ | ϕ ∨ ψ | ♦ϕ,

where pi is a propositional symbol and ϕ,ψ ∈ BML. Syntactically, the language
BML (the basic modal language) is a slight extension of propositional logic
(we have only added the unary operator ♦). Semantically, on the other hand,
the change is radical. We interpret formulas of BML on first-order relational
models M = 〈D, I〉 over a signature with only one binary relational symbol R
and uncountably many propositional symbols {p1, p2, . . .}. Given such a model
M and an element a in the domain, semantics is defined as follows:

M [p](a) = > iff I[p](a)
M [¬ϕ](a) = > iff M [ϕ](a) = ⊥

M [ϕ ∨ ψ](a) = > iff M [ϕ](a) = > or M [ψ](a) = >
M [♦ϕ](a) = > iff for some b ∈ D, I[R](a, b) and M [ϕ](b) = >.

These semantic conditions should tip us off on the close connections between
modal and first-order languages. Indeed, it is simple to define an equivalence
preserving translation from the former to the latter. Define recursively the trans-
lation Trx for x a first-order variable as:

Trx(p) = P (x)
Trx(¬ϕ) = ¬Trx(ϕ)

Trx(ϕ ∨ ψ) = Trx(ϕ) ∨ Trx(ψ)
Trx(♦ϕ) = ∃y.R(x, y) ∧ Try(ϕ),

where y is a new variable, not yet used in the translation. A simple induction
shows that for any formula ϕ ∈ BML, any model M (in the proper signature)
and any element a in the domain of M , M [ϕ](a) = > iff M [Trx(ϕ)](a) = >. In
other words, BML can be seen as nothing else than a fragment of first-order
logic in disguise. But BML is only one among many modal logics. Other modal
operators such as the inverse modality, the universal modality, the difference
modality, etc. can be defined (see [4] for details). Most of them can be translated



into first-order logic preserving equivalence. A natural question is then, whether
it is possible to define a fragment of first-order logic that can be the range of
these translations, and that will preserve the common modal aspects of all these
logical languages. The answer to this question was the guarded fragment gf.

Definition 6. A formula γ guards another formula ϕ if every free variable of
ϕ also occurs free in γ (i.e., Free(ϕ) ⊆ Free(γ)).

Definition 7. A formula in the guarded fragment gf of first-order logic is a
relational formula such that all quantified sub-formulas are of the form ∀x . γ →
ψ or ∃x . γ ∧ ψ where

– γ is an atom, but not an equality,
– ψ is guarded by γ,
– x is a tuple of variables in Free(γ),

The atom γ is called the guard.

Formulas in the fragment might contain an arbitrary number of variables (i.e.,
gf is not contained in any finite variable fragment of first-order logic). Similarly,
formulas in gf might contain an arbitrary number of quantifier alternations,
and hence they cannot be defined in terms of prenex normal form prefixes.
Also, the arity of relational symbols is not bounded. Moreover, many natural
properties expressible in first-order logic fall in gf. Some examples, besides those
we mentioned in Section 1, are:

∀x .R(x, x) reflexivity
∀x .¬R(x, x) irreflexivity
∃v1 . (R(a, v1) ∧ ∃v2 . (R(v1, v2) ∧R(v2, b))) there is a path of length 3

between a and b

On the other hand, some simple formulas, such as transitivity ∀xyz . (R(x, y) ∧
R(y, z)) → R(x, z), are neither in gf nor equivalent to any formula of gf (i.e.,
transitivity is not expressible in gf).

Guarded fragments have been defined and redefined repeatedly, looking for
the largest fragment of first-order logic with a nice ‘modal’ behavior. The original
definition of [1] contained the restriction on equality atoms not appearing in
guards we introduced above. This restriction was later removed (even though
the exact status of equality in the different definitions of guarded fragments is
sometimes unclear), but it is crucial for the results we will present.

