
Chapter 7

Uncomputability

190

7.1 Introduction

• Undecidability of concrete problems.

• First undecidable problem obtained by diagonalisation.

• Other undecidable problems obtained by means of the reduction

technique.

• Properties of languages accepted by Turing machines.

191

7.2 Proving undecidability

Undecidability classes

Correspondence between a problem and the language of the encodings of

its positive instances.

Definition

The decidability class R is the set of languages that can be decided by a

Turing machine.

The class R is the class of languages (problems) that are

• decided by a Turing machine,

• recursive, decidable, computable,

• algorithmically solvable.

192

Definition

The decidability class RE is the set of languages that can be accepted by

a Turing machine.

The class RE is the class of languages (problems) that are

• accepted by a Turing machine,

• partially recursive, partially decidable, partially computable,

• partially algorithmically solvable,

• recursively enumerable.

Lemma

The class R is contained in the class RE (R ⊆ RE)

193

A first undecidable language

A w0 w1 w2 . . . wj . . .
M0 Y N N . . . Y . . .
M1 N N Y . . . Y . . .
M2 Y Y N . . . N . . .

...
Mi N N Y . . . N . . .
...

• A[Mi, wj] = Y (yes) if the Turing machine Mi accepts the word wj ;

• A[Mi, wj] = N (no) if the Turing machine Mi does not accept the word

wj (loops or rejects the word).

L0 = {w|w = wi ∧A[Mi, wi] = N}.

is not in the class RE.

194

A second undecidable language

Lemma

The complement of a language in the class R is also in the class R.

Lemma

If a language L and its complement L are both in the class RE, then both

L and L are in R.

Three situations are thus possible:

1. L and L ∈ R,

2. L 6∈ RE and L 6∈ RE,

3. L 6∈ RE and L ∈ RE ∩R.

195

Lemma

The language

L0 = {w|w = wi ∧Mi accepts wi}

is in the class RE.

Theorem

The language L0 is undecidable (is not in R), but is in RE.

RE

L0

R

L0

196

The reduction technique

1. One proves that, if there exists an algorithm that decides the language

L2, then there exists an algorithm that decides the language L1. This

is done by providing an algorithm (formally a Turing machine that

stops on all inputs) that decides the language L1, using as a

sub-program an algorithm that decides L2. This type of algorithm is

called a reductionfrom L1 to L2. Indeed, it reduces the decidability of

L1 to that of L2.

2. If L1 is undecidable, one can conclude that L2 is also undecidable

(L2 6∈ R). Indeed, the reduction from L1 to L2 establishes that if L2

was decidable, L1 would also be decidable, which contradicts the

hypothesis that L1 is an undecidable language.

197

The universal language UL

UL = {< M,w >|M accepts w}

is undecidable.

Reduction from L0 : to check if a word w is in L0, proceed as follows.

1. Find the value i such that w = wi.

2. Find the Turing machine Mi.

3. Apply the decision procedure for UL to the wprd < Mi, wi >: if the

result is positive, w is accepted, if not it is rejected.

Note : UL 6∈ RE

198

More undecidable problems

The halting problem

H = {< M,w >|M stops on w}

is undecidable. Reduction from UL.

1. Apply the algorithm deciding H to < M,w >.

2. If the algorithm deciding H gives the answer “no” (i.e. the machine M

does not stop), answer “no” (in this case, we have indeed that

< M,w >6∈ UL).

3. If the algorithm deciding H gives the answer “yes, simulate the

execution of M on w and give the answer that is obtained (in this

case, the execution of M on w terminates and one always obtains an

answer).

199

The problem of determining if a program written in a commonly used

programming language (for example C or, Java) stops for given input

values is undecidable. This is proved by reduction from the halting

problem for Turing machines.

1. Build a C program P that, given a Turing machine M and a word w,

simulates the behaviour of M on w.

2. Decide if the program P stops for the input < M,w > and use the

result as answer.

