
Interaction and cooperation

among processes

130



Motivation

Simultaneously active processes are said to be executed concurrently or in

parallel. They can operate completely independently, but some interaction

between parallel processes is often needed. The origin of this need for

interaction can be one of the following:

• The processes are cooperating towards a common goal, for example

– parallel computing on a multiprocessor machine,

– cooperation between processes running on different machines in the

context of a distributed application,

– a program is written as parallel tasks, for instance in the case of a

control system;

• Sharing resources, for example a disk-based file system.

131



Managing interaction between parallel processes:
Interprocess communication

For now, we consider processes executed on a single, possibly
multiprocessor, machine.

• Process interaction will take place with system calls designed for this
purpose.

• A first interprocess communication mechanism is the creation of
shared memory segments, i.e. physical memory segments that appear
in the virtual memory of several processes.

• Once a shared memory segment has been created, the processes can
interact through this shared memory.

• The problem to be solved is to develop programming techniques that
can exploit this form of interaction.

132



A shared memory segment

Physical memoryVirtual space 1 Virtual space 2

Shared
segment

Shared
segment

133



Understanding shared memory

• The basic operations on shared memory are reads and writes (LD et

ST).

• The LD and ST instructions are executed atomically (without any

possible interaction). Indeed,

– on a single processor, switching between processes always occurs at

instruction boundaries;

– on a shared memory multiprocessor, a mechanism guaranteeing

exclusive access to the bus connecting the processors to the

memory is essential.

• The behavior of the processes will thus depend on the order in which

the LD and ST instructions of the different processes are executed.

• In most cases, this order is unknown and will vary from one execution

to another.

134



A process interaction example

In the program below, we assume that, for each process, r2 contains the
address of a word in shared memory that has been initialized to 0.

Process 1

LD(r2,0,r0)

ADDC(r0,1,r0)

ST(r0,0,r2)

Process 2

LD(r2,0,r0)

ADDC(r0,1,r0)

ST(r0,0,r2)

Depending on whether the execution order is

LD(r2,0,r0)

ADDC(r0,1,r0)

ST(r0,0,r2)

LD(r2,0,r0)

ADDC(r0,1,r0)

ST(r0,0,r2)

or

LD(r2,0,r0)

ADDC(r0,1,r0)

ST(r0,0,r2)

LD(r2,0,r0)

ADDC(r0,1,r0)

ST(r0,0,r2)

the word in shared memory will have the value 2 or the value 1 after the
execution of the processes. Note that since each process operates in its
own context, registers are not shared.

135



Possible execution orders:
The interleaving model

• If process interaction is limited to the atomic shared memory accesses

LD and ST, the result of a concurrent execution will be the same as

that of a serialization (an interleaving) of the processes’ instructions.

• This is obvious on a machine with a single processor; on a

multiprocessor it is a consequence of the fact that the operations LD

and ST are atomic and that these operations are thus executed

sequentially. Since there is no interaction linked to other instructions,

executing them in parallel or sequentially yields the same result.

• The serialization that will actually be observed will depend on the

process scheduler and on the state of the machine when the program

is executed.

136



• Given that these items are not perfectly known and can vary

depending on the execution, we will assume that any serialization can

be observed. This is what is called the interleaving model:

The result of the execution of parallel pro-

cesses can be that of any interleaving of the

elementary instructions executed by these pro-

cesses.

• Thus, when writing a program that will be executed as parallel

processes (a parallel program), one must make sure that it is correct

for all interleavings of the elementary instructions it is composed of.

137



Writing parallel programs

• The interleaving model is a simple and safe abstraction of the

behavior of parallel programs, but it is not easy to write programs that

are correct for this model.

• Consider the case of a shared data structure. If several processes are

simultaneously applying operations composed of several elementary

actions, it is hard to ensure that these simultaneous operations will be

performed correctly.

• The solution is to turn these operations on the shared data structure

into atomic operations, in other words to ensures that only one

process at a time can modify the date structure.

