
Chapter 4

Pushdown automata

and context-free languages

99

Introduction

• The language anbn cannot be accepted by a finite automaton

• On the other hand, Lk = {anbn | n ≤ k} is accepted for any given n.

• Finite memory, infinite memory, extendable memory.

• Pushdown (stack) automata: LIFO memory.

100

4.1 Pushdown automata

• Input tape and read head,

• finite set of states, among which an initial state and a set of accepting

states,

• a transition relation,

• an unbounded pushdown stack.

101

Formalization

7-tuple M = (Q,Σ,Γ,∆, Z, s, F), where

• Q is a finite set of states,

• Σ is the input alphabet,

• Γ is the stack alphabet,

• Z ∈ Γ is the initial stack symbol,

• s ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states,

• ∆ ⊂ ((Q×Σ∗ × Γ∗)× (Q× Γ∗)) is the transition relation.

102

Transitions

((p, u, β), (q, γ)) ∈∆

tape:

stack:

u︷ ︸︸ ︷

A
A
�
�

�
�
A
A

⇒

u︷ ︸︸ ︷

A
A
�
�

�
�
A
A

︸ ︷︷ ︸
β

︸ ︷︷ ︸
γ

103

Executions

The configuration (q′, w′, α′) is derivable in one step from the configuration

(q, w, α) by the machine M (notation (q, w, α) `M (q′, w′, α′)) if

• w = uw′ (the word w starts with the prefix u ∈ Σ∗),

• α = βδ (before the transition, the top of the stack read from left to

right contains β ∈ Γ∗),

• α′ = γδ (after the transition, the part β of the stack has been replaced

by γ, the first symbol of γ is now the top of the stack),

• ((q, u, β), (q′, γ)) ∈∆.

104

A configuration C′ is derivable in several steps from the configuration C
by the machine M (notation C `∗M C′) if there exist k ≥ 0 and
intermediate configurations C0, C1, C2, . . . , Ck such that

• C = C0,

• C′ = Ck,

• Ci `M Ci+1 for 0 ≤ i < k.

An execution of a pushdown automaton on a word w is a sequence of
configurations

(s, w, Z) ` (q1, w1, α1) ` · · · ` (qn, ε, γ)

where s is the initial state, Z is the initial stack symbol, and ε represents
the empty word.

A word w is accepted by a pushdown automaton M = (Q,Σ,Γ,∆, Z, s, F) if

(s, w, Z) `∗M (p, ε, γ),with p ∈ F.

105

Examples

{anbn | n ≥ 0}

• Q = {s, p, q},

• Σ = {a, b},

• Γ = {A},

• F = {q} and ∆ contains the transitions

(s, a, ε)→ (s,A)

(s, ε, Z)→ (q, ε)

(s, b, A)→ (p, ε)

(p, b, A)→ (p, ε)

(p, ε, Z)→ (q, ε)

106

The automaton M = (Q,Σ,Γ,∆, Z, s, F) described below accepts the

language

{wwR}

• Q = {s, p, q},

• Σ = {a, b},

• Γ = {A,B},

• F = {q} and ∆ contains the transitions

(s, a, ε)→ (s,A)

(s, b, ε)→ (s,B)

(s, ε, ε)→ (p, ε)

(p, a,A)→ (p, ε)

(p, b, B)→ (p, ε)

(p, ε, Z)→ (q, ε)

107

Context-free languages

Definition:

A language is context-free if there exists a context-free grammar that can

generate it.

Examples

The language anbn, n ≥ 0, is generated by the grammar whose rules are

1. S → aSb

2. S → ε.

108

The language containing all words of the form wwR is generated by the

grammar whose productions are

1. S → aSa

2. S → bSb

3. S → ε.

109

The language generated by the grammar whose productions are

1. S → ε

2. S → aB

3. S → bA

4. A→ aS

5. A→ bAA

6. B → bS

7. B → aBB

is the language of the words that contain the same number of a’s and b’s

in any order

110

Relation with pushdown automata

Theorem

A language is context-free if and only if it is accepted by a pushdown

automaton.

111

Properties of context-free languages

Let L1 and L2 be two context-free languages.

• The language L1 ∪ L2 is context-free.

• The language L1 · L2 is context-free.

• L∗1 is context-free.

• L1 ∩ L2 and L1 are not necessarily context-free!

• If LR is a regular language and if the language L2 is context-free, then

LR ∩ L2 is context-free.

