
Combination of disjoint theories:
beyond decidability

Pascal Fontaine1, Stephan Merz2, and Christoph Weidenbach3

1 Université de Lorraine & LORIA, Nancy, France
2 INRIA Nancy & LORIA, Nancy, France

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Combination of theories underlies the design of satisfiability
modulo theories (SMT) solvers. The Nelson-Oppen framework can be
used to build a decision procedure for the combination of two disjoint
decidable stably infinite theories.
We here study combinations involving an arbitrary first-order theory.
Decidability is lost, but refutational completeness is preserved. We con-
sider two cases and provide complete (semi-)algorithms for them. First,
we show that it is possible under minor technical conditions to combine
a decidable (not necessarily stably infinite) theory and a disjoint finitely
axiomatized theory, obtaining a refutationally complete procedure. Sec-
ond, we provide a refutationally complete procedure for the union of two
disjoint finitely axiomatized theories, that uses the assumed procedures
for the underlying theories without modifying them.

1 Introduction

The problem of combining decidable first-order theories has been widely studied
(e.g., [9, 10, 13]). The fundamental result due to Nelson and Oppen yields a
decision procedure for the satisfiability (or dually, validity) problem concerning
quantifier-free formulas in the union of the languages of two decidable theories,
provided these theories are disjoint (i.e., they only share the equality symbol)
and stably infinite (i.e., every satisfiable set of literals has an infinite model). This
result, and its extensions, underly the design of automated reasoners known as
SMT (Satisfiability Modulo Theories [2]) solvers.

The problem of combining theories for which there exist refutationally com-
plete semi-decision procedures for the validity (unsatisfiability) problem has
received less attention. In this paper, we will show that the fundamental re-
sults about combinations of disjoint decidable theories extend naturally to semi-
decidable theories, and that refutationally complete procedures for such theories
can be combined to yield a refutationally complete procedure for their union.

From a theoretical point of view, our observation may appear trivial. In
particular, consider two theories presented by finitely many first-order axioms:
complete first-order theorem provers provide semi-decision procedures for them.
A refutationally complete procedure for the union of these theories is simply
obtained by running the same prover on the union of the axioms. We believe



however that combining theories à la Nelson-Oppen is still valuable in the two
scenarios in Sections 5 and 6. Specialized efficient decision procedures exist for
some theories of high practical relevance such as arithmetic fragments, uninter-
preted symbols or arrays. In Section 5 we consider the combination of a decidable
theory with a disjoint finitely axiomatized theory (without further restriction on
cardinalities or on the form of this theory). Using these results, the usual lan-
guage of SMT solvers can be extended with symbols defined by finitely axiom-
atized theories, preserving refutational completeness. In Section 6 we consider
combining two disjoint finitely axiomatized theories. Here the interest lies in the
fact that the refutationally complete procedures for the theories in the combi-
nation share very little information; the procedure is essentially parallel.

There has already been work on extending automated first-order theorem
provers in order to accommodate interpreted symbols from decidable theories,
such as fragments of arithmetic, for which an encoding by first-order axioms
does not yield a decision procedure [1, 3]. Bonacina et al. [5] give a calculus
for a refutationally complete combination of superposition and SMT solvers.
Instantiation-based frameworks (see [2] for more information) also have inter-
esting completeness results. In [8], a complete instantiation procedure is given,
even for some cases where theories are not disjoint. Compared to this approach,
ours handles a less expressive fragment, but allows working in standard models.
Also, our approach imposes no restrictions on the first-order theory and is in-
dependent of the actual presentation of the underlying theories or the nature of
the semi-decision procedures. It uses the underlying semi-decision procedures as
“black boxes” for the combination, in the spirit of the Nelson-Oppen approach.

Our results rely on two main restrictions inherited from Nelson-Oppen. First,
we consider unsatisfiability of quantifier-free formulas, and second, those formu-
las are studied in the union of disjoint theories. Both restrictions appear crucial,
specifically for theories that are not finitely axiomatized. Consider combining
Presburger arithmetic (which is decidable) with a first-order and finitely axiom-
atizable but non-disjoint theory defining multiplication in terms of addition.
One would expect the result to be non-linear arithmetic on naturals. Because
of the unsolvability of Hilbert’s tenth problem, there exists no refutationally
complete decision procedure for this fragment. Consider also the disjoint union
of Presburger arithmetic and the empty theory for uninterpreted symbols (both
decidable); considering quantified formulas on the union of the languages, it is
easy to define multiplication and hence to encode the Hilbert’s tenth problem:
there cannot be a refutationally complete decision procedure (on the standard
model) for arbitrary quantified formulas in the union of these theories. We ad-
ditionally assume as a reasonable simplification hypothesis that the theories are
either decidable or are finitely axiomatized.

Outline. Section 2 fixes basic notations and introduces a pseudo-code language.
Sections 3 and 4 present elementary results on combining theories, including
the simple case of combining refutationally complete procedures for disjoint sta-
bly infinite theories. Lifting the restriction on cardinalities, Section 5 considers
combinations of a decidable theory with a disjoint, finitely axiomatized theory.



