
An efficient space partitioning technique based on linear kd-trees for
collision culling

Abstract We present an efficient “broad phase” algorithm for selecting candidate collision pairs in
N-body simulation. As our technique is derived from kd-trees, we first introduce some background kd-
tree concepts and their geometrical interpretation. Then we cover the construction of a linear kd-tree
and its use in N-body simulation. We finally study its time and memory complexity, and compare the
performance of an implementation with that of other algorithms (namely Sweep and Prune and Delaunay
triangulation). Preliminary tests show that the linear kd-tree performs more than fifty times faster than
the other methods on conventional computers, for highly dynamic simulations with a few thousand
elements or more. We also conclude that simulations of several million elements are feasible on a single
processor in less than five seconds per time step.

Keywords N-body, discrete elements, kd-tree, linear kd-tree, broad phase

1 Collision culling

In any N-Body simulation, the computation of short-range interaction dynamics (e.g. collisions) can be
accelerated by splitting the process in two separate steps.

The “broad phase” pass performs a coarse selection of possible interaction pairs, using fast rejection
tests. Given this subset, the “narrow phase” pass uses exact element geometry to determine the true
interaction status for each candidate pair, and computes interaction dynamics if needed. Here, the fact
that such an interaction effectively occurs will be interchangeably called a collision, an interaction or an
intersection of respective element volumes. Not having this separation would be equivalent to carrying
“narrow phase” tests on all 1

2N(N − 1) possible pairs.

In this paper, we will discuss only the “broad phase” step, which is sometimes referred as “collision
culling” by analogy with its counterparts in computer graphics and rendering (occlusion culling, view
frustum culling, etc).

Fast rejection tests are achieved adopting a coherence view of the simulation. Roughly, temporal coherence
relates to the fact that two elements that are close (resp. far away) at a given time of the simulation are
likely to stay close (resp. far away) after a few time steps, and thus may interact (resp. probably will
not interact). Although other algorithms efficiently take advantage of temporal coherence, we will only
consider geometric coherence here. It can be stated as such:
Given two elements e1 and e2 and their respective interaction volumes (or interaction ranges) E1 and E2,
if there exists two disjoint subspaces S1 and S2 such that

E1 ⊂ S1 E2 ⊂ S2

then E1 and E2 do not intersect, and therefore e1 and e2 may not interact.
Obviously, this all implies that interaction ranges are limited.

The most immediate way to achieve faster collision detection using geometric coherence is to enclose all
complex elements into simpler bounding volumes (e.g. a bounding sphere, Figure 1). Then the broad
phase consists in testing every bounding volume against each other, passing only pairs with non-empty
intersection to the slower narrow phase.

1



a. pruned pair b. false positive c. true positive

Figure 1: Bounding sphere culling

Such a technique proves very fast in practice for a few thousand elements. But it still shows quadratic
behaviour since all possible pairs must be examined, that is 1

2N(N − 1) = O(N2) tests.

Other methods have subquadratic (average) time-complexity. The most common include spatial parti-
tioning (see [4] for a comprehensive introduction), sweep and sort ([1], also referred as sweep and prune
in [3]) and Delaunay triangulation ([5]).

Also note that besides time-complexity, the main characteristics of a “broad phase” algorithm include
the proportion of false positives reported as candidate pairs. Both these important characteristics will
be tracked in our later comparisons.

2 kd-tree structure

For our purposes, we define a kd-tree (Figure 2) as a tree data structure in which nodes represent a
cuboid subspace of R3, called a cell. The root node spans over the interest space. Every non-leaf node
has exactly two children, each uniquely comprising one half of its parent’s cell, thus together forming a
partition of it. Walking the tree downwards from the root to a leaf, the “cutting plane” dividing each
cell is successively chosen orthogonal to one of the three main axis.

Note that the data structure we are describing here is only a particular subclass of kd-trees, but still we
will refer to it as kd-tree for conciseness.

