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Abstract. The control part of many concurrent and distributed pro-
grams reduces to a set I = {p1,...,pn} of symmetric processes contain-
ing mainly assignments and tests on Boolean variables. However, the as-
signments, the guards and the program invariants can be IT-quantified, so
the corresponding verification conditions also involve IT-quantifications.
We propose a systematic procedure allowing the elimination of such
quantifications for a large class of program invariants. At the core of
this procedure is a variant of the Herbrand Theorem for many-sorted
first-order logic with equality.

1 Introduction

At the heart of concurrent software are control-intensive concurrent algorithms,
which solve a large class of problems, including mutual exclusion, termina-
tion detection, reliable communication through unreliable channels, synchronous
communication through asynchronous channels, fault tolerance, leader election,
Byzantine agreement, concurrent reading and writing, and so on. (See e.g. [8,
25] for many examples, with comments and formal or informal proofs). Many of
those systems are composed of a parameterized number of identical processes or
nearly identical processes'. Most variables are Booleans or arrays of Booleans,
and operations on the remaining variables are elementary. The verification of
such parameterized concurrent systems is the subject of many recent papers [1,
4,7,11,17,23,24, 31].

Requirements of such algorithms usually fall in safety properties (“something
bad never happens”) and liveness properties (“something good eventually hap-
pens”). It is often possible to view a liveness property as the conjunction of
a safety property and a fairness hypothesis (“progress is made”) so, in prac-
tice, the verification of safety properties is the main part of formal methods and
tools. The classical invariant method allows to reduce the verification of safety
properties to the validity problem for first-order logic. It could happen that the
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! for example a process can compare its identifier with the identifier of another process.
This somewhat breaks symmetry.



formula to be proved belongs to a well known decidable class (for instance, Pres-
burger arithmetic), but this is rarely the case because Boolean arrays (modeled
by uninterpreted predicates) are often used in these algorithms, together with
interpreted predicates?.

Quantifier-free first-order logic satisfiability checking is decidable for a very
wide range of formulas with non-interpreted and interpreted predicates and func-
tions. Thus decidability is often reached through quantifier elimination. We in-
troduce here a simple quantifier elimination method for a large class of verifi-
cation conditions. It is based on a many-sorted logic with equality variant of
the Herbrand Theorem which allows to have some kind of finite model property
[12] even when some functions (interpreted or not) and interpreted predicates
are used in formulas. We then give criteria for verification conditions to benefit
from this property. Those criteria allow to eliminate quantifiers in the proof by
invariant of many reactive algorithms, and particularly for parameterized algo-
rithms, leading to a powerful invariant validation procedure. It allows to reduce
the invariant validation for a system with a parameterized number of processes
to the invariant validation for a system with a known number of processes ng
(Theorem 2). Our method can be seen as an extension of the invariant validation
procedure presented in [3]: our approach does not restrict the use of functions
and predicates to unary ones, and is not restricted to bounded variables.

Our implementation has given good results on several algorithms; in partic-
ular, it has been successful in proving all verification conditions for a parame-
terized railroad crossing system [21] used as benchmark for STeP, whereas STeP
itself requires interactive verification for some of them [6].

We first present our variant of the Herbrand Theorem. Next, this variant is
used to eliminate the quantifiers in verification conditions from invariant valida-
tion of parameterized systems. Last, two examples are presented.

2 Herbrand on many-sorted logic

In this section, Theorem 1 and its context is introduced. This theorem will
be used to eliminate quantifiers in verification conditions, which will lead to
Theorem 2.

A many-sorted first-order language (a more complete introduction to many-
sorted logic can be found in [13]) is a tuple £ = (T,V, F,P,r,d) such that 7
is a finite set of sorts (or types), V is the (finite) union of disjoint finite sets
V; of variables of sort 7, F and P are sets of function and predicate symbols,
r (FUP — IN) assigns an arity to each function and predicate symbol, and d
(FUP — T*) assigns a sort in TN+ to each function symbol f € F and a sort
in 77(®) to each predicate symbol p € P. Nullary predicates are propositions,
and nullary functions are constants.