Finally, we propose in section 6 an algorithm to combine two disjoint finitely
axiomatized theories. The results in this paper can of course be used modularly
to build complex combinations, involving several decidable theories and several
finitely axiomatized theories.

2 Notations

A first-order language L = 〈V,F ,P〉 consists of an enumerable set V of variables
and enumerable sets F and P of function and predicate symbols, associated with
their arities. Nullary function symbols are called constant symbols.

Terms and formulas over the language L are defined in the usual way. An
atomic formula is either an equality statement (t = t′) where t and t′ are terms,
or a predicate symbol applied to the corresponding number of terms. Formulas
are built from atomic formulas using Boolean connectives (¬, ∧, ∨, ⇒, ≡) and
quantifiers (∀, ∃). A literal is an atomic formula or the negation of an atomic
formula. A formula with no free variables is closed.

An interpretation I for a first-order language L provides a non-empty do-
main D, a total function I[f ] : Dr → D of appropriate arity for every function
symbol f , a predicate I[p] : Dr → {>,⊥} of appropriate arity for every predi-
cate symbol p, and an element I[x] ∈ D for every variable x. By extension, an
interpretation defines a value in D for every term, and a truth value for every for-
mula. The cardinality of an interpretation is the cardinality of its domain. The
notation Ix1/d1,...,xn/dn

where x1, . . . , xn are different variables (or constants)
denotes the interpretation that agrees with I, except that it associates di ∈ D
to the variable (resp. constant) xi, for 1 ≤ i ≤ n. A model of a formula (resp., a
set of formulas) is an interpretation in which the formula (resp., every formula
in the set) evaluates to true. A formula is satisfiable if it has a model, and it is
unsatisfiable otherwise.

Given an interpretation I for a first-order language L = 〈V,F ,P〉, the re-
striction I ′ of I to L′ = 〈V ′,F ′,P ′〉 with V ′ ⊆ V, F ′ ⊆ F , P ′ ⊆ P, is the unique
interpretation for L′ similar to I, i.e. I ′ and I have the same domain and assign
the same value to symbols in V ′, F ′ and P ′.

A theory T in a first-order language is a set of interpretations such that,
for every interpretation I ∈ T , every variable x of the language, and every
element d of the domain, Ix/d ∈ T . A theory may also be defined by a set
of closed formulas, in which case it is the set of all the models of the set of
formulas. A finite theory or a finitely axiomatized theory is the set of models
of a finite set of closed formulas. A constant a is uninterpreted in a theory if
for every interpretation I ∈ T , and every element d of the domain, Ia/d ∈ T .
The spectrum of a theory T , denoted spectrum(T ), is the set of all (finite or
infinite) cardinalities of the interpretations in T . A theory is satisfiable if it is a
non-empty set of interpretations; it is unsatisfiable otherwise.

Two theories T1 and T2 in languages L1 = 〈V1,F1,P1〉 and L2 = 〈V2,F2,P2〉
respectively are disjoint if P1 ∩ P2 = ∅ and if F1 ∩ F2 only contains constants
that are uninterpreted in both T1 and T2. The union T1 ∪ T2 of two theories T1



and T2 (respectively in languages L1 = 〈V1,F1,P1〉 and L2 = 〈V2,F2,P2〉) is
the largest set of interpretations for language L = 〈V1 ∪ V2,F1 ∪ F2,P1 ∪ P2〉
such that for every I ∈ T1 ∪ T2, I restricted to L1 (L2) belongs to T1 (resp.,
T2). Notice that the union of two theories defined by sets C1 and C2 of closed
formulas is exactly the theory defined by the union C1 ∪ C2.

A T -model of a formula G is an interpretation in T which is a model of G. A
formula G is T -satisfiable if it has a T -model, and it is T -unsatisfiable otherwise.
A decidable theory T is a theory such that the T -satisfiability problem for finite
sets of ground literals in the language of T is decidable.

A refutationally complete procedure for T is a (semi-)algorithm for the T -
unsatisfiability problem that will always terminate on an unsatisfiable formula
by stating that it is unsatisfiable. Given a satisfiable formula, it may either
terminate by stating that it is satisfiable or continue running forever. Thus, a
refutationally complete procedure is a decision procedure if and only if it always
terminates. A refutationally complete theory T is a theory such that there exists
a refutationally complete procedure for the T -unsatisfiability problem for sets
of ground literals in the language of T .

A theory is stably infinite if every T -satisfiable set of literals has an infinite
model of cardinality ℵ0.4

For convenience, we define the notation card≥(n) that denotes a set of literals
satisfiable only on models of cardinality at least n (where n is a natural number).
Such a cardinality constraint can be enforced by augmenting the set of literals
by the set of disequalities {ai 6= aj | 1 ≤ i < j ≤ n} for fresh constants ai.