112

Let MR = (QR,ΣR, δR, sR, FR) be a deterministic finite automaton

accepting LR and let M2 = (Q2,Σ2,Γ2,∆2, Z2, s2, F2) be a pushdown

automaton accepting the language L2. The language LR ∩ L2 is accepted

by the pushdown automaton M = (Q,Σ,Γ,∆, Z, s, F) for which

• Q = QR ×Q2,

• Σ = ΣR ∪Σ2,

• Γ = Γ2,

• Z = Z2,

• s = (sR, s2),

• F = (FR × F2),

113

• (((qR, q2), u, β), ((pR, p2), γ)) ∈∆ if and only if

(qR, u) `∗MR
(pR, ε) (the automaton MR can move from the state qR

to the state pR, while reading the word u, this move being done in

one or several steps) and

((q2, u, β), (p2, γ)) ∈∆2 (The pushdown automaton can move from

the state q2 to the state p2 reading the word u and replacing β by γ

on the stack).

114

4.3 Beyond context-free languages

• There exist languages that are not context-free (for cardinality

reasons).

• We would like to show that some specific languages are not

context-free.

• For this, we are going to prove a form of pumping lemma.

• This requires a more abstract notion of derivation.

115

Example

1. S → SS

2. S → aSa

3. S → bSb

4. S → ε

Generation of aabaab:

S ⇒ SS ⇒ aSaS ⇒ aaS
⇒ aabSb⇒ aabaSab⇒ aabaab

S ⇒ SS ⇒ SbSb⇒ SbaSab
⇒ Sbaab⇒ aSabaab⇒ aabaab

and 8 other ways.

We need a representation of derivations that abstract from the order in

which production rules are applied.

116

The notion of parse tree

Parse tree for aabaab s

s

ε

Ss s

s
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A

a a

s s

s
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
AS

b b

s

s

ε

Ss s

s
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A

a a

S S

sS
�
�
�
�
�
�
�
�
�

S
S
S
S
S
S
S
S
S

117

Definition

A parse tree for a context-free grammar G = (V,Σ, R, S) is a tree whose

nodes are labeled by elements of V ∪ ε and that satisfies the following

conditions.

• The root is labeled by the start symbol S.

• Each interior node is labeled by a non-terminal.

• Each leaf is labeled by a terminal symbol or by ε.

118

• For each interior node, if its label is the non-terminal A and if its

direct successors are the nodes n1, n2, . . . , nk whose labels are

respectively X1, X2, . . . , Xk, then

A→ X1X2 . . . Xk

must be a production of G.

• If a node is labeled by ε, then this node must be the only successor of

its immediate predecessor (this last constraints aims only at preventing

the introduction of unnecessary copied of ε in the parse tree).

119

Generated word

The word generated by a parse tree is the one obtained by concatenating

its leaves from left to right

Theorem

Given a context-free grammar G, a word w is generated by G (S
∗⇒
G
w) if

and only if there exists a parse tree for the grammar G that generates w.

120

The pumping lemma

Lemma

Let L be a context-free language. Then there exists, a constant K such

that for any word w ∈ L satisfying |w| ≥ K can be written w = uvxyz with

v or y 6= ε, |vxy| ≤ K and uvnxynz ∈ L for all n ≥ 0.

Proof

A parse tree for G generating a sufficiently long word must contain a path

on which the same non-terminal appears at least twice.

121

t
�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A

x

�
�
�
�
�
�
�
�
�
�
�
�
�

L
L
L
L
L
L
L
L
L
L
L
L
L

A

v y

tS
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS

A
�
�
�
�
�
�
�
�
�
�
�
�
�

S
S
S
S
S
S
S
S
S
S
S
S
S

t

u z

122

s
�
�
�
�
�
�
��

A
A
A
A
A
A
AA

x

s
�
�
�
�
�
�
�
�
�
�

L
L
L
L
L
L
L
L
L
L

A

v y

s
�
�
�
�
�
�
�
�
�
�

L
L
L
L
L
L
L
L
L
L

A

v y

sS
�
�
�
�
�
�
�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
S
S
S
S
S
S
SS

A
�
�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
S
SS

s

u z

s
�
�
�
�
�
�
��

A
A
A
A
A
A
AA

x

s
�
�
�
�
�
�
�
�
�
�

L
L
L
L
L
L
L
L
L
L

A

v y

s
�
�
�
�
�
�
�
�
�
�

L
L
L
L
L
L
L
L
L
L

A

v y

s
�
�
�
�
�
�
�
�
�
�

L
L
L
L
L
L
L
L
L
L

A

v y

sS
�
�
�
�
�
�
�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
S
S
S
S
S
S
SS

A
�
�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
S
SS

s

u z

123

Choice of K

• p = max{|α|, A→ α ∈ R}

• The maximal length of a word generated by a tree of depth i is pi.

• We choose K = pm+1 where m = |{V −Σ}|.

• Thus |w| > pm and the parse tree contains paths of length ≥ m+ 1

that must include the same non terminal at least twice.