The sets of 7-terms on language £ contain all variables in V;, and for every
function symbol f € F of sort (m,...7,,7), f(t1,...t,) is a 7-term if ¢1,... ¢,
are 71, ... To-terms respectively. Sort(t) = 7 if ¢ is a 7-term.

2 Presburger with (unary) uninterpreted predicates is undecidable [20].



An atomic formula is either ¢ = ¢’ where t and ¢’ are terms of the same sort, or
a predicate symbol applied to arguments of appropriate sorts. Formulas are built
(as usual) from atomic formulas, connectors (-, A, V, =, =), and quantifiers (V,
3). The set of all variables used in formula @ is noted Vars(®), and Free(®P) is
the set of all free variables in @. A formula @ is closed if Free(®) = ). A formula
is T-universally quantified if it is of the form Vax ¥ with z a variable of type 7.

A formula is in prenex form if it is of the form Qiz1...Qnz,(P) where
Q1,..-Qn € {3V}, 21,...2, € V, and P is quantifier-free. A formula is in
Skolem form if it is in prenex form without existential quantifier.

A (normal) interpretation of a formula on a many-sorted first-order language
L=(T,V,F,P,rd)isapair T =(D,I) where

— D assigns a non-empty domain D, (set) to each type 7 € 7. Those sets are
not necessarily disjoint;

— I assigns an element in D, to each variable of sort 7;

— I assigns a function D, x...D, — D, to each function symbol f € F of
SOTt (T1, ... Tn,y T);

— T assigns a function D, x... D, — {T, L} to each predicate symbol p € P
of sort (71,...7n);

— the identity is assigned to the equality sign (=).

T assigns a value in D, to every 7-term t. This value is noted Z[¢]. Similarly,
interpretation Z assigns a value in {T, L} to every formula @, which is noted
Z[®]. An interpretation Z is a model for formula @ if Z[@] = T. A formula is
satisfiable if there exists a model for it.

Given an interpretation Z, the congruence Cz = = {(t;,t}) | Z[t:] = Z[t}]}

is a reflexive, symmetric and transitive relation on the set of terms of language
L. This relation is important for the proof of the following theorem.

Theorem 1. Given

— a closed formula S in Skolem form on the language L = (T,V,F,P,r,d);
— 7 €T such that there is no function symbol f € F of sort (T1,...Tn, T) with
n>0,7,...7n €7T;

the set H. is the set of constant symbols of sort 7 (H, = {c € F|d(c) = 7}).
If {ce F|d(c) =7} =0, then H. = {a}, where a is an arbitrary new constant
symbol such that a ¢ F and a ¢ V.

For every model T = (D, I) of S, there is a model T' = (D', I') such that

— D! is the quotient of the set H, by congruence Ct —;

— D!, =D, for every 7" # T;

— Z'[f] = Z[f] for every function symbol f € F of sort (t1,...Tn,T') such that
MET,... T Z7,7 £7 (n>0);

— Z'[p] = Z[p] for every function symbol p € P of sort (11,...7Tn) such that
MET,... Tn#7 (n>0).

Proof. Interpretation Z’ is built from Z:



— for every constant symbol ¢ of sort 7 in F, I'[c] is the class of ¢ in D,;

— for every function symbol f € F of sort (ry,...7,,7) (n > 0), and every
dy € D ,...d, € D, I'lf](d},...d,,) = I[f](d,...dn) where d; = dj if
7 # 7. =7, d; =1(d) where d} is any element of the class d, € D;

— for every predicate symbol p € P of sort (11,...7,), and every elements
dy € D ,...d, € D, I'lpl(dy,...d},) = Ip|(ds,...d,) where d; = dj if

7 # 1. =71, d; = I(d]) where d} is any element of the class d; € D.