Pseudocode

We will describe our algorithms using pseudocode. Beyond familiar constructs
whose semantics is well known, we use the construct execute in parallel, which
spawns several child processes, explicitly identified using the process keyword.
These processes can execute truly in parallel, or be subject to any fair interleav-
ing. The execute in parallel construct and all its child processes terminate as
soon as some child process terminates. Similarly, if child processes are spawned
inside a function, any return e instruction executed by a child processes will
terminate all child processes and make the function return the result e. In our
applications, we never have to consider race conditions such as two sibling pro-
cesses potentially returning different values.

For synchronization, processes can use the instruction wait C, where C is
a Boolean expression. This instruction blocks the process while C is false, and
allows the process to resume as soon as C becomes true.5 In particular, we use

4 Traditionally, a theory is said to be stably infinite if every T -satisfiable set of literals
has an infinite model. In fact, a set of first-order formulas in a countable language
(i.e. with a enumerable set of variables, functions, and predicates) has a model with
cardinality ℵ0 if it has an infinite model, thanks to the Löwenheim-Skolem theorem.

5 In our algorithms, we only use synchronization expressions C that never become
false after being true, hence the underlying implementation of the wait mechanism
is unimportant.



the wait instruction as syntactic sugar for wait false in order to definitely
block processes. However, we assume that the execute in parallel construct
and all its child process terminate if all child processes are waiting. Controlling
concurrent accesses to shared variables will be explicitly specified when required.

3 Combining models

In the following, we will restrict our attention to the (un)satisfiability of finite
sets of literals. Recall that the T -satisfiability of quantifier-free formulas can
be reduced to a series of T -satisfiability checks for finite sets of literals [2]. For
example, and disregarding efficient techniques used in SMT solvers, a quantifier-
free formula G is satisfiable if and only if the set of literals corresponding to one
of the cubes (i.e. one of the conjunctions of literals) in the disjunctive normal
form (DNF) of G is satisfiable.

Assume that T is the union of two disjoint theories T1 and T2, respectively in
languages L1 and L2. By introducing new uninterpreted constants, it is possible
to purify any finite set of literals L into a T -equisatisfiable set of literals L1∪L2

where each Li is a set of literals in language Li (see e.g. [10]).

Definition 1. An arrangement A for a set of constant symbols S is a maximal
satisfiable set of equalities and inequalities a = b or a 6= b, with a, b ∈ S.

That is, an arrangement A for S cannot be consistently extended with any
equality or disequality over S which is not already a consequence ofA. Obviously,
there exist only finitely many arrangements for a finite set of constants.

The following theorem (see also [11, 12, 7]) underlies the completeness proof
of combinations of decision procedures. It is also the cornerstone of the results
for combining refutationally complete decision procedures.

Theorem 2. Consider disjoint theories T1 and T2, and finite sets of literals L1

and L2, respectively in languages L1 and L2. L1 ∪L2 is T1 ∪T2-satisfiable if and
only if there exist an arrangement A of constants shared in L1 and L2, a (finite
or infinite) cardinality κ, and models M1 and M2 of cardinality κ, such that
M1 is a T1-model of A ∪ L1 and M2 is a T2-model of A ∪ L2.

Intuitively, if a set of literals is satisfiable in the combination of theories, a model
of this set defines in a straightforward way an arrangement and two models with
the same cardinality for the two sets of literals. The converse is also true: from
models of the set of literals augmented with the arrangement, it is possible to
build a model for the union, since both models agree on the cardinality and
on the interpretation of the shared constants (thanks to the arrangement). The
cardinality condition is essential to be able to map elements in the domains of
the individual models into a unique domain.

Corollary 3. Consider disjoint theories T1 and T2, and finite sets of literals L1

and L2, respectively in languages L1 and L2. L1 ∪L2 is T1 ∪T2-satisfiable if and
only if there exists an arrangement A of constants shared in L1 and L2 such that
the spectra of T1 ∪ L1 ∪ A and T2 ∪ L2 ∪ A have a non-empty intersection.



Function check sat(L1, L2)

1 foreach arrangement A of shared constants of L1 and L2 do
2 if check sat arrangement(A, L1, L2) = sat then
3 return sat;

4 return unsat;

Function check sat arrangement(A, L1, L2)

1 if A ∪ L1 is T1-unsatisfiable then
2 return unsat;

3 if A ∪ L2 is T2-unsatisfiable then
4 return unsat;

5 if spectrum(T1 ∪ A ∪ L1) ∩ spectrum(T2 ∪ A ∪ L2) = ∅ then
6 return unsat;

7 return sat;

Algorithm 1: Combination of decidable theories: a generic algorithm.

For combining decision procedures, the cardinality or spectrum requirements of
the above theorems are usually fulfilled by assuming properties of the theories
in the combination. In the classical combination scheme, the theories are sup-
posed to be stably infinite: if A ∪ Li has a Ti-model, it also has a Ti-model of
infinite cardinality (more precisely, of cardinality ℵ0), and thus the cardinality
requirement is trivially fulfilled.