200

The problem of deciding if a Turing machine stops when its input word is

the empty word (the empty-word halting problem) is undecidable. This is

proved by reduction from the halting problem.

1. For an instance < M,w > of the halting problem, one builds a Turing

machine M ′ that has the following behaviour:

• it writes the word w on its input tape;

• it then behaves exactly as M .

2. One solves the empty-word halting problem for M ′ and uses the result

as answer.

201

The problem of deciding if a Turing machine stops for at least one input

word (the existential halting problem) is undecidable. One proceeds by

reduction from the empty-word halting problem.

1. For an instance M of the empty-word halting problem, one builds a

Turing machine M ′that behaves as follows:

• it erases the content of its input tape;

• it then behaves as M .

2. One solve the existential halting problem for M ′ and uses the result as

answer.

202

The problem of deciding if a Turing machine stops for every input word

(the universal halting problem) is undecidable. The reduction proceeds

from the empty-word halting problem and is identical to the one used for

the existential halting problem. The only difference is that one solves the

universal halting problem for M ′, rather than the existential halting

problem.

203

Determining if the language accepted by a Turing machine is empty

(empty accepted language) is undecidable. Reduction from UL.

1. For an instance < M,w > of UL, one builds a Turing machine M ′ that

• simulates the execution of M on w ignoring its own input word;

• if M accepts w, it accepts is input word, whatever it is.

• if M does not accept w (rejects or has an infinite execution) it does

not accept any word.

2. One solves the empty accepted language problem for M ′ and uses the

result as answer.

204

This reduction is correct given that

• L(M ′) = ∅ exactly when M does not accept w, i.e., when

< M,w >∈ UL ;

• L(M ′) = Σ∗ 6= ∅ exactly when M accepts w, i.e. when < M,w >6∈ UL.

205

Determining if the language accepted by a Turing machine is recursive

(recursive accepted language) is undecidable. Reduction from UL.

1. For an instance < M,w > of UL, one builds a Turing machine M ′ that

• simulates the execution of M on w ignoring its own input word;

• if M accepts w, it behaves on its own input word as a universal

turing machine.

• if M does not accept w (rejects or has an infinite execution) it does

not accept any word.

2. One solves the recursive accepted language problem for M ′ and uses

the result as answer.

206

This reduction is correct since

• L(M ′) = ∅ and is recursive exactly when M does not accept w, i. e.

when < M,w >∈ UL ;

• L(M ′) = UL and is not recursive exactly when M accepts w, i.e. when

< M,w >6∈ UL.

207

Determining if the language accepted by a Turing machine is not recursive

(undecidable) (undecidable accepted language) is undecidable. Reduction

from UL.

1. For an instance < M,w > of UL, one builds a Turing machine M ′ that

• simulates the execution of M on w, without looking at its own

input word x;

• simultaneously (i.e. interleaving the executions), the machine M ′

simulates the universal Turing machine on its own input word x;

• As soon as one of the executions accepts, (i.e., if M accepts w or if

the input word is in UL), M ′ accepts.

208

2. If neither of the two executions accepts (i.e., if M does not accept w,

or if the input word x 6∈ UL), M ′ does not accept.

3. One solves the undecidable accepted language problem for M ′ and

uses the result as answer.

209

This reduction is correct since

• L(M ′) = UL and is undecidable exactly when M does not accept w,

i.e., when < M,w >∈ UL ;

• L(M ′) = Σ∗ and is decidable exactly when M accepts w, i.e. when

< M,w >6∈ UL.

210

In the preceding reductions, the language accepted by the machine M ′ is

either UL, or ∅, or Σ∗. These proofs can thus also be used to establish

that the problem of determining if the language accepted by a Turing

machine is regular (or non regular) is undecidable. Indeed, ∅ and Σ∗ are

regular languages, whereas UL is not a regular language.

