Chapter 3

Regular grammars

3.1 Introduction

Other view of the concept of language:

- not the formalization of the notion of effective procedure,
- but set of words satisfying a given set of rules
- Origin : formalization of natural language.

Example

- a phrase is of the form subject verb
- a subject is a pronoun
- a pronoun is he or she
- a verb is sleeps or listens

Possible phrases:

1. he listens
2. he sleeps
3. she sleeps
4. she listens

Grammars

- Grammar: generative description of a language
- Automaton: analytical description
- Example: programming languages are defined by a grammar (BNF), but recognized with an analytical description (the parser of a compiler),
- Language theory establishes links between analytical and generative language descriptions.

3.2 Grammars

A grammar is a 4-tuple $G=(V, \Sigma, R, S)$, where

- V is an alphabet,
- $\Sigma \subseteq V$ is the set terminal symbols ($V-\Sigma$ is the set of nonterminal symbols),
- $R \subseteq\left(V^{+} \times V^{*}\right)$ is a finite set of production rules (also called simply rules or productions),
- $S \in V-\Sigma$ is the start symbol.

Notation:

- Elements of $V-\Sigma: A, B, \ldots$
- Elements of $\Sigma: a, b, \ldots$
- Rules $(\alpha, \beta) \in R: \alpha \rightarrow \beta$ or $\alpha \underset{G}{ } \beta$.
- The start symbol is usually written as S.
- Empty word: ε.

Example :

- $V=\{S, A, B, a, b\}$,
- $\Sigma=\{a, b\}$,
- $R=\{S \rightarrow A, S \rightarrow B, B \rightarrow b B, A \rightarrow a A, A \rightarrow \varepsilon, B \rightarrow \varepsilon\}$,
- S is the start symbol.

Words generated by a grammar: example

$a a a a$ is in the language generated by the grammar we have just described:

S	
A	rule
$a \rightarrow A$	
$a A \rightarrow a A$	
$a a A$	$A \rightarrow a A$
$a a a A$	$A \rightarrow a A$
$a a a a A$	$A \rightarrow a A$
$a a a a$	$A \rightarrow \varepsilon$

Generated words: definition

Let $G=(V, \Sigma, R, S)$ be a grammar and $u \in V^{+}, v \in V^{*}$ be words. The word v can be derived in one step from u by G (notation $u \underset{G}{\Rightarrow} v$) if and only if:

- $u=x u^{\prime} y$ (u can be decomposed in three parts x, u^{\prime} and y; the parts x and y being allowed to be empty),
- $v=x v^{\prime} y$ (v can be decomposed in three parts x, v^{\prime} and y),
- $u^{\prime} \underset{G}{\vec{G}} v^{\prime}$ (the rule $\left(u^{\prime}, v^{\prime}\right)$ is in R).

Let $G=(V, \Sigma, R, S)$ be a grammar and $u \in V^{+}, v \in V^{*}$ be words. The word v can be derived in several steps from u (notation $u \underset{\vec{G}}{\stackrel{*}{3}} v$) if and only if $\exists k \geq 0$ and $v_{0} \ldots v_{k} \in V^{+}$such that

- $u=v_{0}$,
- $v=v_{k}$,
- $v_{i} \underset{G}{\Rightarrow} v_{i+1}$ for $0 \leq i<k$.
- Words generated by a grammar G : words $v \in \Sigma^{*}$ (containing only terminal symbols) such that

$$
S \underset{G}{\stackrel{*}{\Rightarrow}} v .
$$

- The language generated by a grammar G (written $L(G)$) is the set

$$
L(G)=\left\{v \in \Sigma^{*} \mid S \underset{G}{*} v\right\}
$$

Example :

The language generated by the grammar shown in the example above is the set of all words containing either only a 's or only b 's.

Types of grammars

Type 0: no restrictions on the rules.