It remains to show that Z’ is a model of S. Let us first introduce a notation:
given an interpretation J = (D, J), the interpretation 7, /4, ...z, /d, = (D,J’)
(where x1, ..., are variables) is such that J' [z;] = d, for every x; € {x1,...2,}
and J' [t] = J[t] if t & {x1,... 20}

Formula S is of the form Vzy ...V, (®). Thus for all elements d}, . ..d] such
that d} belongs to D’, if x; is a variable of sort 7/, the following equality hold:

T o jdan)d, |9 = Loy s, jd [P

with d; = 7 [d]] where d is any element of the class d; € D/ if x; is of sort T,
d; = d. otherwise.
Interpretation Z is a model of formula S, that means Z,, /4, .0, /d, [P] = T

for all elements dy, .. .d, where d; belongs to D, if x; is a variable of sort 7. It
follows that I/ml/d’l,...mn/d;l [@] = T for all elements df, . .. d,, such that d} belongs
to D!, if x; is a variable of sort 7. So Z’ is a model of S. O

This theorem is not exactly an extension of the Herbrand theorem to many-
sorted first-order logic. It is stronger than the Herbrand theorem (see for example
[14] for the standard Herbrand theorem, or [16] for a version with equality) in
the sense that the domain does not necessarily become infinite in the presence
of functions. On the other hand, its restriction to one-sorted first-order logic
gives back the Herbrand theorem, but restricted to the finite Herbrand universe
case. Nevertheless this case is the most interesting one: having a finite domain
means that quantifier elimination is possible. Consider the simple (unsatisfiable)
formula

Vivi[f (i) > g (] A gla) =3 A Fi[f (i) <4 (1)

where “<” and “>” are the usual order predicates on IN x IN. Variables ¢ and j
and constants a and b are of sort 7 # IN whereas f and g are functions from 7 to
IN. In this context, the preceding theorem states that formula (1) is satisfiable if
and only if formula

fla)>g(a) A fla)>g(b) A f(b)>g(a) A f(b)>g(b)
ANgla)=3 A f(b) <4

is. This last formula belongs to the decidable class of quantifier-free first-order
logic with linear arithmetics on IN and uninterpreted function symbols.

Corollary 1. A 7-universally quantified formula Ya ®(x) verifying the condi-
tions of Theorem 1 is satisfiable if and only if the finite conjunction )\ ..y P(c)
18.



3 Interpreted predicates and functions

A formula containing interpreted predicates and functions is satisfiable if and
only if it has a model in a restricted subset of all interpretations, that is the set
where interpretations associate a fixed domain to given sorts and a fixed meaning
to those interpreted predicates and functions. In Theorem 1, both interpretations
7 and T’ associate the same domain to every sort but 7, and give the same mean-
ing to every predicate and function, provided none of their arguments is of sort 7.
In other words, Theorem 1 is compatible with the use of interpreted predicates
and functions provided none of their arguments is of sort 7. For instance, in the
preceding example (i, j and a are of sort 7) the arguments of the order predicates
(f(2), g(4), ...) are not of the sort 7. Using Theorem 1, interpretation Z and Z'
are such that Z[<] = Z’[<] and Z[>] = Z’[>]. And this allows to eliminate the
quantifiers on the sort 7 in presence of interpreted predicates with no argument
of sort .

But it is also possible to use order predicates on the sort of quantified vari-
ables. Let ¢ be a formula with order predicates (“<”,...) on sort 7, and ¢ be
the conjunction of the axioms of total order theory,

Y= Va(r<x)
AVaVy ((z <yAy<z)=ax=y)
AVzVyVz (x <yAy<z)=x<2)
AVa¥y (z <yVy < x)

with variables x,y, z of sort 7. An interpretation is a model of ¥ A ¢ if and only
if it is a model of ¢ interpreting “<”, ... as the usual order predicates on D..
Putting ¥ A ¢ in Skolem form does not introduce new Skolem functions. The
conditions of Theorem 1 are met for ¢ A ¢ if they are met for ¢. Theorem 1
can be applied also if some comparisons are made between terms of the sort of
quantified variables3.