Theorem 2 and Corollary 3 do not require decision procedures to exist, and
also apply to refutationally complete theories.

4 Combinations: decidable theories and beyond

Consider two decidable disjoint theories T1 and T2 in languages L1 and L2, such
that, given sets of literals L1 and L2 (in L1 and L2 respectively), it is computable
whether spectrum(T1∪L1)∩spectrum(T2∪L2) is empty or not. Algorithm 1 is the
generic combination algorithm for T1∪T2, based on a straightforward application
of the theorem in the previous section. Notice that the code at lines 1–4 in
function check sat arrangement is not required because of the spectrum test at
lines 5–6: the combined theory is unsatisfiable if the intersection of the spectra
is empty. In case of stably infinite theories however, the spectrum condition
at line 5 is guaranteed to be false, and thus lines 5 and 6 are not necessary;
without these lines, the algorithm corresponds to the Nelson-Oppen combination
framework [9, 10]. If the theories are not stably infinite, there exist many specific
results (e.g. [12, 7]) for which it is possible to compute the condition at line 5.

Assume now that the theories in the combination are refutationally complete
but not decidable. For the combination procedure to be refutationally complete,
it is necessary and sufficient that check sat arrangement(A, L1, L2) terminates



Function check sat arrangement(A, L1, L2)

1 execute in parallel
2 process
3 if A ∪ L1 is T1-unsatisfiable then
4 return unsat;

5 wait;

6 process
7 if A ∪ L2 is T2-unsatisfiable then
8 return unsat;

9 wait;

10 return sat;

Algorithm 2: Nelson-Oppen for refutationally complete procedures.

if A ∪ L1 ∪ L2 is T1 ∪ T2-unsatisfiable. Otherwise one could not guarantee that
a call to check sat(A ∪ L1, A ∪ L2) would return. The following algorithms for
refutationally complete procedures are all based on the above check sat func-
tion, but differ in the check sat arrangement function. In the following, we say
that a function check sat arrangement is a refutationally complete procedure
for a theory, if function check sat together with the considered function yields a
refutationally complete procedure for a theory.

The Nelson-Oppen schema traditionally gets rid of the spectrum condition in
Algorithm 1 by considering only stably infinite theories. As a first step, we also
restrict attention to stably infinite theories. Thus the intersection of the spectra
is empty only if one of T1 ∪ A ∪ L1 or T2 ∪ A ∪ L2 is unsatisfiable.

In the case of refutationally complete theories, the sequentiality of Algo-
rithm 1 may cause a completeness problem. Indeed it may happen that A ∪ L1

is T1-satisfiable and the test at line 1 in function check sat arrangement never
terminates; A ∪ L2 would never be checked for unsatisfiability. This behavior
breaks completeness. A natural way to circumvent this problem is to run the
unsatisfiability tests in parallel, as in Algorithm 2.

Theorem 4. Assume T1 and T2 are stably infinite and disjoint theories with
refutationally complete procedures for finite sets of literals. Algorithm 2 yields a
refutationally complete procedure for T1 ∪ T2 for finite sets L1 ∪ L2 of literals,
where L1 and L2 are respectively literals in the language of T1 and T2. If T1 and
T2 are furthermore decidable, Algorithm 2 is a decision procedure.

Proof. The proof is similar to that for the Nelson-Oppen combination framework
for disjoint stably infinite decidable theories. First notice that soundness is a
direct consequence of Theorem 2: whenever the algorithm terminates, it provides
the right answer. We only need to ensure termination in the unsatisfiable case.

The algorithm terminates for T1 ∪ T2-unsatisfiable sets of literals. The finite
sets of L1 and L2 only share a finite set of constants S. There exist only a finite
number of arrangements A1, . . .An of S, and these can be checked in sequence



for unsatisfiability. If every call to function check sat arrangement(A, L1, L2)
terminates when A ∪ L1 ∪ L2 is T1 ∪ T2-unsatisfiable, then the algorithm is a
refutationally complete procedure for T1 ∪ T2.

A call to check sat arrangement(A, L1, L2) does not terminate for some
A ∪ L1 ∪ L2 only if A ∪ L1 is T1-satisfiable and A ∪ L2 is T2-satisfiable. In
that case, there exist a T1-model M1 of A ∪ L1 and a T2-model M2 of A ∪ L2.
The cardinality of the models can be assumed to be ℵ0. Thus, according to
Theorem 2, A ∪ L1 ∪ L2 is T1 ∪ T2-satisfiable. ut

As a concrete example, consider Presburger arithmetic – which is decidable
and has only models of infinite cardinality – and a finite set of first-order formu-
las with only infinite models (e.g. including axioms for dense order), for which
refutationally complete procedures exist (any complete first-order logic prover
is a suitable procedure). The above theorem yields a refutationally complete
procedure for quantifier-free formulas in the union of the languages.