Type 1: Context sensitive grammars.
The rules

$$
\alpha \rightarrow \beta
$$

satisfy the condition

$$
|\alpha| \leq|\beta|
$$

Exception: the rule

$$
S \rightarrow \varepsilon
$$

is allowed as long as the start symbol S does not appear in the right hand side of a rule.

Type 2: context-free grammars.
Productions of the form

$$
A \rightarrow \beta
$$

where $A \in V-\Sigma$ and there is no restriction on β.

Type 3: regular grammars.
Productions rules of the form

$$
\begin{aligned}
& A \rightarrow w B \\
& A \rightarrow w
\end{aligned}
$$

where $A, B \in V-\Sigma$ and $w \in \Sigma^{*}$.

3.3 Regular grammars

Theorem:

A language is regular if and only if it can be generated by a regular grammar.
A. If a language is regular, it can be generated by a regular grammar.

If L is regular, there exists

$$
M=(Q, \Sigma, \Delta, s, F)
$$

such that $L=L(M)$. From M, one can easily construct a regular grammar

$$
G=\left(V_{G}, \Sigma_{G}, S_{G}, R_{G}\right)
$$

generating L.
G is defined by:

- $\Sigma_{G}=\Sigma$,
- $V_{G}=Q \cup \Sigma$,
- $S_{G}=s$,
- $R_{G}=\left\{\begin{array}{l}A \rightarrow w B, \\ A \rightarrow \varepsilon\end{array}\right.$ $\left.\begin{array}{l}\text { for } \operatorname{all}(A, w, B) \in \Delta \\ \text { for } \operatorname{all} A \in F\end{array}\right\}$
B. If a language is generated by a regular grammar, it is regular.

Let

$$
G=\left(V_{G}, \Sigma_{G}, S_{G}, R_{G}\right)
$$

be the grammar generating L. A nondeterministic finite automaton accepting L can be defined as follows:

- $Q=V_{G}-\Sigma_{G} \cup\{f\}$ (the states of M are the nonterminal symbols of G to which a new state f is added),
- $\Sigma=\Sigma_{G}$,
- $s=S_{G}$,
- $F=\{f\}$,
- $\Delta=\left\{\begin{array}{ll}(A, w, B), & \text { for all } A \rightarrow w B \in R_{G} \\ (A, w, f), & \text { for all } A \rightarrow w \in R_{G}\end{array}\right\}$.

3.4 The regular Ianguages

We have seen four characterizations of the regular languages:

1. regular expressions,
2. deterministic finite automata,
3. nondeterministic finite automata,
4. regular grammars.

Properties of regular languages

Let L_{1} and L_{2} be two regular languages.

- $L_{1} \cup L_{2}$
- $L_{1} \cdot L_{2}$
- L_{1}^{*}
- L_{1}^{R}
- $\overline{L_{1}}=\Sigma^{*}-L_{1}$
- $L_{1} \cap L_{2}$
is regular.
is regular.
is regular.
is regular.
is regular.
is regular.

$L_{1} \cap L_{2}$ regular ?

$$
L_{1} \cap L_{2}=\overline{\bar{L}_{1} \cup \bar{L}_{2}}
$$

Alternatively, if $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ accepts L_{1} and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}\right.$, F_{2}) accepts L_{2}, the following automaton, accepts $L_{1} \cap L_{2}$:

- $Q=Q_{1} \times Q_{2}$,
- $\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(p_{1}, p_{2}\right)$ if and only if $\delta_{1}\left(q_{1}, \sigma\right)=p_{1}$ and $\delta_{2}\left(q_{2}, \sigma\right)=p_{2}$,
- $s=\left(s_{1}, s_{2}\right)$,
- $F=F_{1} \times F_{2}$.
- Let Σ be the alphabet on which L_{1} is defined, and let $\pi: \Sigma \rightarrow \Sigma^{\prime}$ be a function from Σ to another alphabet Σ^{\prime}.

This fonction, called a projection function can be extended to words by applying it to every symbol in the word, i.e. for $w=w_{1} \ldots w_{k} \in \Sigma^{*}$, $\pi(w)=\pi\left(w_{1}\right) \ldots \pi\left(w_{k}\right)$.