4 Quantifier elimination in invariant validation

In order to verify that the assertion H is an invariant of the transition sys-
tem S, one has to validate the Hoare triple { H }o{ H} for each transition* o € S.
This is first reduced to first-order logic proving, using Dijkstra [9] weakest pre-
condition (wp) operator: Hoare tripe {H}o{H} is valid if and only if formula
H = wplo; H] can be proved. Weakest precondition calculus is easy, provided

3 Asin [3], “+1” and “@1” functions can sometimes be eliminated without introducing
new Skolem functions, by noticing that h =i+ 1 «—— i < hAVj(j <iVh <j) and
h=i®1l—[i<hAVj({<iVRAZHIVh<iAVjh<jVvi<i).

4 An example of transition is (so[p]so[q], C — A, s1[p]s1[q]) which allows the processes
p and q to go from control point so to control point s1, executing the statements in
A. The system transition can be executed from a state where formula C' (the guard)
is fulfilled.



transitions do not contain full loops in their statement part. The weakest precon-
dition module in CAVEAT accepts assignments, conditional statements, sequences
of statements, and some kind of quantified assignments. This is enough to model
reactive algorithms from coarse to fine-grained versions.

In general, the invariant is a conjunction (H = A\, hx) of relatively small
assertions hy. In parameterized systems, these assertions are often quantified over
the (parameterized) set of processes. In order to avoid the appearance of Skolem
functions when verification conditions are put in Skolem form, an assumption
is made about these quantified assertions: they can be put both in prenex form
V> (called hypothesis form in the following, because this will be the allowed
form in the antecedent of formulas of the form A = B) and in prenex form v*3*
(called conclusion form in the following, because this will be the allowed form in
the conclusion of formulas of the form A = B). In practice, two particular cases
of such formulas are met frequently:

— formulas in prenex form containing one type of quantifier;
— formulas containing only monadic predicates (and no equality)>.

There is also an assumption for guards : guards must be formulas in hypothesis
form. Guards met in practice fulfill this assumption as they are quantifier-free
formulas or singly quantified formulas.

Taking the preceding conditions on quantifiers into account, proving formula
H = wplo; H] (with H = ¢ hx) reduces to prove a set of formulas (called
verification conditions) of the form

(hi A...he AG) = Cj

where G is the guard of ¢. All formulas h;...h;, G are in hypothesis form.
There is one verification condition for each hy (k € K). Formula Cj, comes from
hypothesis hy: Cr, = wp [A; hg], where A is the statement part of o. Cj can be
put in conclusion form: indeed, hj can be put in conclusion form, and the weakest
precondition operator does not modify the quantifier structure of a formula, in
the language accepted by CAVEAT.

The last requirement is about functions: we require that no function used in
the invariant H, or in the transition system S has the process set as domain. This
may seem rather restrictive, but as reactive algorithms mainly use Boolean arrays
(modeled by predicates, not functions), this requirement remains acceptable in
practice.

Under those conditions, Theorem 1 can be used to eliminate the quantifiers:

Theorem 2. If H is a conjunctive formula, and X is a transition system with
a parameterized number n of processes, where

— all quantified variables in H and in the guard of the transitions of X range
over the set of processes;

5 Indeed every monadic formula is logically equivalent to a Boolean combination of
Skolem forms with one quantifier. So every monadic formula can be put in both
hypothesis and conclusion forms.



— every conjunct in H can be put both in hypothesis form (3*V*) and in con-
clusion form (V*3%);

— every transition guard can be put in hypothesis form;

— no interpreted predicate other than equality and order is used on the set of
processes, neither in H nor in X;

— no function has the process set as domain, neither in H nor in X;

then H is an invariant of X if and only if H is an invariant of the system X’
with at most ng processes, where ng is the sum of

— the number of existential quantifiers in H when put in hypothesis form;

— the mazimum number of existential quantifiers in guards of transitions in X;
— the mazimum number of universal quantifiers in the conjuncts of H, when
put in conclusion form;

the number of constants in H;

— the mazimum number of processes taking part in a transitionS.