Let us assume that we associate every element with a kd-tree node that entierly encloses its volume. Two
element volumes may intersect only if there is a path from one of them to the other in the directed tree.
That is, if one of their respective kd-tree nodes is an ancestor of the other or if they coincide. Otherwise,
their bounding volumes are disjoint.

Therefore, given a kd-tree in which we placed our elements, one possible way to generate a set containing
all possible intersections would be to associate each element with every element in its node and in the

2



Figure 2: kd-tree

sub-tree below it.

3 Using deepest kd-tree node

When constructing a kd-tree for collision culling, our primary objective is to minimize the number of
candidate interactions that will need to be examined in the subsequent traversal. To achieve this, we
chose to place each element into the smallest cell (the deepest node) in the tree that entirely encloses it.
It is obvious that with any other choice of cell, the number of candidate pairs generated would be greater
or equal. Note, however, that this is only one policy among others.

Due to the succession of different cutting plane directions, the structure of a kd-tree is intrinsically
anisotropic. In particular, the chosen sequence of cutting directions (among the three available) has an
impact on the resulting tree. Here, we will just state that the ability of a kd-tree to minimize cell volume
is equivalent or better than that of an analogous octree, which treats each axis equally (Figure 3).

3



Figure 3: Corresponding bounding volumes in a kd-tree (upper cells) and in an octree (lower cells)

4 Improving kd-tree efficiency by splitting elements

One common problem with space partitioning techniques is dealing with elements that cross a cutting
plane. In our case, such a situation is not permitted: we have to place elements in a sufficiently large
cell (i.e. low-depth node), so that no crossing occurs. In particular, relatively small objects located just
across a low-depth cutting plane (Figure 4, left) imply a heavy penalty, since their enclosing cells have a
relatively large volume.

Figure 4: Cell volume reduction with element splitting

One solution is to systematically split the elements into two sub-elements along the concerned cutting
planes, until the achieved total enclosing volume is considered “small enough” (Figure 4, center and
right). Obviously, it is necessary to strike a balance between the desired volume reduction and the
resulting increase in the number of sub-elements.

4.1 Axis-aligned bounding boxes

Our proposed criterion is to allow object splitting once along each of the three cutting plane directions.
Thus, the overall number of sub-elements is limited to eight times the original number of elements, and
we have the following interesting property:

Property 1. If the elements to place in a kd-tree are axis-aligned boxes, and if we allow splitting them
once along each axis, then the resulting sub-boxes will span over more than half of their respective enclosing
cell along at least one axis (assuming there is no limit on the depth of the tree, i.e. no lower bound on
the size of cells).

Proof. Let A be the cutting plane crossed by a (sub-)element in a cell C. Either the element has not
been cut by a parallel plane yet (Figure 6, A1), then it is split in two along A, and we can place the two

4



Figure 5: Cell volume reduction with box splitting

Figure 6: 1-D box splitting

sub-elements in cells smaller than C. Or the element has already been cut by a parallel plane (Figure 6,
A2), then it is aligned with one of the boundaries of C (Figure 6, C2). Therefore, it spans over more
than a half of C. In this latter case, our placement algorithm has reached the deepest enclosing node and
stops, so the property is only ensured along the final splitting direction A.

As we will see later, considering axis-aligned boxes makes sense in practice, since we will first construct
an axis-aligned bounding box (AABB) for each element, and take advantage of a fast method for placing
AABBs in our kd-tree (see Section 5.3).

Figure 7: Splitting that leads to no kd-tree improvement

Also note that in our implementation, we suppress any split that does not lead to an overall cell volume
reduction (Figure 7).

4.2 Effect on collision culling

Despite being simple, this method leads to dramatic improvements in kd-tree performance. As an illus-
tration, we carried a simple experiment (Table 1) with the following setup:

We generate N same-sized spheric elements. The pseudo-random distribution of the sphere centers is
uniform over some cuboid subspace of R3. The dimensions of that subspace are computed so that the

5



ratio
total volume of elements

volume spanned by distribution
≈

N Vsphere
∆x ∆y ∆z

approximates a given parameter d. Non-interpenetration of spheres is not enforced. Then we place the
elements in a kd-tree, with and without element splitting.