• Going back up one of these paths, a given non terminal will be seen

for the second time after having followed at most m+ 1 arcs. Thus

one can choose vxy of length at most pm+1 = K.

• Note: v and y cannot both be the empty word for all paths of length

greater than m+ 1. Indeed, if this was the case, the generated word

would be of length less than pm+1.

124

Applications of the pumping lemma

L = {anbncn} is not context-free.

Proof

There is no decomposition of anbncn in 5 parts u, v, x, y and z (v or y

nonempty) such that, for all j > 0, uvjxyjz ∈ L. Thus the pumping lemma

is not satisfied and the language cannot be context-free.

• v and y consist of the repetition of a unique letter. Impossible

• v and y include different letters. Impossible.

125

1. There exist two context-free languages L1 and L2 such that L1 ∩ L2 is

not context-free :

• L1 = {anbncm} is context-free,

• L2 = {ambncn} is context-free, but

• L1 ∩ L2 = {anbncn} is not context-free !

2. The complement of a context-free language is not necessarily

context-free. Indeed, the union of context-free languages is always a

context-free language. Thus, if the complement was context-free, so

would be intersection:

L1 ∩ L2 = L1 ∪ L2.

126

Algorithms for context-free languages

Let L be a context-free language (defined by a grammar or a pushdown

automaton).

1. Given a word w, there exists an algorithm for checking whether w ∈ L.

2. There exists an algorithm for checking if L = ∅.

3. There is no algorithm for checking if L = Σ∗.

4. If L′ is also a context-free language, there is no algorithm that can

check if L ∩ L′ = ∅.

127

Theorem

Given context-free grammar G, there exists an algorithm that decides if a

word w belongs to L(G).

Proof

• Pushdown automaton? No, since these are nondeterministic and

contain transitions on the empty word.

• Idea: bound the length of the executions. This will be done in the

context of grammars (bound on the length of derivations).

128

Hypothesis: bounded derivations

To check if w ∈ L(G):

1. One computes a bound k on the number of steps that are necessary

to derive a word of length |w|.

2. One then explores systematically all derivations of length less than or

equal to k. There is a finite number of such derivations.

3. If one of these derivations produces the word w, the word is in L(G). If

not, the word cannot be produced by the grammar and is not in L(G).

129

Grammars with bounded derivations

Problem:

A→ B
B → A

Solution: Grammar satisfying the following constraints

1. A→ σ with σ terminal, or

2. A→ v with |v| ≥ 2.

3. Exception: S → ε

Bound: 2× |w| − 1

130

Obtaining a grammar with

bounded derivations

1. Eliminate rules of the form A→ ε.

If A→ ε and B → vAu one adds the rule B → vu. The rule A→ ε can then

be eliminated.

If one eliminates the rule S → ε, one introduces a new start symbol S′ and

the rules S′ → ε, as well as S′ → α for each production of the form S → α.

131

2. Eliminating rules of the form A→ B.

For each pair of non-terminals A and B one determines if A
∗⇒ B.

If the answer is positive, for each production of the form B → u

(u 6∈ V −Σ), one adds the production A→ u.

All productions of the form A→ B can then be eliminated.

132

Theorem

Given a context-free grammar G, there exists an algorithm for checking if

L(G) = ∅.

• Idea: search for a parse tree for G.

• One builds parse trees in order of increasing depth.

• The depth of the parse trees can be limited to |V −Σ|.

133

Deterministic pushdown automata

Two transitions ((p1, u1, β1), (q1, γ1)) and ((p2, u2, β2), (q2, γ2)) are

compatible if

1. p1 = p2,

2. u1 and u2 are compatible (which means that u1 is a prefix of u2 or

that u2 is a prefix of u1),

3. β1 and β2 are compatible.

A pushdown automaton is deterministic if for every pair of compatible

transitions, theses transitions are identical.

134

Deterministic context-free languages

Let L be a language defined over the alphabet Σ, the language L is

deterministic context-free if and only if it is accepted by a deterministic

pushdown automaton.

• Not all context-free languages are deterministic context-free.

• L1 = {wcwR | w ∈ {a, b}∗} is deterministic context-free.

• L2 = {wwR | w ∈ {a, b}∗} is context-free, but not deterministic

context-free.

135

Properties of deterministic

context-free languages

If L1 and L2 are deterministic context-free languages,

• Σ∗ − L1 is also deterministic context-free.

• There exists context-free languages that are not deterministic

context-free.

• The languages L1 ∪ L2 and L1 ∩ L2 are not necessarily deterministic

context-free.

136

Applications of context-free languages

• Description and syntactic analysis of programming languages.

• Restriction to deterministic context-free languages.

• Restricted families of grammars:LR.

137