Proof. Indeed from the theorem conditions, every verification condition is of the
form

(hl/\hk/\G):>C

where formulas hq, ... hg, G are in hypothesis form, and C is in conclusion form.
When put prenex form, this formula is of the form

V... Vep3yr ... 3yg (1, - Tpy Y1y - - - Yg)s (2)
where p is the number of existential quantifiers in Ay A. .. hy AG plus the number

of universal quantifiers in C. Otherwise stated, p cannot exceed the sum of

— the number of existential quantifiers in H (h1A. .. hy) when put in hypothesis
form;

— the maximum number of existential quantifiers in guards (G) of transitions
in X

— the maximum number of universal quantifiers in the conjuncts (hy from
which C is computed) of H, when put in conclusion form.

Formula (2) is provable if and only if formula

Azr ... Fxp,Vyr .. VY (1, - Tp, Y1, - Yg) (3)

is unsatisfiable or, using Skolemization, if and only if formula

Yyi ... Vyg—p(ar,...ap,y1, .. Yq) (4)
is unsatisfiable, where a1,...qa, are Skolem constants, i.e. constants which do
not appear in ¢(z1,...Zp, y1,...Yq). Using Theorem 1, formula (4) is satisfiable

if and only if there is a model with a finite process set, which contains all process
constants in ¢(ai,...ap, Y1, .. Yq), including a,...ap. So ng is the sum of

6 usually at most two.
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— the number of constants coming from H in ¢;

— the maximum number of constants coming from the transitions through G
and C, which is the maximum number of processes involved at the same
time in a transition.

O
Comment. The satisfiability problem for the Schonfinkel-Bernays class, that is,
the class of function-free first-order formulas of the form

g .. FepVyr . Vyg (T, o Tp, Y1,y - - - Yg)s

has first been shown to be decidable by Bernays and Schonfinkel without equality
[5] and by Ramsey with equality [29]. Theorem 1 extends this decidable class
to allow the use of some functions (interpreted or not) and some interpreted
predicates.

Corollary 2. When conditions of Theorem 2 are met, checking if X preserves
the invariant H is reduced to a quantifier-free first-order logic satisfiability check-
ing problem.

The quantifier-free satisfiability checking module [15] in CAVEAT is based
on a modified version of the Nelson-Oppen algorithm [26,27]. It accepts linear
arithmetic, as well as uninterpreted predicates and functions. When Theorem
2 applies, and when the quantifier-free formulas use only linear arithmetic, and
uninterpreted predicates and functions, the invariant validation problem is de-
cidable. This is the case for numerous algorithms. In the next section a simple
one is presented.

5 Parameterized Burns algorithm

In this well-known simple example only one type of variable is used. Theorem 1
thus reduces to the Herbrand theorem (with equality, without functions). This
simple example allows to clearly exhibit the underlying fact which enables quan-
tifier elimination: a finite Herbrand universe.

Burns algorithm [22], [25, p. 294] guarantees exclusive access to a critical
section for a set of n identical processes. Each process p can be in one of six
different location states (i.e. sg...s5). A rule expresses the trivial property that
each process is in one and only one state at each time: one and only one variable
in so[pl,- - ., s5[p] is true (for each p). A process p being in s5 (i.e. s5[p] is true)
is in the critical section.

