
Chapter 3

Regular grammars

59

3.1 Introduction

Other view of the concept of language:

• not the formalization of the notion of effective procedure,

• but set of words satisfying a given set of rules

• Origin : formalization of natural language.

60

Example

• a phrase is of the form subject verb

• a subject is a pronoun

• a pronoun is he or she

• a verb is sleeps or listens

Possible phrases:

1. he listens

2. he sleeps

3. she sleeps

4. she listens

61

Grammars

• Grammar: generative description of a language

• Automaton: analytical description

• Example: programming languages are defined by a grammar (BNF),

but recognized with an analytical description (the parser of a

compiler),

• Language theory establishes links between analytical and generative

language descriptions.

62

3.2 Grammars

A grammar is a 4-tuple G = (V,Σ, R, S), where

• V is an alphabet,

• Σ ⊆ V is the set terminal symbols (V −Σ is the set of nonterminal

symbols),

• R ⊆ (V + × V ∗) is a finite set of production rules (also called simply

rules or productions),

• S ∈ V −Σ is the start symbol.

63

Notation:

• Elements of V −Σ : A,B, . . .

• Elements of Σ : a, b,

• Rules (α, β) ∈ R : α→ β or α→
G
β.

• The start symbol is usually written as S.

• Empty word: ε.

64

Example :

• V = {S,A,B, a, b},

• Σ = {a, b},

• R = {S → A,S → B,B → bB,A→ aA,A→ ε,B → ε},

• S is the start symbol.

65

Words generated by a grammar: example

aaaa is in the language generated by the grammar we have just described:

S
A rule S → A
aA A→ aA
aaA A→ aA
aaaA A→ aA
aaaaA A→ aA
aaaa A→ ε

66

Generated words: definition

Let G = (V,Σ, R, S) be a grammar and u ∈ V +, v ∈ V ∗ be words. The

word v can be derived in one step from u by G (notation u⇒
G
v) if and

only if:

• u = xu′y (u can be decomposed in three parts x, u′ and y ; the parts x

and y being allowed to be empty),

• v = xv′y (v can be decomposed in three parts x, v′ and y),

• u′ →
G
v′ (the rule (u′, v′) is in R).

67

Let G = (V,Σ, R, S) be a grammar and u ∈ V +, v ∈ V ∗ be words. The

word v can be derived in several steps from u (notation u
∗⇒
G
v) if and only

if ∃k ≥ 0 and v0 . . . vk ∈ V + such that

• u = v0,

• v = vk,

• vi ⇒
G
vi+1 for 0 ≤ i < k.

68

• Words generated by a grammar G: words v ∈ Σ∗ (containing only

terminal symbols) such that

S
∗⇒
G
v.

• The language generated by a grammar G (written L(G)) is the set

L(G) = {v ∈ Σ∗ | S ∗⇒
G
v}.

Example :

The language generated by the grammar shown in the example above is

the set of all words containing either only a’s or only b’s.

69

Types of grammars

Type 0: no restrictions on the rules.

Type 1: Context sensitive grammars.

The rules

α→ β

satisfy the condition

|α| ≤ |β|.

Exception: the rule

S → ε

is allowed as long as the start symbol S does not appear in the right

hand side of a rule.

70

Type 2: context-free grammars.

Productions of the form

A→ β

where A ∈ V −Σ and there is no restriction on β.

Type 3: regular grammars.

Productions rules of the form

A→ wB
A→ w

where A,B ∈ V −Σ and w ∈ Σ∗.

71

3.3 Regular grammars

Theorem:

A language is regular if and only if it can be generated by a regular

grammar.

A. If a language is regular, it can be generated by a regular grammar.

If L is regular, there exists

M = (Q,Σ,∆, s, F)

such that L = L(M). From M , one can easily construct a regular grammar

G = (VG,ΣG, SG, RG)

generating L.

72

G is defined by:

• ΣG = Σ,

• VG = Q ∪Σ,

• SG = s,

• RG =

{
A→ wB, for all(A,w,B) ∈∆
A→ ε for allA ∈ F

}

73

B. If a language is generated by a regular grammar, it is regular.

Let

G = (VG,ΣG, SG, RG)

be the grammar generating L. A nondeterministic finite automaton
accepting L can be defined as follows:

• Q = VG −ΣG ∪ {f} (the states of M are the nonterminal symbols of G
to which a new state f is added),

• Σ = ΣG,

• s = SG,

• F = {f},

• ∆ =

{
(A,w,B), for allA→ wB ∈ RG
(A,w, f), for allA→ w ∈ RG

}
.