Suppose we eliminate this restriction. Then equality atoms could occur as a
guard in one of the following shapes (let’s consider only universal quantification):

1. ∀x . x = x→ ψ(x)
2. ∀x . x = y → ψ(x, y)
3. ∀xy . x = y → ψ(x, y)
4. ∀x . x = c→ ψ(x)



Cases 2 and 4 can be rewritten as ψ(y, y) and ψ(c), respectively, eliminating
the quantifier and resulting in a formula in gf. Cases 1 and 3 rewrite to ∀x . ψ(x)
and ∀x . ψ(x, x), respectively. The resulting formulas in the scope of the quantifier
contain at most one free variable, but this variable is not guarded. Without the
restriction on the use of equality in guards gf would include formulas such
as ∀x . x = a1 ∨ . . . x = an that restricts the domain to a finite cardinality
smaller or equal to n. These improper guarded formulas would invalidate the
good properties necessary for combining gf theories (see Corollary 1 below).

Many good properties of gf are shown in [1]. In particular, the authors prove
that its satisfiability problem is decidable (it is actually 2ExpTime-complete,
and only ExpTime-complete if the number of variables is bounded by any finite
number k, see [12]), and that the fragment has the finite-model property (i.e.,
every satisfiable formula is satisfied in a finite model).

Different variations of gf were introduced, gradually relaxing the conditions
imposed on the guard to obtain larger fragments. We present the loosely guarded
fragment introduced in [20], and the packed guarded fragment introduced in [15].

Definition 8. A formula in the loosely guarded fragment lgf of first-order
logic is a relational formula such that all quantified sub-formulas are of the form
∀x . γ → ψ or ∃x . γ ∧ ψ where

– γ = α1 ∧ · · · ∧ αm is an equality-free conjunction of atoms,
– ψ is guarded by γ,
– for every variable y in x and every variable z ∈ Free(γ) with y 6= z, there is

at least one atom αj that contains both y and z

The conjunction of atoms γ is called the guard.

Notice that gf is a proper subset of lgf. The loosely guarded fragment is
decidable [20] and has the finite model property [14]. Its satisfiability problem
is 2ExpTime-complete [12].

Definition 9. A formula in the packed guarded fragment pgf of first-order
logic is a relational formula such that all quantified sub-formulas are of the form
∀x . γ → ψ or ∃x . γ ∧ ψ where

– γ = α1 ∧ · · · ∧ αm is an equality-free conjunction of atoms and existentially-
quantified atomic formulas,

– ψ is guarded by γ,
– for every variables y, z ∈ Free(γ) there is at least one conjunct αj such that
{y, z} ⊆ Free(αj)

The conjunction γ is called the guard.

Although lgf is not a subset of pgf, pgf is (strictly) more expressive than
lgf: any lgf formula can be rewritten to a logically equivalent pgf formula
(see [10]). The packed guarded fragment is also known as the clique-guarded
fragment. Both definitions are equivalent [10]. The packed guarded fragment is



decidable and has the finite model property [14]. The satisfiability problem for
pgf is 2ExpTime-complete [13].

The status of constants in guarded fragments has sometimes been vague.
Constants are crucial for our goal, as they will be used to link the combined the-
ories. Notice that in our definitions, all guarded fragments allow constants. The
following theorem, adapted from [12], shows that constants can always be added
to guarded fragments without interfering with decidability, the finite model prop-
erty or complexity.

Theorem 4. Adding constants to the languages for gf, lgf and pgf, preserves
decidability, the finite model property, and complexity.

Proof. Assume ϕ is a formula in gf, lgf or pgf with constants from a finite
set C. Let c be a sequence containing all constants in C. Let G be the set of all
predicates occurring in guards (remember that guards are equality free, soG does
not include equality). For every n-ary predicate p ∈ G, let p′ be a fresh (n+ |c|)-
ary predicate. The formula ϕ′ is built from ϕ by replacing every occurrence p(x),
for every p ∈ G and every sequence of variables and constants x by p′(x, c). Let
Z be a fresh |c|-ary predicate. The formula ψ = ∃c (Z(c) ∧ ϕ′) — where the
constants c in ϕ are variables in ψ — is equisatisfiable to ϕ. From a model of
ϕ it is possible to build a model on the same domain for ψ, and conversely,
thus the finite model property (and consequently, decidability) is preserved. ψ is
constant-free, and it is properly guarded (in the same fragment gf, lgf or pgf
than ϕ). Replacing constants by variables may involve a polynomial growth of
the formula. This does not affect the 2ExpTime-complete complexity. ut

4.1 The Spectra of Guarded Fragments

The following theorem states that an interpretation of a formula in the guarded
fragments gf, lgf or pgf, can always be extended by new elements without
changing the truth value of the considered formula. Intuitively, it suffices for
those new elements to be “disconnected” from the other elements, that is, those
new elements make every guard false. This, together with the finite model prop-
erty, will directly imply that these fragments are shiny.