Twelve transitions are possible between the six states:

(so[p] flag[p]:=false, sl[p])

(31 [pl,~Sp,q] N ¢ <p A flagl[g] — Vq: S[p, q]:=false, so[p])
(s1lp], =S[p,q] A g <p A —flaglg] — S[p,ql:=true, si[p])
(s1[p),Va(qa < p = Sp,ql) — Va: S[p, q):=false, s2[p])



s2[p], flag[p]:=true, 53[p])

salpl, ~S[p,q] A ¢ <p A flaglg] — Vq: S[p,ql:=false, so[p])
salpl, ~S[p,q] A ¢ <p A —flaglg] — Slp, gl:=true, s3[p])
ss[p],Va(q < p= S[p,q]) — Vaq: S[p, ql:=false, sa[p])

safpl, ~S[p,q] A p<q A flaglg] — Vq: S[p, ql:=false, s4[p])
sa[pl, ~S[p,q] A p < g A —flaglg] — S[p,ql:=true, safp])
sa[pl,Va(p < ¢ = Slp,q]) — Vq: S[p, qJ:=false, s5p])

ss[p], flag[p]:=false, so [p])

N N N N N N N

Mutual exclusion is obtained using two waiting rooms (s3 and s4). The first
one ensures that when a process p has reached s4, any other process ¢ with
q < p and flag[g] = true (trying to get access to critical section, or in the
critical section) has gone through transition so — ss after p. The second waiting
room guarantees that this process g (with ¢ < p) will be blocked in s4 at least
until p resets flag[p] to false. Only the highest process (the one with the highest
identifier) will thus get access to critical section”.

The algorithm uses one single-writer shared register per process: flag[p] is set
to true by process p when it wants to access to critical section. Each process
p also uses a local array variable S[p]. This variable is used in three loops (s1,
3, s4). In the loops for process p the value of the flag[g] variable of the other
processes ¢ is checked (processes ¢ such that ¢ < p or ¢ > p). S[p] is used to keep
track of processes already checked and those which still have to be checked. The
algorithm makes also extensive use of a total order relation between processes.

Formula H =q4e¢ Vp H1(p) AVpVq [Ha(p,q) A Hs(p, q)], with

H(p) =aet —flag[p] = (so[p] V s1[p] V s2[p])
Ha(p, q) =det s2[p] = —S[p, q]
Hs(p,q) =aer [¢ <p A flaglg] A (ss[p] v salp] V (s3[p] A Slp,q))) |
= [-ss[a] A —~(sala) A S[a, p))]

is an invariant. It entails® the mutual exclusion property:

VpVa[p # q = (=sslp] V —ss[q))].

Every condition is met for Theorem 2 to be used. Indeed:

— no function (at all) is used;

— every guard is in hypothesis form. In fact, every guard is at most once quan-
tified;

7 Access to critical section will be easier for processes with high identifiers. This algo-
rithm does not guarantee high-level-fairness.

8 together with the rule which expresses the fact that each process is in one and only
one state at a time.



— the invariant is a conjunction of formulas which are in both hypothesis and
conclusion form, as they are universally quantified;

— the only interpreted predicates are equality and order; objects compared
belong to a finite, but parameterized, domain: the set of processes.

From Theorem 2, if H is an invariant of this algorithm for ng = 4 processes then
H will be an invariant of this algorithm for any number of processes.

Let’s see how this work for a given verification condition: if H is an in-
variant, it is preserved by every transition, and in particular, by transition
01—2 from s; to so. Hoare triple {H}o1_2{H} must be provable, so must be
{H}o1-2{Vp Hi(p)}, {H}o1-2{YpVq Ha(p,q)} and {H }o1-2{YpVq H3(p,q)}.
In particular, from {H }o1_,2{Vp¥qgH2(p, q)} comes the verification condition

gﬁzdef(h1/\hg/\hg,/\gl/\gg/\l1/\12/\l3/\l4/\l5)=>c
with

— h1 =qet Vp H1(p)
— hy =get VpVq Ha2(p, q)
— h3 =qet VpVq H3(p,q)
— g1 =def Sl[p]
— g2 =aet Yq[q < p = S[p, q]
— 11 =det Vp[s0[p] = —(s1[p] V s2[p] V s3[p] V sa[p] V s5[p])]
— Iy =qet Vp[sl[p] = —(s2[p] V s3[p] V s4[p] V 35[pm
Fz [P} [P})\]/ s5(p))]