211

7.4 Properties of

recursively enumerable languages

The recursively enumerable languages are :

• The languages computed by a Turing machine,

• the languages generated by a grammar,

• The languages that can be enumerated by an effective procedure

(which explains why they are called “recursively enumerable”).

212

The languages computed by a Turing machine

Definition

Let M be a Turing machine.If M stops on an input word u, let fM(u) be

the word computed by M for u. The language computed by M is then the

set of words

{w | ∃u such that M stops for u and w = fM(u)}.

Theorem

A language is computed by a Turing machine if and only if it is recursively

enumerable (accepted by a Turing machine).

213

Let L be a language accepted by a Turing machine M . The Turing

machine M ′ described below computes this language.

1. The machine M ′ first memorises its input word (one can assume that

it uses a second tape for doing this).

2. Thereafter, it behaves exactly as M .

3. If M accepts, M ′ copies the memorised input word onto its tape.

4. If M does not accept, M ′ keeps running forever.

214

Let L be a language computed by a Turing machine M . The

nondeterministic Turing machine described below accepts this language.

1. The machine M ′ first memorises its input word w.

2. Thereafter, it generates nondeterministically a word u.

3. The machine M ′ then simulates the behaviour of M on u.

4. If M stops on u, M ′ compares w to fM(u) and accepts w if w = fM(u).

5. If M does not stop on u, M ′ does not accept w.

215

The languages generated by a grammar

Theprem

A language is generated by a grammar if and only if it is recursively

enumerable.

Let G = (V,Σ, R, S), The Turing machine M described below accepts the

language generated by G.

1. The machine M starts by memorising its input word (we can assume it

uses a second tape to do so).

2. Then, it erases its tape and writes on it the start symbol S of the

grammar.

216

3. The following cycle is then repeated :

(a) nondeterministically, the machine chooses a rule R and a string

appearing on its tape;

(b) if the selected string is identical to the left-hand side of the rule, it

is replaced by the right-hand side;

(c) the content of the tape is compared to the memorised input word,

and if they are identical the machine accepts; if not it carries on

with its execution.

217

Let M = (Q,Γ,Σ, δ, s, B, F) be a Turing machine. One builds a grammar

G0 = (VG0
,ΣG0

, RG0
, SG0

)

such that SG0

∗⇒ w with w ∈ (Q ∪ Γ)∗ if and only if w describes a

configuration (q, α1, α2) of M written as α1qα2.

The grammar G0 is defined by

• VG0
= Q ∪ Γ ∪ {SG0

, A1, A2},

• ΣG0
= Σ,

• RG0
is the set of rules below.

218

1. Initial configuration of M :

SG0
→ sA1

A1 → aA1 ∀a ∈ Σ
A1 → A2
A2 → BA2
A2 → ε.

2. Transitions. For all p, q ∈ Q and X,Y ∈ Γ such that

δ(q,X) = (p, Y,R)

we include the rule

qX → Y p.

Similarly, for all p, q ∈ Q and X,Y, Z ∈ Γ such that

δ(q,X) = (p, Y, L)

we include the rule

ZqX → pZY.

219

Problem: the input word is lost.

Solution: simulate a Turing machine with two tapes.

G1 = (VG1
,ΣG1

, RG1
, SG1

) where

• VG1
= Σ ∪Q ∪ ((Σ ∪ {e})× Γ) ∪ {SG1

, A1, A2} (we represent an element

of ((Σ ∪ {e})× Γ) by a pair [a,X]),

• ΣG1
= Σ,

• RG1
is the set of rules described below.

220

1. Initial configuration of M :

SG1
→ sA1

A1 → [a, a]A1 ∀a ∈ Σ
A1 → A2
A2 → [e,B]A2
A2 → ε.

2. Transitions. For all p, q ∈ Q, X,Y ∈ Γ and a ∈ Σ ∪ {e} such that

δ(q,X) = (p, Y,R)

we include the rule

q[a,X]→ [a, Y]p.