74

3.4 The regular languages

We have seen four characterizations of the regular languages:

1. regular expressions,

2. deterministic finite automata,

3. nondeterministic finite automata,

4. regular grammars.

75

Properties of regular languages

Let L1 and L2 be two regular languages.

• L1 ∪ L2 is regular.

• L1 · L2 is regular.

• L∗1 is regular.

• LR1 is regular.

• L1 = Σ∗ − L1 is regular.

• L1 ∩ L2 is regular.

76

L1 ∩ L2 regular ?

L1 ∩ L2 = L1 ∪ L2

Alternatively, if M1 = (Q1,Σ, δ1, s1, F1) accepts L1 and M2 = (Q2,Σ, δ2, s2,

F2) accepts L2, the following automaton, accepts L1 ∩ L2 :

• Q = Q1 ×Q2,

• δ((q1, q2), σ) = (p1, p2) if and only if δ1(q1, σ) = p1 and δ2(q2, σ) = p2,

• s = (s1, s2),

• F = F1 × F2.

77

• Let Σ be the alphabet on which L1 is defined, and let π : Σ→ Σ′ be a

function from Σ to another alphabet Σ′.

This fonction, called a projection function can be extended to words

by applying it to every symbol in the word, i.e. for w = w1 . . . wk ∈ Σ∗,
π(w) = π(w1) . . . π(wk).

If L1 is regular, the language π(L1) is also regular.

78

Algorithms

Les following problems can be solved by algorithms for regular languages:

• w ∈ L ?

• L = ∅ ?

• L = Σ∗ ? (L = ∅)

• L1 ⊆ L2 ? (L2 ∩ L1 = ∅)

• L1 = L2 ? (L1 ⊆ L2 and L2 ⊆ L1)

79

3.5 Beyond regular languages

• Many languages are regular,

• But, all languages cannot be regular for cardinality reasons.

• We will now prove, using another techniques that some specific

languages are not regular.

80

Basic Observations

1. All finite languages (including only a finite number of words) are

regular.

2. A non regular language must thus include an infinite number of words.

3. If a language includes an infinite number of words, there is no bound

on the size of the words in the language.

4. Any regular language is accepted by a finite automaton that has a

given number number m of states.

81

5. Consider an infinite regular language and an automaton with m states

accepting this language. For any word whose length is greater than m,

the execution of the automaton on this word must go through an

identical state sk at least twice, a nonempty part of the word being

read between these two visits to sk.

ss s
sk

s
sk

s sfx u y

6. Consequently, all words of the form xu∗y are also accepted by the

automaton and thus are in the language.

82

The ”pumping” lemmas (theorems)

First version

Let L be an infinite regular language. Then there exists words x, u, y ∈ Σ∗,
with u 6= ε such that xuny ∈ L ∀n ≥ 0.

Second version :

Let L be a regular language and let w ∈ L be such that |w| ≥ |Q| where Q

is the set of states of a determnistic automaton accepting L. Then

∃x, u, y, with u 6= ε and |xu| ≤ |Q| such that xuy = w and, ∀n, xuny ∈ L.

83

Applications of the pumping lemmas

The langage

anbn

is not regular. Indeed, it is not possible to find words x, u, y such that

xuky ∈ anbn ∀k and thus the pumping lemma cannot be true for this

language.

u ∈ a∗ : impossible.

u ∈ b∗ : impossible.

u ∈ (a ∪ b)∗ − (a∗ ∪ b∗) : impossible.

84

The language

L = an
2

is not regular. Indeed, the pumping lemma (second version) is

contradicted.

Let m = |Q| be the number of states of an automaton accepting L.

Consider am
2
. Since m2 ≥ m, there must exist x, u and y such that

|xu| ≤ m and xuny ∈ L ∀n. Explicitly, we have

x = ap 0 ≤ p ≤ m− 1,
u = aq 0 < q ≤ m,
y = ar r ≥ 0.

Consequently xu2y 6∈ L since p+ 2q + r is not a perfect square. Indeed,

m2 < p+ 2q + r ≤ m2 +m < (m+ 1)2 = m2 + 2m+ 1.

85

The language

L = {an | n is prime}

is not regular. The first pumping lemma implies that there exists

constants p, q and r such that ∀k

xuky = ap+kq+r ∈ L,

in other words, such that p+ kq + r is prime for all k. This is impossible

since for k = p+ 2q + r + 2, we have

p+ kq + r = (q + 1)︸ ︷︷ ︸
>1

(p+ 2q + r)︸ ︷︷ ︸
>1

,

86

Applications of regular languages

Problem : To find in a (long) character string w, all ocurrences of words

in the language defined by a regular expression α.