The above theorem imposes two major constraints, one on the cardinalities,
the other on the disjointness. For decision procedures, relaxing the cardinality
constraints is possible using asymmetric combinations, where one theory in the
combination has strong properties that allow to relax the cardinality property
on the other one. We investigate this solution in the next section.

5 Combining a decidable and an arbitrary theory

The restriction to stably infinite theories has proved to be useful in the decidable
case: the Nelson-Oppen framework is simple and efficient, and several important
decidable theories are indeed stably infinite. Still, being stably infinite is a strong
constraint (e.g., the theory ∀x . x = a∨x = b is not stably infinite), and there is no
general procedure to check whether a theory is stably infinite. In practice, most
theories (and all theories actually implemented in SMT solvers) furthermore
have other spectral properties that allow for less restrictive combinations.

When theories are not stably infinite, the spectrum condition of lines 5-6 in
Algorithm 1 becomes important. Indeed, even if both T1∪A∪L1 and T2∪A∪L2

are satisfiable, L1 ∪ L2 may still be T1 ∪ T2-unsatisfiable because the spectra of
the models are disjoint. However, the condition is not directly implementable in
general. In this section, we consider the case of a decidable theory for which the
spectrum is computable. It can then be translated into suitable constraints for
the procedure for the (refutationally complete) theory T2.

Lemma 5. Assume T is a finitely axiomatized theory. There exists a refuta-
tionally complete procedure for T restricted to models of cardinalities belonging
to a given set of the following nature:

1. one or all infinite cardinalities;
2. a finite set of finite cardinalities;
3. all cardinalities larger than a fixed finite cardinality;
4. the complement of a finite set of finite cardinalities.



Function check sat arrangement(A, L1, L2)

1 if A ∪ L1 is T1-unsatisfiable then
2 return unsat;

3 if spectrum(T1 ∪ A ∪ L1) ∩ spectrum(T2 ∪ A ∪ L2) = ∅ then
4 return unsat;

5 return sat;

Algorithm 3: Combination of a decidable theory with a refutationally
complete theory.

It is a decision procedure for the second case.

Proof. It suffices to show that the T -unsatisfiability of a finite set of literals with
the given cardinality constraints can be reduced to checking the unsatisfiability
for another finitely axiomatized theory T ′. The theory T ′ would simply be the
union of T , the set of literals, and a formula encoding the restriction on the
cardinality.

It is easy to restrict the unsatisfiability check to infinite cardinalities, e.g. by
adding a formula of the form

∀x¬R(x, x) ∧ ∀x∃y
(
R(x, y) ∧ ∀z

(
R(y, z)⇒ R(x, z)

))
to the set, where R is a fresh relation symbol. To restrict the unsatisfiability
check to a given finite cardinality n, it suffices to add a constraint of the form∧

1≤i<j≤n

ai 6= aj ∧ ∀x
∨

1≤i≤n

x = ai

where the ai are fresh constants. In fact, checking the satisfiability of a finitely
axiomatized theory with a given finite cardinality is trivially a decidable problem
since there are essentially finitely many interpretations for a finite language with
a given finite domain. For a finite set of finite cardinalities, it suffices to take
the disjunction of constraints for each finite cardinality in the set. Again, this
constitutes a finite set of decidable problems, which is therefore itself decidable.

The third case is simply handled by adding a constraint card≥(n). The com-
plement of a finite set of finite cardinalities is the union of a finite set of finite
cardinalities and all cardinalities larger than a finite cardinality. A suitable con-
straint for the final case is thus the disjunction of a constraint for the third case
and a constraint for the second case. ut

Theorem 6. Assume T2 is a finitely axiomatized theory, and T1 is a decidable
theory for which the spectrum is computable and falls in the cases referred in
Lemma 5. Then T1 ∪ T2 is refutationally complete, and Algorithm 3 yields a
refutationally complete procedure for it. The procedure is decidable in the second
case. It is also decidable in the two last cases if T2 is decidable.



Proof. By the previous lemma, the test at line 3 is implementable by an unsatisfi-
ability procedure that terminates whenever T1∪T2∪A∪L1∪L2 is unsatisfiable.
Furthermore, the test at line 3 is guaranteed to terminate if the spectrum of
T1 ∪ A ∪ L1 is a finite set of finite cardinalities. Finally, in the two last cases,
checking that spectrum(T2 ∪A∪ L2) has a non-empty intersection with a given
co-finite set can be reduced to checking the satisfiability of a finite collection of
sets of literals T2 ∪A∪L2 ∪C where C is a set of literals encoding a constraint
on cardinality; this is decidable if the satisfiability problem for sets of literals in
T2 is decidable. ut

The above conditions on the spectrum of the decidable theories appear reason-
able: the decidable theories considered in combinations of theories usually fall in
one of the categories of the theorem. Gentle theories [6] have a spectrum which
is computable and either a finite set of finite cardinalities or a co-finite set of
cardinalities. Shiny theories [12] have a computable spectrum that falls into case
(3). Linear arithmetic on integers or reals obviously belongs to the first category.