Similarly, for all p, q ∈ Q, X,Y, Z ∈ Γ and a, b ∈ Σ ∪ {e} such that

δ(q,X) = (p, Y, L)

we include the rule

[b, Z]q[a,X]→ p[b, Z][a, Y].

221

3. For all q ∈ F , X ∈ Γ and a ∈ Σ ∪ {e}, we include the rules

q[a,X] → qaq
[a,X]q → qaq

if a 6= e and

q[a,X] → q
[a,X]q → q

if a = e. These rules propagate a copy of q next to each nonterminal

[a,X] and extract its first component. Finally, we add

q → ε

that allows the copies of the state q to be removed.

222

The languages enumerated by an effective procedure

Turing machine that enumerates the words accepted by M .

• Generate all words in lexicographical and increasing length order,

• simulate M on each newly generated word and keep this word only if it

is accepted by M .

Incorrect: the Turing machine can have infinite executions.

Solution: other enumeration order.

223

w \ n 1 2 3 4
w1 (w1,1) → (w1,2) (w1,3) → (w1,4)

↙ ↗ ↙
w2 (w2,1) (w2,2) (w2,3)

↓ ↗ ↙
w3 (w3,1) (w3,2) (w3,3)

↙
w4 (w4,1)

↓

• One considers the pairs (w, n) in the order of their enumeration.

• For each of these pairs, one simulates the execution of M on w, but

limits the execution to n steps. On produces the word w if this

execution accepts w.

• On then moves to the next pair (w, n).

224

7.5 Other undecidable problems

The problem of determining if a word w is in the language generated by a

grammar G is undecidable.

Reduction from the problem UL. Let < M,w > be an instance of the

problem UL. It can be solved as follows:

1. one builds the grammar G generating the language accepted by M

2. one determines if w ∈ L(G) and uses the result as answer.

225

The problem of deciding if two grammars G1 and G2 generate the same

language is undecidable.

Reduction from the membership problem for the language generated by a

grammar. An instance < w,G > of this problem can be solved as follows:

1. Let G = (V,Σ, R, S). One builds the grammars G1 = G and

G2 = (V,Σ, R′, S′), with

R′ = R ∪ {S′ → S, S′ → w}.

2. One checks if L(G1) = L(G2) and uses the result as answer.

One has indeed that L(G2) = L(G1) ∪ {w} and thus that L(G2) = L(G1) if

and only if w ∈ L(G).

226

The problem of determining validity in the predicate calculus is

undecidable

The problem of determining the universality of a context-free language,

i.e., the problem of determining if for a context-free grammar G one has

L(G) = Σ∗ is undecidable.

227

The problem of determining the emptiness of the intersection of

context-free languages is undecidable.

The problem is to determine if, for two context-free grammars G1 and G2,

one has L(G1) ∩ L(G2) = ∅.

Hilbert’s tenth problem is undecidable. This problem is to determine if an

equation

p(x1, . . . , xn) = 0

where p(x1, . . . , xn) is an integer coefficient polynomial, has an integer

solution.

228

Noncomputable functions

A total function

f : Σ∗1 → Σ∗2

is computable if and only if the following questions are decidable.

1. Given n ∈ N and w ∈ Σ∗1, do we have that |f(w)| > n ?

2. Given k ∈ N , w ∈ Σ∗1 and a ∈ Σ2, do we have that f(w)k = a ? (is the

kth letter of f(w) a?).

229

The situation is similar in the case of a partial function. A function

f : Σ∗1 → Σ∗2

is a partially computable function if and only if the following conditions

are satisfied.

1. Checking if for a given word w, f(w) is defined is partially decidable.

2. For n ∈ N and w ∈ Σ∗1 such that f(w) is defined, checking if |f(w)| > n

is decidable.

3. For k ∈ N , a ∈ Σ2 and w ∈ Σ∗1 such that f(w) is defined, checking if

f(w)k = a is decidable.

230