If L_{1} is regular, the language $\pi\left(L_{1}\right)$ is also regular.

Algorithms

Les following problems can be solved by algorithms for regular languages:

- $w \in L$?
- $L=\emptyset$?
- $L=\Sigma^{*}$?

$$
(\bar{L}=\emptyset)
$$

- $L_{1} \subseteq L_{2}$?

$$
\left(\overline{L_{2}} \cap L_{1}=\emptyset\right)
$$

- $L_{1}=L_{2}$?
$\left(L_{1} \subseteq L_{2}\right.$ and $\left.L_{2} \subseteq L_{1}\right)$

3.5 Beyond regular languages

- Many languages are regular,
- But, all languages cannot be regular for cardinality reasons.
- We will now prove, using another techniques that some specific languages are not regular.

Basic Observations

1. All finite languages (including only a finite number of words) are regular.
2. A non regular language must thus include an infinite number of words.
3. If a language includes an infinite number of words, there is no bound on the size of the words in the language.
4. Any regular language is accepted by a finite automaton that has a given number number m of states.
5. Consider an infinite regular language and an automaton with m states accepting this language. For any word whose length is greater than m, the execution of the automaton on this word must go through an identical state s_{k} at least twice, a nonempty part of the word being read between these two visits to s_{k}.

6. Consequently, all words of the form $x u^{*} y$ are also accepted by the automaton and thus are in the language.

The "pumping" lemmas (theorems)

First version

Let L be an infinite regular language. Then there exists words $x, u, y \in \Sigma^{*}$, with $u \neq \varepsilon$ such that $x u^{n} y \in L \forall n \geq 0$.

Second version :

Let L be a regular language and let $w \in L$ be such that $|w| \geq|Q|$ where Q is the set of states of a determnistic automaton accepting L. Then $\exists x, u, y$, with $u \neq \varepsilon$ and $|x u| \leq|Q|$ such that $x u y=w$ and, $\forall n, x u^{n} y \in L$.

Applications of the pumping lemmas

The langage

$$
a^{n} b^{n}
$$

is not regular. Indeed, it is not possible to find words x, u, y such that $x u^{k} y \in a^{n} b^{n} \forall k$ and thus the pumping lemma cannot be true for this language.
$u \in a^{*}$: impossible.
$u \in b^{*}$: impossible.
$u \in(a \cup b)^{*}-\left(a^{*} \cup b^{*}\right):$ impossible.

The language

$$
L=a^{n^{2}}
$$

is not regular. Indeed, the pumping lemma (second version) is contradicted.

Let $m=|Q|$ be the number of states of an automaton accepting L. Consider $a^{m^{2}}$. Since $m^{2} \geq m$, there must exist x, u and y such that $|x u| \leq m$ and $x u^{n} y \in L \forall n$. Explicitly, we have

$$
\begin{array}{ll}
x=a^{p} & 0 \leq p \leq m-1 \\
u=a^{q} & 0<q \leq m \\
y=a^{r} & r \geq 0
\end{array}
$$

Consequently $x u^{2} y \notin L$ since $p+2 q+r$ is not a perfect square. Indeed,

$$
m^{2}<p+2 q+r \leq m^{2}+m<(m+1)^{2}=m^{2}+2 m+1
$$

The language

$$
L=\left\{a^{n} \mid n \text { is prime }\right\}
$$

is not regular. The first pumping lemma implies that there exists constants p, q and r such that $\forall k$

$$
x u^{k} y=a^{p+k q+r} \in L
$$

in other words, such that $p+k q+r$ is prime for all k. This is impossible since for $k=p+2 q+r+2$, we have

$$
p+k q+r=\underbrace{(q+1)}_{>1} \underbrace{(p+2 q+r)}_{>1},
$$

Applications of regular languages

Problem : To find in a (long) character string w, all ocurrences of words in the language defined by a regular expression α.