In both cases, we measure

• The resulting number of sub-elements, which is always N without splitting, and up to 8N with
splitting.

• A volume ratio Vn/Ve, where Vn is the overall volume of all enclosing cells (a single node being
possibly counted several times), and Ve is the overall volume of all elements. A lower ratio (i.e.
closer to 1) corresponds to a higher efficiency at reducing bounding volume.

• The number of candidate interaction pairs selected by the algorithm (described in Section 5.5).

• The number of effective interactions (true positives) among these pairs.

d without splitting with splitting
sub- Vn/Ve selected true sub- Vn/Ve selected true

elements pairs positives elements pairs positives
0.01 N 8.0275 . 106 1261197 389 6.37 . N 10.9362 4928 429
0.05 N 1.5836 . 106 1834155 1901 6.67 . N 10.8227 25643 2660
0.1 N 1.3439 . 106 2300212 3715 6.24 . N 13.4065 62148 6235
0.5 N 2.9324 . 106 4193598 16227 6.35 . N 13.4745 280736 63454
1.0 N 4.0032 . 106 5552230 28144 6.01 . N 12.5170 492790 72176

Table 1: Effect of bounding box splitting on collision culling (N = 10000)

For a given d, the instances of sphere distribution used are identical in both contexts. Therefore, the
resulting number of true positives should be the same. However, with splitting enabled, our algorithm
can return a single candidate pair several times, since one or both of its members may be present in
several different nodes of the tree.

It is clear from Table 1 that element splitting represents a broad enhancement in the efficiency of kd-trees
at selecting candidate interaction pairs. In our experiment, for the cost of multiplying by 6.5 the number
of elements, we reduced by almost a factor 106 the average enclosing volume, and by a factor 10 to 100
the number of candidate pairs.

5 kd-tree representation and sweep

So far we have described our kd-trees from a geometrical point of view. We will now cover their repre-
sentation as a data structure.

6



5.1 Data structure representation

We do not use a tree structure to hold our kd-tree data in memory. Instead, we build an array of small
records, each containing a reference to an element and a locational code (or path) describing its enclosing
cell in the kd-tree. The number of records ranges from N to 8N with the splitting policy given previously.

Such a structure will be called a “linear kd-tree” here, as it shares much of the underlying concepts with
linear octrees. However, in our linear kd-trees, the records identify elements, instead of nodes in a linear
octree (as described in [4]). Therefore, a given locational code may appear several times in the array: this
simply means that several elements were placed in the same kd-tree node. Moreover, since it provides no
explicit representation of nodes in memory, there is no direct mean to query all elements intersecting a
given node of a linear kd-tree.

5.2 Binary construction of a locational code for a point

Figure 8: Morton codes in a kd-tree

Any node in the kd-tree may be designated by its path from the root of the tree, i.e. the list of successive
branches chosen to get to it from the root node. We adopt the convention to denote by “0” the lower-value
half cell and by “1” the higher one. If we bound the depth of the tree, there is an efficient method for
computing the locational code of the node enclosing a point (x, y, z). Here is its outline (a more detailed
explanation can be found in [4] for linear octrees):

Given the interest space (or root cell) C

C ≡ [x0, x1) × [y0, y1) × [z0, z1) ⊂ R3

we can construct a surjective mapping from a ∈ [a0, a1) to the B bits integer a′ ∈ {0, 1, 2, . . . , 2B − 1}:

a′ =
⌊

(a− a0)
2B

a1 − a0

⌋

7



where a is one of {x, y, z}. The ith bit of a′ indicates on which side of the ith cutting plane orthogonal
to axis a the point (x, y, z) lies (Figure 8). Therefore, if we interleave the bits of x′, y′ and z′, we get a
3B bits sequence, known as Morton code or Z-order curve, which describes the desired locational code L.