Theorem 5. Given any interpretation M on domain D for a formula ϕ in gf,
lgf or pgf, then for every D′ ⊃ D there is an extension M ′ of M on domain
D′ such that M ′[ϕ] = M [ϕ].

Proof. Given an interpretation M on domain D for a formula ϕ in gf, lgf or
pgf, the interpretation M ′ on D′ is defined as follows:

– for every constant a, M ′[a] = M [a];
– for every variable x ∈ Free(ϕ), M ′[x] = M [x];
– for every n-ary predicate p, and for ai ∈ D′ (1 ≤ i ≤ n)
• M ′[p](a1, . . . an) = M [p](a1, . . . an) if ai ∈ D for all i (1 ≤ i ≤ n);
• M ′[p](a1, . . . an) = ⊥ otherwise.



To be able to handle pgf as the two other fragments in the following, first
consider an existentially-quantified atomic formula γ = ∃x . p(y). Notice that (1)
for any interpretation M ′′ defined as M ′ is above, but assigning at least one free
variable of γ to an element in D′ \D, M ′′[γ] = ⊥ (2) for any interpretation M ′

defined as above, M ′[γ] = M [γ]. The first point is direct. To prove the second,
notice that if M [γ] = >, then Mx/d[p(y)] = > for some tuple d of elements in
D. Then M ′x/d[p(y)] is also true and as a consequence, M ′[γ] = >. If M [γ] = ⊥,

notice that, for any tuple d of elements in D′, M ′x/d[p(y)] = Mx/d[p(y)] = ⊥
if all arguments of p are assigned to elements in D, and M ′x/d[p(y)] = ⊥ if one

argument of p is in D′ \D. As a consequence M ′[γ] = ⊥.

Theorem 5 is proved by showing by structural induction that M ′[ϕ] = M [ϕ],
for M ′ defined from M as above. It is trivial if ϕ is atomic, a negation, or
a Boolean combination of several formulas. The only remaining cases are the
quantified constructions.

Let ϕ = ∀x1 . . . xn . γ → ψ (where γ is the guard) belong to gf, lgf or pgf.
For simplicity and without loss of generality, assume that xi ∈ Free(γ → ψ) for
every i ∈ {1, . . . n}. Consider an interpretation M on domain D for ϕ, D′ ⊃ D,
and M ′ as defined above. For d1, . . . dn ∈ D′ one of the two cases hold:

– if di ∈ D′ \D for some i ∈ {1, . . . n}, then M ′x1/d1,...xn/dn
[γ] = ⊥, and hence

M ′x1/d1,...xn/dn
[γ → ψ] = >. Indeed, since γ is a guard, xi appears free

in γ. Since the guard is either (gf) an atom, (lgf) a conjunction of atoms,
(pgf) or a conjunction of atoms and existentially quantified atoms, the atom
having xi as an argument is interpreted as false, and so is the whole guard.

– if di ∈ D for all i ∈ {1, . . . n}, then M ′x1/d1,...xn/dn
and Mx1/d1,...xn/dn

agree

on (γ → ψ), i.e., M ′x1/d1,...xn/dn
[γ → ψ] = Mx1/d1,...xn/dn

[γ → ψ]. Indeed,

by the inductive hypothesis, M ′x1/d1,...xn/dn
[ψ] = Mx1/d1,...xn/dn

[ψ], for all

d1, . . . dn ∈ D. Furthermore, for all d1, . . . dn ∈ D then M ′x1/d1,...xn/dn
[γ] =

Mx1/d1,...xn/dn
[γ]. This is trivial for gf and lgf thanks to the inductive

hypothesis, since guards are Boolean combinations of atoms. This is also
true for pgf, given the previous remarks on existentially-quantified atomic
formulas. Hence, M ′x1/d1,...xn/dn

[γ → ψ] = Mx1/d1,...xn/dn
[γ → ψ].