6 Parallel refutation of a union of disjoint theories

In the previous section, we concentrated on combining a decidable theory with
another for which a refutationally complete decision procedure exists. In this
section, we study the combination of two refutationally complete theories, drop-
ping the cardinality requirement imposed in Section 4. In the context of SMT, it
seems fairly natural to restrict our study to theories that can be represented by
a finite number of first-order axioms. These theories not only have well-known
refutationally complete procedures in the form of complete theorem provers for
first-order logic, but it is also decidable if they have a model of a given finite
cardinality. Another property of finitely axiomatized theories that we will use
is the Skolem-Löwenheim Theorem: such theories have either a finite number of
finite models, or they have models for all infinite cardinalities.

Algorithm 4 presents a refutationally complete procedure for the combination
of two disjoint first-order theories. It basically interleaves or parallelizes the run
of both a refutationally complete procedure and a finite model finder for a set of
literals, for T1 and T2. The task of the finite model finder is to check if the set of
literals is satisfiable on a model in the theory with a given finite cardinality. Very
schematically, the finite model finders and the refutationally complete procedures
may not terminate in caseA∪L1 andA∪L2 are respectively T1- and T2-satisfiable
and have no finite model. In such a case they must have infinite models; thanks
to the Löwenheim-Skolem theorems one can ensure that the spectra have a non-
empty intersection and so A ∪ T1 ∪ T2 must be satisfiable.

The difficulties come from the facts that:

– it is necessary to stop and restart the unsatisfiability checker whenever a
model is found for some cardinality. The unsatisfiability checker may run
forever in that case, and it may be required to check if the set is unsatisfiable
for larger cardinalities.



Function check sat arrangement(A, L1, L2)

1 k1 := 1;S1 := ∅;
2 k2 := 1;S2 := ∅;
3 execute in parallel
4 process
5 for ever do
6 k′1 := k1;
7 execute in parallel
8 process
9 while ¬find model(k1, T1,A ∪ L1) do

10 k1 := k1 + 1;

11 process
12 if A ∪ L1 ∪ card≥(k′1) is T1-unsatisfiable then
13 wait k2 ≥ k′1;
14 return unsat;

15 wait;

16 S1 := S1 ∪ {k1};
17 if k1 ∈ S2 then
18 return sat;

19 k1 := k1 + 1;

20 process
21 for ever do
22 k′2 := k2;
23 execute in parallel
24 process
25 while ¬find model(k2, T2,A ∪ L2) do
26 k2 := k2 + 1;

27 process
28 if A ∪ L2 ∪ card≥(k′2) is T1-unsatisfiable then
29 wait k1 ≥ k′2;
30 return unsat;

31 wait;

32 S2 := S2 ∪ {k2};
33 if k2 ∈ S1 then
34 return sat;

35 k2 := k2 + 1;

Algorithm 4: Combination of two finitely axiomatized theories.



– for completeness, it is however necessary to eventually leave the unsatisfia-
bility checker run undisturbed for ever longer periods;

– if one theory is found not to have models with cardinality greater than k,
it is necessary, before returning the answer “unsatisfiable”, to wait for the
other procedure to check all interpretations of cardinality up to k.

The finite model finder is called at lines 9 and 25; find model(k1, T1,A ∪ L1)
returns true if and only if A ∪ L1 has a T1-model of cardinality k1. A call to
the finite model finder should eventually terminate. It is not required for the
unsatisfiability checks at lines 12 and 28 to return, in case the considered formulas
are satisfiable.

The shared variables are k1, k2, S1 and S2. The value of k2 read by the
process for T1 does not have to be up to date. It is however mandatory for the
correctness of the algorithm that the age of the value (i.e. the difference between
the current time and the last time for which k2 had this value for the process for
T2) stays bounded. The symmetric requirement exists for k1. We assume that
there is a critical section wrapping the reading and writing of S1 and S2, and
that both processes have the same view of those variables. The order of lines 16
and 17–18 and of lines 32 and 33–34 matters. A completeness bug would result
from switching those lines.

Theorem 7. Assume T1 and T2 are two disjoint finitely axiomatized theories,
then Algorithm 4 yields a refutationally complete procedure for T1 ∪ T2.

Proof. In the following, the process for T1 denotes lines 5 to 19, and the process
for T2 denotes lines 21 to 35.