5.3 Binary construction of a locational code for an AABB

The locational code LS of the smallest cell C enclosing an axis-aligned subspace

S ≡ [xl, xh] × [yl, yh] × [zl, zh] ⊂ C

is obtained by computing the locational codes Ll for the point (xl, yl, zl) and Lh for (xh, yh, zh). LS is
the longest common prefix of Ll and Lh. This means that if ith bit is the first (the most significant)
that differs in Ll and in Lh, then (xl, yl, zl) and (xh, yh, zh) lie on different sides of the ith cutting plane,
while they lie on the same side of all the previous ones. Therefore, the length of LS is (i− 1) bits.

As seen before, this result is especially useful since the objects we want to place in the kd-tree are
axis-aligned bounding boxes (AABBs) enclosing our elements.

Note that to get an octree structure instead of a kd-tree, we would simply have to truncate the length of
all locational codes to the nearest inferior integer multiple of three. However this would not exactly give
a linear octree as described in the literature (see Section 5.1).

5.4 Properties of a sorted linear kd-tree

Once the construction of our array is completed, the next stage is to sort it by locational codes. We
define the following order on them:

Let L1 and L2 be two locational codes. L1 is before L2 if L1 is a prefix of L2 or if the first (most
significant) bit that differs between the two is “0” in L1 and “1” in L2.

Given this ordering, we have the following properties on the sorted array:

Property 2. Elements placed in the same node are consecutive in the array.

Property 3. Elements placed in the subtree below a given node immediately follow in the array the
elements placed in that node.

Property 4. A sweep of the array from its first entry to its last is equivalent to a listing of elements
during a pre-order (or “depth-first”) traversal of the corresponding kd-tree.

These properties lead to a simple algorithm for selecting candidate pairs:

8



5.5 Sweep algorithm

for i = {0, 1, . . . , N − 2} {
j = i + 1
while L(i) is a prefix of L(j) {

submit candidate interaction pair (i, j)
j = j + 1

}
}

The “is a prefix of” test on the locational codes is the binary counterpart of the “is an ancestor of”
test on the nodes of the tree. Thus it can be seen that this algorithm is a direct translation of the tree
traversal method described in Section 2.

6 Results

Our benchmarks were based on the experiment described in Section 4.2. We still have N spheric elements
initially placed randomly according to a uniform distribution such that

d ≈ total volume of elements
volume spanned by initial distribution

In our tests, we used d = 0.1 (Figure 9).

N = 105 N = 105 N = 106

Figure 9: Visualization of simulations at an early stage

To approximate real-life simulation conditions, we applied a constant downward acceleration on each
element, and added a lower constraint preventing elements from shifting downwards indefinitely. Non-
interpenetration is enforced pairwise (not globally) at each time step. This means that after each time
step integration, we generate a list of interactions, and handle them pairwise, possibly generating more
unhandled interactions. This scheme is not realistic, but it achieves our target of generating correlated
random distributions of elements exhibiting some degree of time-coherence.

This setup resulted in elements getting more and more packed, and thus the number of interactions
increasing with time, until some stable configuration is reached (Figure 10).

9



after one time step after 50 time steps after 750 time steps

Figure 10: Visualization of a simulation at different stages (N = 104)

The simulation was performed successively with four different algorithms

• A quadratic method effectively using no broad phase algorithm and testing each element against
each other.

• A Sweep & Prune implementation based on V-Collide [3] and modified to handle spheric elements
only.

• A Delaunay triangulation implementation using the CGAL library [2].

• Our implementation of linear kd-trees [8].

We measured average CPU timings over 11 time steps and 4 runs of the same simulation. The results
are shown in Figure 11 and Table 2.

Figures 11a and 11b describe results for simulations with a small number of elements N . These are
included mainly for comparison between existing alternatives, as the timings for our kd-tree-based al-
gorithm do not appear distinctively on them. On Figure 11a, we focused on the 11 first time steps
after initialization. In that context, we had relatively few interactions taking place, and thus rather
low dynamic behaviour (or high temporal coherence). Conversely, on Figure 11b, at a later state of the
simulation, we have a highly dynamic situation.

These figures highlight the seemingly linear (in fact loglinear) behaviour of Delaunay triangulation in
terms of N , the quadratic order of the naive approach, and their similar efficiency at the two different
points of the simulation.