It follows that M ′[ϕ] = M [ϕ]. The existential case is handled similarly. ut

Corollary 1. Any theory in gf, lgf, or pgf is shiny.

Proof. Assume T is a theory in gf, lgf, or pgf. For any set of literals L in the
language of T , T ∪ L is also a theory in gf, lgf, or pgf. Thanks to the finite
model property of gf, lgf, and pgf, if T ∪L is satisfiable, it has a finite model.
It is thus possible to compute the minimum cardinality of T ∪ L. Furthermore,
thanks to the previous theorem, its spectrum is an unbounded interval. ut



5 The Ackermann Class

The Ackermann class (with equality) is the set of formulas of the form

∃ . z1 · · · ∃zn .∀x .∃y1 . · · · ∃ym . ϕ(x, y1, . . . , ym, z1, . . . , zn),

where ϕ(x, y1, . . . , ym, z1, . . . , zn) is quantifier-free and function-free. Checking
the satisfiability of formulas of the above form can be reduced (using Skolemiza-
tion) to checking the satisfiability of formulas without existental quantifiers of
the form ψ = ∀x . ϕ(x, f1(x), . . . , fm(x)), where ϕ(x, y1, . . . , ym) is quantifier-free
and function-free.

Theorem 6. The class of formulas of the form ψ = ∀x . ϕ(x, f1(x), . . . , fm(x)),
where ϕ(x, y1, . . . , ym) is quantifier and function-free (constants are allowed) has
the finite model property.

The proof may be found for instance in [5]. The following theorem will allow to
determine that the Ackermann theories are gentle. An equivalent property for
the Ackermann fragment is discussed in [6].

Theorem 7. Consider a formula ψ = ∀x . ϕ(x, f1(x), . . . , fm(x)), where for-
mula ϕ(x, y1, . . . , ym) is quantifier and function-free (constants are allowed). If
ψ has a model of cardinality κ strictly greater than the number of constants in
ψ, then it has models with any cardinality greater than κ.

Proof. Consider a modelM of ψ on domain D such that |D| is greater than the
number of constants in ψ. Then there exists an extensionM′ on any domain D′

with D ⊂ D′ that is also a model of ψ.
Let Φ(x) = ϕ(x, f1(x), . . . , fm(x)) and d ∈ D be an element of the do-

main, not assigned by M to a constant in the formula. Obviously Mx/d is
a model of Φ(x). Consider d′ ∈ D′ \ D. For every n-ary predicate p, and n-
uple d′ of elements in (D \ {d}) ∪ {d′}, let d be a n-uple of elements in D
obtained from d′ by changing d′ by d whenever d′ is an element of the tu-
ple d′, and set M′[p](d′) = M[p](d). For every function fi (1 ≤ i ≤ m) let
M′[fi](d′) = M[f ](d) if M[f ](d) 6= d, and let M′[fi](d′) = d′ otherwise. Func-
tions and predicates are only partially defined above, but they can be completed
arbitrarily without any influence on the result. One can show by structural in-
duction that M′x/d′ [Φ(x)] =M′x/d[Φ(x)].

Indeed, according to our definition of M′,

– M′x/d′ [x] = d′ whereas Mx/d[x] = d,

– M′x/d′ [c] =Mx/d[c] for every constant c in Φ(x),

– M′x/d′ [f(x)] =Mx/d[f(x)] if Mx/d[f(x)] 6= d,

– M′x/d′ [f(x)] = d′ if Mx/d[f(x)] = d.

Thus, for every atom p(t1, . . . , tn) (respectively, t1 = t2) in Φ(x), M′x/d′ and

M′x/d assign the same values to every ti except thatM′x/d′ assigns d′ instead of



d for M′x/d. Finally, thanks to the way M′ extends the assignment of pred-

icates, M′x′/d′ [p(t1, . . . , tn)] = Mx/d[p(t1, . . . , tn)] (respectively, M′x′/d′ [t1 =

t2] =Mx/d[t1 = t2]). ut

Corollary 2. The spectrum of an Ackermann theory can be computed and ex-
pressed either as a finite set of natural numbers, or as the union of a finite set
of natural numbers with the set of all the (finite or infinite) cardinalities greater
than a natural. The Ackermann theories are gentle.