V ss[p

— I3 =det YD = —(s3[p] V s4
— 1y =def VD :>_‘84[ ]
— 5 =des Vp[sa[p] = —s5(p]]
— C =gef VSVT[(S #p=s2s]) = (s#p A 5[5,7‘])]

Hypotheses h1 2,3 come from the invariant, g; o from the transition guards®. For-
mulas 1, 5 state that each process is in one and only one state. The conclusion
C' is the result of applying the weakest precondition operator, i. e.,

C = wp [Vq : S[p, q]:=false; s [p] := false; sa[p] := true; VpVq Ha(p, q)]

Every formula from h; to 5 is in hypothesis form, and C'is in conclusion form.
The Herbrand universe for the negation of this verification condition contains
four elements (p, ¢, and the new constants coming from the Skolemization of C).
Every universal quantifier in hypotheses will then give rise to four instances, for
a total of 61 hypotheses'®

CAVEAT took 5 seconds on a Pentium 1 GHz, to generate and verify 40
verification conditions. This includes the time to verify that the invariant entails
the mutual exclusion property, and also that the invariant is made true by initial
conditions.

% g1 comes from the origin of the transition. Transition (I1,C — A,l2) with origin I
and destination l2 can be written as transition ((CAl1) — A; 11 := false; l2 := true).

9 each formula hi, go, l1..5 generates four instances, whereas formulas hs and hs
generate 16 instances. The 61st hypothesis is g;.



6 Generalized Railroad Crossing

The Generalized Railroad Crossing benchmark [21] uses predicates and functions
from arithmetic. It gives a general idea of what Theorem 1 allows to deal with.

A controller operates on a gate of a railroad crossing protecting N parallel
railroad tracks. The gate must be down whenever a train takes the intersection,
so that the intersecting road is closed. Each of the N trains can be in three
different regions: in the intersection (I), in the section preceding the intersection
(P), or anywhere else (not_here). The array variable “trains” records the position
of each train: trains[i] can be one of the three values I, P,not_here. The gate can
be in four states: the value of variable “gate” can be down, up, going_down or
going_up, with obvious meanings. The system should verify the safety property,
which expresses the fact that the gate must be down when any of the N trains
is passing the intersection:

Vi (trains[i] = I = gate = down).

The gate takes some time to go from the state “up” to “down”. This time
must not exceed “gateRiseTime”. Similarly the time to go from the “down” to
the “up” states must not exceed “gateDownTime”. Trains getting in P would
take a minimum time “minTimeTol” and a maximum time “maxTimeTol” to get
to the intersection. It is the controller job to know when to lower the gate, and
when to raise it. Initially, the gate is up, and no train is either in the intersection
or in the section preceding the intersection.

The system transitions are given on Figure 1. The first three transitions
model the position changes of the train i. The two following ones express the
controller decision to lower or raise the gate. The next two mean the gate reaches
the up or down states. The last one models the time flow.

Only two transition guards are not quantifier-free. But they can easily be put
in prenex form with a single quantifier. Functions are used (trains, firstEnter,
lastEnter, schedTime, +) but they do not range over the process set. All require-
ments are thus met for Theorem 2 to be used, as long as the invariants to be
checked also verify the requirements about quantifiers.

Figure 2 shows several invariance properties of the system. Together with the
safety property, they give an invariant for the system. As the safety property is
one conjunct of the invariant, it is trivially entailed by the invariant. In order
to validate the invariant, it is necessary to take into account the constraints
on constants (Figure 3) as well as the progress axioms!! (Figure 4). They are
supplementary hypotheses to be put in the verification conditions.

In the whole proof, only two properties (or guards) are existentially quan-
tified, properties are at most once quantified, and at most one train take part
in a transition. From Theorem 2, if the invariant (which guarantees that the
algorithm is safe) is preserved for four trains, the algorithm will be safe for any
number of trains.