The conclusions are quite different for Sweep & Prune. While this method exhibits good results for small
N , especially on the first few time steps, its efficiency decreases with increasing N and simulation time.
What is not shown on these figures is that for extremely low N , or more static simulations, Sweep &
Prune dramatically outperforms all other methods. This is why its use is so widespread in haptics and
virtual reality [3]. However, as discussed in [7, pages 47-49], its heavy reliance on temporal coherence
makes it less fit for more dynamic simulations.

The performance of our algorithm based on linear kd-trees [8] is shown more explicitly on Table 2. We
can see that the CPU time needed for computing a time step with our method is much smaller than
with other methods. There are two main reasons for this. First, the computation of locational codes

10



a. average time and standard deviation on 4 runs and 11 steps (0-10)

b. average time and standard deviation on 4 runs and 11 steps (50-60)

Figure 11: Performance comparison for N < 30000 on an Intel E2180 at 2GHz

consists only in a few binary operations which execute extremely fast on general-purpose computers.
Secondly, the sort is performed on a simple one-dimensional list of integers, which is both more CPU-
and cache-friendly than larger structures. This sort stage is also the most time-consuming part, both

11



CPU time per step (ms) Candidate pairs
N quadr. S&P Delaunay kd-tree-1 quadr. S&P Delaunay kd-tree-1

50 . 103 23818 64662 11350 211 1.25 . 109 471044 365396 3.30 . 106

100 . 103 94813 266840 23616 434 5.00 . 109 972680 732000 5.84 . 106

500 . 103 / / 118408 2261 125 . 109 / 3.67 . 106 35.8 . 106

1 . 106 / / 240563 4194 500 . 109 / 7.34 . 106 78.9 . 106

5 . 106 / / / 18885 12.5 . 1012 / / 518 . 106

Table 2: Performance comparison for large N (average on 4 runs, steps 50-60) on an Intel E2180 at 2GHz

CPU time per step (ms) Candidate pairs Resident memory (approx.)
N kd-tree-1 kd-tree-2 kd-tree-1 kd-tree-2 Delaunay kd-tree-1 kd-tree-2

50 . 103 211 297 3.30 . 106 277806 32 Mb 9 Mb 18 Mb
100 . 103 434 620 5.84 . 106 565180 76 Mb 17 Mb 35 Mb
500 . 103 2261 3288 35.8 . 106 3.01 . 106 312 Mb 82 Mb 193 Mb

1 . 106 4194 6153 78.9 . 106 6.01 . 106 623 Mb 144 Mb 353 Mb
5 . 106 18885 24205 518 . 106 30.4 . 106 / 558 Mb 1.5 Gb

Table 3: Performance (average on 4 runs, steps 50-60) and memory footprint on an Intel E2180 at 2GHz

from a practical and a theoretical point-of-view, needing O(N log N) operations.

It is however crucial to mention the main drawback of our first kd-tree algorithm (kd-tree-1): Any
candidate interaction pair may be selected up to eight times. While this was not a problem in our
benchmark, this is not desirable for most simulation models. In that situation, it is necessary to generate
a list of unique interaction pairs. Such a list may be generated in linear time (more precisely, in O(N c)
operations, where c is the average number of interactions per element), but also requires O(N c) additional
memory, which might be prohibitive in some cases (kd-tree-2, Table 3).

Also, as we can see in the right-hand part of Table 2, the selection of candidate pairs is much less
tight with our kd-tree than with the other algorithms. Although this did not penalize our benchmark
results, this could be a problem if rejecting false positives were more expensive. Thus, for our method
to be efficient in practice, we need our narrow-phase tests to be simple, or we need to have an efficient
intermediate phase performing fast rejection tests (e.g. based on bounding spheres, as used in kd-tree-2).
In case the specific geometry of our simulation does not allow us such efficient false-positives handling,
our algorithm might be unsuited for collision culling.

7 Future directions

Although our comparative results may be questioned due to the necessary choice of a particular imple-
mentation for each alternative, our raw performance achievements open some promising possibilities for
large-scale simulations. It is clear however that our method will shortly need extensions.