It is useful to show that the following invariant properties hold throughout
the execution of the algorithm after the initialization at lines 1-2:

1. I1 : S1∩{k | k ≥ k1} = ∅, at all times except when process for T1 is executing
instructions at lines 16-19

2. I2 : S2∩{k | k ≥ k2} = ∅, at all times except when process for T2 is executing
instructions at lines 32-35

3. I3 : S1 ∩ {1, . . . , k1 − 1} = spectrum(T1 ∪ A ∪ L1) ∩ {1, . . . , k1 − 1}
4. I4 : S2 ∩ {1, . . . , k2 − 1} = spectrum(T2 ∪ A ∪ L2) ∩ {1, . . . , k2 − 1}
5. I5 : S1 ∩ S2 = ∅, at all times except when process for T1 (or T2) is executing

instructions at lines 16-18 (resp. instructions at lines 32-34)

Note that all the above invariants are established by the initialization.
The first two invariants I1 and I2 are fairly easy to prove. To prove I1 notice

that every addition (of k1) to S1 is done at line 16, and immediately followed
(otherwise the function terminates) at line 19 by incrementing k1. Symmetrically
for I2.

For invariant I3, it is sufficient to show that, if the property is true before
executing line 10, it is true after, and if it is true before executing line 19, it
is true after. Adding k1 to S1 (at line 16) cannot modify the truth status of
I1 since S1 ∩ {1, . . . , k1 − 1} does not change. At line 10, k1 is incremented
only if A ∪ L1 does not have any T1-models with k1 elements, i.e. only if k1 /∈



spectrum(T1 ∪ A ∪ L1); thanks to I1, k1 /∈ S1. And incrementing k1 at line 19
is only done if the loop at lines 9-10 terminates, that is, if a T1-model with
cardinality k1 is found for A ∪ L1. Symmetrically for I4.

To show that I5 is true, it is sufficient to consider the group of lines 16–18 and
32–34, where S1 and S2 are modified. Assume I5 holds before executing lines at
16–18, and assume the process for T2 is not running the section between lines 32
and 34. While adding k1 to S1, if k1 also belongs to S2, the function will return
at line 18. The argument is similar for modifications of S2. Notice however that
it is necessary to guarantee that the values of S1 and S2 read by the processes
for T2 and T1 respectively are up to date. Otherwise, the algorithm may “miss”
the check of some cardinality.

As a consequence of invariants I3 and I4, and thanks to Corollary 3, the
algorithm terminates by returning sat only if A ∪ L1 ∪ L2 is indeed T1 ∪ T2-
satisfiable (with a model of finite cardinality).

As a consequence of invariants I3, I4 and I5, it can be deduced at line 14
that the spectra are disjoint. If the algorithm returns unsat at line 14, then
A ∪ L1 ∪ L2 is indeed T1 ∪ T2-unsatisfiable. The discussion is symmetric for
line 30. Thus the algorithm is sound: a returned answer is always correct. It
remains to show that the algorithm is complete, that is, it eventually terminates
if T1 ∪ T2 ∪ A ∪ L1 ∪ L2 is unsatisfiable.

We prove termination by contradiction, and assume the function never ter-
minates, although the spectra for T1 ∪ A ∪ L1 and T2 ∪ A ∪ L2 are disjoint.
Remember the Löwenheim-Skolem Theorem that states that a finitely axiom-
atized theory with (a) an infinite spectrum has models of all infinite cardinal-
ities; (b) an infinite model has models for every infinite cardinality. Thus, if
spectrum(T1 ∪ A ∪ L1) and spectrum(T2 ∪ A ∪ L2) are disjoint, at least one of
those sets must be a finite set of finite cardinalities. Assume without loss of gen-
erality that spectrum(T1 ∪ A ∪ L1) is finite. Then, there exists some k (assume
k is the smallest integer) such that spectrum(T1 ∪ A ∪ L1) ∩ {k′ | k′ ≥ k} = ∅,
that is, such that A ∪ L1 ∪ card≥(k) is T1-unsatisfiable.

Notice that if T1 ∪ A ∪ L1 has a model of finite cardinality k − 1 then k1
will eventually reach k (provided the finite model finder at line 9 is terminat-
ing). After that, the process for T1 will let the finite model finder run forever
searching for non-existent models of cardinality greater than or equal to k, while
in the meantime, the refutationally complete procedure at line 12 for the T1-
unsatisfiability of A∪L1∪ card≥(k′1) will run undisturbed (that is, will never be
killed) for the amount of time necessary for it to terminate. The process for T1
will eventually reach line 13. If spectrum(T2 ∪A∪L2) is infinite, k2 will grow to
infinity and will eventually be greater than k′1. The waiting process for T1 will
eventually be leaving the waiting state and return unsat.

Notice (symmetrically as before) that if T2 ∪ A ∪ L2 has a model of finite
cardinality then k2 will eventually reach and overstep this cardinality (provided
the finite model finder at line 26 is terminating). If spectrum(T2 ∪ A ∪ L2) is
finite, and if its maximal element is greater or equal than the value k′1 reached
by process T1 on the waiting state, the waiting process for T1 will eventually be



leaving the waiting state and return unsat. The case where its maximal element
is strictly smaller than value k′1−1 does not need to be considered, by symmetry.