1. Consider the regular expression $\beta=\Sigma^{*} \alpha$.
2. Build a nondeterministic automaton accepting the language defined by β
3. From this automaton, build a deterministic automaton A_{β}.
4. Simulate the execution of the automaton A_{β} on the word w. Whenever this automaton is in an accepting state, one is at the end of an occurrence in w of a word in the language defined by α.

Applications of regular languages II: handling arithmetic

- A number written in base r is a word over the alphabet $\{0, \ldots, r-1\}$ ($\{0, \ldots, 9\}$ in decimal, $\{0,1\}$ en binary).
- The number represented by a word $w=w_{0} \ldots w_{l}$ is $n b(w)=\sum_{i=0}^{l} r^{l-i} n b\left(w_{i}\right)$
- Adding leading 0's to the representation of a number does not modify the represented value. A number thus has a infinite number of possible representations. Number encodings are read most significant digit first, and all possible encodings will be taken into account.
- Exemple: The set of binary representations of 5 is the language 0*101.

Which sets of numbers can be represented by regular languages?

- Finite sets.
- The set of multiples of 2 is represented by the language $(0 \cup 1)^{*} 0$.
- The set of powers of 2 is represented by the language $0^{*} 10^{*}$, but is not representable in base 3 .
- The set of multiples of 3 is represented by the following automaton.

Set of numbers represented by regular languages (continued)

- The set of numbers $x \geq 5$ is represented by the automaton

- More generally, one can represent sets of the form $\{a x \mid x \in N\}$ or $\{x \geq a \mid x \in N\}$ for any given value of a.

Set of numbers represented by regular languages (continued II)

- Combining the two types of sets: sets of the form $\{a x+b \mid x \in N\}$, for any given a and b.
- Union of such sets: the ultimately periodic sets.
- Intersection and complementation add nothing more.
- The only sets that can be represented in all bases are the ultimately periodic sets.

Representing vectors of numbers

- Each number is represented by a word, and bits in identical positions are read together.
- Example:
- the vector $(5,9)$ is encoded by the word $(0,1)(1,0)(0,0)(1,1)$ defined over the alphabet $\{0,1\} \times\{0,1\}$.
- The set of binary encodings of the vector $(5,9)$ is $(0,0)^{*}(0,1)(1,0)$ $(0,0)(1,1)$.

Which sets of number vectors can be represented by regular languages?

- The set of binary encodings of the vectors (x, y) such that $x=y$ is accepted by the automaton

$(1,1)$
- Vectors (x, y) such that $x<y$

$(1,1)$
- Three-dimentional vectors (x, y, z) such that $z=x+y$

Definable sets of number vectors (continued)

- Intersection, union, complement of representable sets (closure properties of regular languages).
- Modifying the number of dimensions: projection and the inverse operation.
- Remark: projection does not always preserve the determinism of the automaton.
- Example: $\{(x, z) \mid \exists y x+y=z\}(x \leq z)$.

$(1,0)$
- Adding a dimension to the previous automaton yields

- which is not equivalent to the automaton to which projection was applied.

Representable sets of vectors: conclusions

- Linear equality and inequality constraints
- Example: an automaton for $x+2 y=5$ can be obtained by combing the automata for the following constraints:

$$
\begin{aligned}
& z_{1}=y \\
& z_{2}=y+z_{1} \\
& z_{3}=x+z_{2} \\
& z_{3}=5
\end{aligned}
$$

- There exists also a more direct construction.

Representable vector sets: conclusions (continued)

- Boolean combinations of linear constraints
- Existential quantification can be handled with projection $(\exists x)$.
- For universal quantification, one uses $\forall x f \equiv \neg \exists \neg f$
- Example: It is possible to build an automaton accepting the representations of the vectors (x, y) satisfying the arithmetic constraint

$$
\forall u \exists t[(2 x+3 y+t-4 u=5) \vee(x+5 y-3 t+2 u=8)]
$$

- This is Presburger arithmetic, which corresponds exactly to the sets representable by automata in all bases.