Proof. Given ψ = ∀x . ϕ(x, f1(x), . . . , fm(x)), where formula ϕ(x, y1, . . . , ym) is
quantifier and function-free, it is possible to establish if ψ has a model of car-
dinality greater than the number n of constants in ψ. Indeed, formula ψ′ =
ψ∧

∧
0≤i<j≤n ai 6= aj (where the ai’s are fresh constants) is also in the decidable

Ackermann class, and is satisfiable if and only if ψ has a model of cardinality
greater than or equal to n+1. If ψ′ is unsatisfiable, ψ has no model of cardinality
greater than or equal to n + 1. If ψ′ is satisfiable, a decision procedure to get
the smallest cardinality m > n of the models of ψ can just be a simple test of
the (finite) interpretations of increasing cardinality size starting from n+ 1; this
procedure will indeed terminate, and ψ will accept models for every cardinality
greater than or equal to m. It then only remains to check if ψ accepts models for
the cardinalities between 1 and n, which can be done by considering the finitely
many interpretations. ut

6 Conclusions

The first frameworks to combine disjoint decidable theories were very restrictive:
the combined theories were required to be stably infinite. Later results led to
more liberal frameworks. In particular, it was proved in [19] that shiny theories
are combinable with any other disjoint decidable theory. We have showed that
any theory in the guarded fragment, in the loosely guarded fragment, or in the
packed guarded fragment, is shiny.

Another well known decidable class with equality (the only relevant classes
in our context) that was not yet proved to have good combining properties is the
Ackermann class. We showed here that, although not shiny, Ackermann theories
are gentle, and, as such, are combinable with non-stably infinite theories with
minor requirements. Together with [7], this work then covers the major first-
order decidable classes. Interestingly, all of them are at least gentle.

The Rabin and the Shelah classes are, respectively, extensions of the Löwen-
heim class (studied in [7]) and the Ackermann class (studied here), with one
unary function. Both are decidable [5]. However, both have infinity axioms [5],
and they also contain formulas restricting the cardinality of their models to a
finite number. Hence, they are neither shiny nor gentle, and not even stably in-
finite. It is still an open problem whether these classes have spectral properties
that allow liberal combinations. A solution to this problem would probably in-
volve more complex combination frameworks than those discussed in this paper.



Guarded fragments have been extended beyond pgf, even to include frag-
ments of second order logic. The fixed point guarded fragment µgf, for example,
was introduced in [11] extending gf with fixed point operators. But unlike gf,
lgf, and pgf, µgf even though decidable, does not have the finite model prop-
erty, and hence it is not shiny. We conjecture, though, that Theorem 5 can be
extended to µgf proving it stably infinite.

Our motivation here was mainly to study the decidability of combinations of
disjoint theories, without having a practical applications in mind. However, the
guarded fragments are highly promising from the point of view of applications.
Indeed, since they can easily express graph properties, we beleive implementa-
tions will trigger concrete applications. As a toy example of what can be handled
by a combination with the guarded fragments, consider the conjunction of the
following formulas4:

∀x y .R(x, y)→ ∀z .
(
R(y, z) ∧R(z, x)

)
→ (x = y ∨ y = z ∨ z = x)

R(a, b) ∧R(b, c) ∧R(a, c)
f(b) = f(a) + 1 ∧ f(c) = f(b) + 1

This set of formulas is unsatisfiable: the first formula enforces 3-edges loop to
have at least one reflexive edge, the second states the existence of a 3-edge loop
through a, b and c, and the last formula (using uninterpreted function f and some
arithmetic) enforces a, b and c to be distinct, which leads to a contradiction. This
formula can be dealt with a classical Nelson-Oppen combination framework since
all theories are stably-infinite.

In [22], the authors show that it is possible to combine non-disjoint theories
from various decidable classes, those theories sharing monadic predicates. This
results in a very expressive language. A future direction for research will be to
study if the guarded fragments can also be included in such a framework for
combining non-disjoint theories.

Acknowledgment: we would like to thank the anonymous reviewers for their
helpful comments and suggestions.
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10. E. Grädel. Guarded fixed point logics and the monadic theory of countable trees.
Theoretical Computer Science, 288(1):129–152, 2002.
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