12



7.1 Exploiting temporal coherence

The first limitation of our algorithm is its inability to take advantage of temporal coherence. Simply
stated, it would be convenient to find a way to not have to perform a full O(N log N) sort on the list of
locational codes. Some other methods (e.g. sort and sweep [1]) do this by using special sort algorithms
which are almost O(N) for mostly-sorted lists such as the insertion sort [6], re-using the same list through
different time steps. But the very structure of our algorithm is inherently unsuited for such an approach.
More precisely, the fact that we preform element splitting before computing and sorting locational codes
implies that each initial element corresponds to a variable number of sub-element locational codes in the
sorted list. It is therefore not obvious to achieve temporal coherence between two consecutive lists, even
if the underlying physical system shows little motion.

A foreseeable way to take temporal coherence into account would be to force our element-splitter to
always give its maximal number of sub-elements (i.e. eight), possibly duplicating some sub-elements. It
is however important to note that any such technique would tend to penalize simulations in a highly
dynamic (i.e. low temporal coherence) environment.

7.2 Parallel processing

Targeting large-scale simulations, distributed computing is a necessary feature for practical use. Our first
implementation does not currently allow it (nor even multithreaded operation).

However, both the locational code construction stage and the sort stage can be parallelized easily. The
first one consists in a lot of small independent tasks. The second one is well covered in the literature [9].

The sweep stage can also be performed in parallel (different processes starting at different places in the
list), but it is then necessary to take special care of data synchronization, especially if the memory is not
shared by the computing resources.

7.3 Geometric scale and anisotropy

Two important parameters were left unexplained in the previous sections: the size of the interest space
(the root node cell), and the maximal bit length of locational codes (3B). While the first one is generally
believed to be problem-related, and the second one more hardware-related (typical implementations will
use 32 or 64 bits integers to represent nodes), these parameters directly affect the geometry of all cells.
More specifically, they should be chosen to match as much as possible the scale of the simulation, and
the relative scale of axis (if not identical). But for this, a more rigorous study of anisotropy and ideal
leaf node size is necessary, for each particular simulation model.

7.4 Conclusions

We have developed an efficient method for accelerating the computation of limited-range interactions in
highly dynamic, large-scale simulations. We have demonstrated its usefulness with simplified benchmarks.

Due to inherent limitations, its range of application may not cover all N-body simulations. However,

13



when suited for a given problem, we have shown it to perform more than fifty times faster than its
nearest competitors.

Most promising applications of such an algorithm include any three-dimensional simulation method in-
volving limited-range potentials, such as discrete elements methods (DEM) and smoothed particle hy-
drodynamics (SPH).

The last remaining step before we can get a first working simulation infrastructure is to parallelize the
implementation of the process and make it ready for cluster computing.

References

[1] David Baraff. Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD thesis, Cornell University,
Ithaca, NY, 1992.

[2] CGAL. Computational geometry algorithms library. http://www.cgal.org, 2009.

[3] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madhav K. Ponamgi. I-collide: An inter-
active and exact collision detection system for large-scale environments. In Proceedings of the 1995
Symposium on Interactive 3D Graphics, pages 189–196, 1995.

[4] Christer Ericson. Real-Time Collision Detection. The Morgan Kaufman series in interactive 3D
technology. Morgan Kaufmann, 2005.

[5] Jean-Albert Ferrez. Dynamic Triangulations for Efficient 3D Simulation of Granular Materials. PhD
thesis, Ecole Polytechnique Fédérale de Lausanne, 2001.

[6] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures. Springer Berlin Heidelberg, 2008.

[7] Brian Vincent Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis,
University of California, Berkeley, 1996.

[8] Laurent Poirrier. Linear kd-tree library and benchmarks. http://www.montefiore.ulg.ac.be/

~poirrier/kdtree, 2009.

[9] Douglas R. Smith. Derivation of parallel sorting algorithms. In Parallel Algorithm Derivation and
Program Transformation. Springer US, 1993.

14