1. Consider the regular expression β = Σ∗α.

2. Build a nondeterministic automaton accepting the language defined by

β

3. From this automaton, build a deterministic automaton Aβ.

4. Simulate the execution of the automaton Aβ on the word w.

Whenever this automaton is in an accepting state, one is at the end of

an occurrence in w of a word in the language defined by α.

87

Applications of regular languages II:
handling arithmetic

• A number written in base r is a word over the alphabet {0, . . . , r − 1}
({0, . . . ,9} in decimal, {0,1} en binary).

• The number represented by a word w = w0 . . . wl is

nb(w) =
∑l
i=0 r

l−inb(wi)

• Adding leading 0’s to the representation of a number does not modify

the represented value. A number thus has a infinite number of

possible representations. Number encodings are read most significant

digit first, and all possible encodings will be taken into account.

• Exemple: The set of binary representations of 5 is the language

0∗101.

88

Which sets of numbers can be represented by regular
languages?

• Finite sets.

• The set of multiples of 2 is represented by the language (0 ∪ 1)∗0.

• The set of powers of 2 is represented by the language 0∗10∗, but is

not representable in base 3.

• The set of multiples of 3 is represented by the following automaton.

0

>

1

1

0

1

0

89

Set of numbers represented by regular languages
(continued)

• The set of numbers x ≥ 5 is represented by the automaton

0

>
0 11

1

0
0,1

0,1
0,1

• More generally, one can represent sets of the form {ax | x ∈ N} or

{x ≥ a | x ∈ N} for any given value of a.

90

Set of numbers represented by regular languages
(continued II)

• Combining the two types of sets: sets of the form {ax+ b | x ∈ N}, for

any given a and b.

• Union of such sets: the ultimately periodic sets.

• Intersection and complementation add nothing more.

• The only sets that can be represented in all bases are the ultimately

periodic sets.

91

Representing vectors of numbers

• Each number is represented by a word, and bits in identical positions

are read together.

• Example:

– the vector (5,9) is encoded by the word (0,1)(1,0)(0,0)(1,1)

defined over the alphabet {0,1} × {0,1}.

– The set of binary encodings of the vector (5,9) is (0,0)∗(0,1)(1,0)

(0,0)(1,1).

92

Which sets of number vectors can be represented by
regular languages?

• The set of binary encodings of the vectors (x, y) such that x = y is

accepted by the automaton

>

(0,0)

(1,1)

93

• Vectors (x, y) such that x < y

>

(0,0) (0,0), (0,1), (1,0), (1,1)

(0,1)

(1,1)

• Three-dimentional vectors (x, y, z) such that z = x+ y

>

(0,0,1)

(1,1,0)

(0,0,0), (0,1,1), (1,0,1) (1,0,0), (0,1,0), (1,1,1)

94

Definable sets of number vectors (continued)

• Intersection, union, complement of representable sets (closure
properties of regular languages).

• Modifying the number of dimensions: projection and the inverse
operation.

• Remark: projection does not always preserve the determinism of the
automaton.

• Example: {(x, z) | ∃y x+ y = z} (x ≤ z).

>>

(0,0), (0,1), (1,1) (1,0), (0,0), (1,1)

(0,1)

(1,0)

95

• Adding a dimension to the previous automaton yields

>>

(1,0,0)
(1,1,0)

(0,1,1)
(0,0,1)

(1,1,0), (0,1,0), (1,1,1)
(1,0,0), (0,0,0), (1,0,1)

(0,1,0), (0,1,1), (1,1,1)
(0,0,0), (0,0,1), (1,0,1)

• which is not equivalent to the automaton to which projection was

applied.

96

Representable sets of vectors: conclusions

• Linear equality and inequality constraints

• Example: an automaton for x+ 2y = 5 can be obtained by combing

the automata for the following constraints:

z1 = y
z2 = y + z1
z3 = x+ z2
z3 = 5.

• There exists also a more direct construction.

97

Representable vector sets: conclusions (continued)

• Boolean combinations of linear constraints

• Existential quantification can be handled with projection (∃x).

• For universal quantification, one uses ∀xf ≡ ¬∃¬f

• Example: It is possible to build an automaton accepting the

representations of the vectors (x, y) satisfying the arithmetic constraint

∀u∃t[(2x+ 3y + t− 4u = 5) ∨ (x+ 5y − 3t+ 2u = 8)]

• This is Presburger arithmetic, which corresponds exactly to the sets

representable by automata in all bases.

98