Let us consider finally the degenerated case for which both spectra have
the same maximal value, and thus k′1 = k′2, and suppose that both processes
are waiting, at instruction 13 and 29 respectively. k′1 and k′2 must then both
be strictly greater than 1. This cannot happen: spectrum(T1 ∪ A ∪ L1) should
contain k′1−1 and spectrum(T2∪A∪L2) should contain k′2−1, i.e. k′1−1, which
contradicts invariant I5. ut

Algorithm 4 eventually terminates if A∪L1∪L2 is T1∪T2-unsatisfiable, or if
A∪L1∪L2 is T1∪T2-satisfiable in a finite model. It is both a complete refutation
procedure and a finite model finder.

7 Conclusion

We studied two cases of refutationally complete combination of disjoint the-
ories. In the first case, we considered combining a decidable theory with an
arbitrary finitely axiomatized theory. In the second, we provided an algorithm
to combine two finitely axiomatized theories. Both these algorithms are not yet
efficiently implemented and would require further techniques and heuristics to
be turned into useful solvers. Just as in the case of decidable theories, it is not
realistic to consider every arrangement separately: techniques developed for the
combination of decision procedures — e.g. cooperation by equality exchange,
or delayed theory combination (see e.g. [2]) — will have to be transposed, but
will require further research since it can not be expected that the components in
the combinations will eventually terminate. Similarly, the negotiation of suitable
cardinalities will require specific methods and heuristics.

Bonacina et al. [4] show that, in the case of decidable and universal finitely
axiomatized theories, it is possible (and sufficient for some combinations) to ex-
tract cardinality constraints from the saturation of a superposition solver. We
here considered refutationally complete procedures as black boxes, but, among
the potential heuristics to make the approach work in practice, one could con-
sider extracting cardinality hints from the saturation provers, to improve the
cardinality negotiation in Algorithm 4.

In [14], tableaux are used to combine in a refutationally complete way two
theories sharing a dense order. In this case, the difficulty of the combination does
not lie in the agreement on cardinalities (since both theories can only have infinite
models), but in the non-disjoint signature containing this order predicate. As an
extension of the present work, it would be interesting to find practical ways to
combine loosely connected rather than disjoint theories, such as theories sharing
a few unary predicates.

Acknowledgment. We would like to thank Christophe Ringeissen and Michaël
Rusinowitch for pointing out some related works. We also thank the anonymous
reviewers for their comments.



References

1. E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo linear arith-
metic sup(la). In S. Ghilardi and R. Sebastiani, editors, FroCoS, volume 5749 of
LNCS, pages 84–99. Springer, 2009.

2. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. IOS Press, Feb. 2009.

3. P. Baumgartner and C. Tinelli. Model evolution with equality modulo built-in
theories. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE, volume 6803
of LNCS, pages 85–100. Springer, 2011.

4. M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decidability
and undecidability results for Nelson-Oppen and rewrite-based decision procedures.
In U. Furbach and N. Shankar, editors, IJCAR, volume 4130 of LNCS, pages 513–
527. Springer, 2006.

5. M. P. Bonacina, C. Lynch, and L. M. de Moura. On deciding satisfiability by
DPLL(G+t) and unsound theorem proving. In R. A. Schmidt, editor, CADE,
volume 5663 of LNCS, pages 35–50. Springer, 2009.

6. P. Fontaine. Combinations of theories for decidable fragments of first-order logic.
In S. Ghilardi and R. Sebastiani, editors, FroCoS, volume 5749 of LNCS, pages
263–278. Springer, 2009.

7. P. Fontaine and E. P. Gribomont. Combining non-stably infinite, non-first order
theories. In W. Ahrendt, P. Baumgartner, H. de Nivelle, S. Ranise, and C. Tinelli,
editors, Selected Papers from the Workshops on Disproving and the Second Inter-
national Workshop on Pragmatics of Decision Procedures (PDPAR 2004), volume
125 of ENTCS, pages 37–51, July 2005.

8. Y. Ge and L. M. de Moura. Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In A. Bouajjani and O. Maler, editors, CAV, volume
5643 of LNCS, pages 306–320. Springer, 2009.

9. G. Nelson and D. C. Oppen. Simplifications by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, Oct. 1979.

10. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In F. Baader and K. U. Schulz, editors, FroCoS, Applied
Logic, pages 103–120. Kluwer Academic Publishers, Mar. 1996.

11. C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations
of satisfiability procedures. Theoretical Computer Science, 290(1):291–353, Jan.
2003.

12. C. Tinelli and C. G. Zarba. Combining non-stably infinite theories. Journal of
Automated Reasoning, 34(3):209–238, 2005.

13. T. Wies, R. Piskac, and V. Kuncak. Combining theories with shared set operations.
In S. Ghilardi and R. Sebastiani, editors, FroCoS, volume 5749 of LNCS, pages
366–382. Springer, 2009.

14. C. G. Zarba, Z. Manna, and H. B. Sipma. Combining theories sharing dense or-
ders. In TABLEAUX, Position Papers and Tutorials, pages 83–98, 2003. Technical
Report RT-DIA-80-2003.