1 For example, progress axiom P; states that the train does not stay indefinitely in
section P before going in I.



(trains[i] = not_here — begin
trains[i] ;= P;
firstEnter[i] := T' + minTimeTol,
lastEnter[i] := T" + maxTimeTol,;
schedTimel[i] := T + conMinl;
trainHere[i] := true
end)

(trains[i] =P A T > firstEnter[i] — trains[i] := ])
(trains[i] =1 — begin trains[i] := not_here; trainHere[i] := false end)

( (gate = up V gate = going_up) A gstatus = up
A Fi (trainHere[i] A schedTime[i] < T 4+ Ydown + 5)
— begin
gate = going_down;
lastDown := T' 4 gateDownTime;
gstatus := down
end)

( (gate = down V gate = going-down) A gstatus = down
AVi (trainHere[i] = schedTime[i] > T 4 Ydown + Yup + carPassingTime)
— begin
gate := going_up;
lastUp := T + gateRiseTime;
gstatus := up
end )

(gate = going_up — gate := up)
(gate = going_.down — gate := down)

(T:=T+¢)

Fig. 1. The transitions modeling the General Railroad Crossing system



Ty =qet Vi (T < firstEnter[i] = trains[i] # 1)

T> =get Vi (trains[i] =P=
(firstEnter[i] < T+ minTimeTol A T < lastEnter[]
AlastEnter(i] — firstEnter[i] = maxTimeTol — minTimeTol))

C1 =det gstatus = up = Vi (trainHere[i] = T < schedTime][i] — 'ydown)
GC1 =4ef gstatus = down = (gate = goingDown V gate = down)

GC5 =4ef gstatus = down = lastDown < T' + gateDownTime

GC'3 =ge gstatus = up = Vi (trainHere[i] = lastDown < schedTime [z])
TCr =det Vi (trainHere[i] = trains[i] # notHere)

TCy =get Vi (trainHere[i] = schedTimel[i] < ﬁrstEnter[i])

Fig. 2. Invariance properties

AC1 ‘= Ydown < conMinl
ACT, := conMinl < minTimeTol
AGC; := gateDownTime < Ydown

AGC3 := gateRiseTime < yup

Fig. 3. Constraints on constants

G1 =der gate = goingDown = T < lastDown
G2 =der gate = goingUp = T < lastUp
Py =ger Vi (trainsi] = P = T < lastEnter][s])

P, =ger gstatus = up = Vi (trainHere[i] = T < schedTimel[i] — 'ydown)

P3 =gcr gstatus = down =
EN (trainHere[i] A schedTimeli] < T + ~yup + carPassingTime + ’Ydown)

Fig. 4. Progress axioms



CAVEAT took 87 seconds to generate and verify the 221 verification conditions
necessary to prove the safety property.

7 Conclusions and future work

The invariant validation process often has an interactive part as well as an au-
tomatic part [6,30]. This interactive aspect (even if it is often easy) makes the
proof process longer and tedious. This work is one step further to make the proof
by invariants more applicable, either as a method by itself, or as an element of
an automatic verification process.

The verification conditions obtained in the context of verification of parame-
terized algorithm are often quantified over the set of processes. We have presented
here a quantifier elimination procedure based on an enhanced Herbrand Theo-
rem, an adaptation of the classical Herbrand Theorem to many-sorted logic with
equality. This quantifier elimination procedure is suitable for a large class of veri-
fication conditions including formulas coming from verification of parameterized
systems. It has been successfully applied to the invariant validation for several
algorithms included the bakery algorithm (with or without bounded tickets), a
railroad crossing system, Burns, Dijkstra, Ricart & Agrawala, Szymanski. .. As
the quantifier-free validity problem is usually decidable, this quantifier elimina-
tion procedure is a key to automatic validation of invariants.

With bigger algorithms, instantiation itself may become a problem. Finding
simple and effective heuristics to selectively instantiate formulas is also in our
concern. A rigorous hypothesis selection and elimination method has already
been found in the pure propositional case [19], and the results are promising.
We plan to adapt it to the present framework.
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