• For doing this, we need an algorithm to guarantee mutual exclusion.

138



Mutual exclusion

• The mutual exclusion problem consists in guaranteeing that code
sections, called critical sections, of parallel programs are never
executed simultaneously.

• Precisely, it is required that when a process enters a critical section,
no other process can do the same before this process has finished
executing the critical section.

• Mutual exclusion is a basic building block that makes it possible to
write complex parallel programs.

• Using only shared memory, mutual exclusion is harder to achieve than
one might think at first sight.

• We will consider the case of 2 processes.

139



Mutual exclusion : general schema

Consider two processes whose structure is the following.

#define True = 1

#define False = 0

Process 1 :

while (True)

{ nc1: /* non critical

section */

/* entry protocol */

crit1: /* critical section */

/* exit protocol */

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

/* entry protocol */

crit2: /* critical section */

/* exit protocol */

}

Both processes cannot simultaneously be at locations crit1 and crit2.

140



Mutual exclusion : first try

int Turn = 1;

Process 1 :

while (True)

{ nc1: /* non critical

section */ ;

while (Turn == 2) {};

crit1: /* critical section */ ;

Turn = 2;

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

while (Turn == 1) {};

crit2: /* critical section */

Turn = 1;

}

This solution guarantees mutual exclusion, but imposes a strict

alternation between the two processes, which is too restrictive.

141



Mutual exclusion : second try

int c1,c2 = 1;

Process 1 :

while (True)

{ nc1: /* non critical

section */ ;

while (c2 == 0) {};

c1 = 0;

crit1: /* critical section */ ;

c1 = 1;

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

while (c1 == 0) {};

c2 = 0;

crit2: /* critical section */

c2 = 1;

}

Mutual exclusion is not guaranteed: c1 c2

1 1 P1 checks c2

1 1 P2 checks c1

1 1 P1 : c1 = 0

0 1 P2 : c2 = 0

0 0 Ouch! !

142



mutual exclusion : third try

int c1,c2 = 1;

Process 1 :

while (True)

{ nc1: /* non critical

section */ ;

c1 = 0;

while (c2 == 0) {};

crit1: /* critical section */ ;

c1 = 1;

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

c2 = 0;

while (c1 == 0) {};

crit2: /* critical section */

c2 = 1;

}

The program can get stuck : c1 c2

1 1 P1 : c1 = 0

0 1 P2 : c2 = 0

0 0 P1 checks c2

0 0 P2 checks c1

Such a blocked situation is called a deadlock (étreinte fatale in French).

143



mutual exclusion : fourth try

int c1,c2 = 1;

Process 1 :

while (True)

{ nc1: /* non critical

section */ ;

c1 = 0;

while (c2 == 0)

{ c1 = 1;

/* wait*/;

c1 = 0;

};

crit1: /* critical section */ ;

c1 = 1;

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

c2 = 0;

while (c1 == 0)

{ c2 = 1;

/* wait */;

c2 = 0;

};

crit2: /* critical section */

c2 = 1;

}

144



In this solution, if a process finds out that it cannot proceed to its critical

section, it gives up for a while before trying again. A blocked situation is

still possible, but it will persist only if there is a perfect symmetry between

the execution of the two processes.

c1 c2

1 1 P1 : c1 = 0

0 1 P2 : c2 = 0

0 0 P1 chekcs c2

0 0 P2 checks c1

0 0 P1 : c1 = 1

1 0 P2 : c2 = 1

1 1 P1 : c1 = 0

0 1 P2 : c2 = 0

0 0 P1 checks c2

0 0 P2 checks c1

145



Mutual exclusion : Dekker’s algorithm

int c1,c2, Turn = 1;

Process 1 :

while (True)

{ nc1: /* non critical

section */ ;

c1 = 0;

while (c2 == 0)

{ c1 = 1;

while (Turn == 2) {};

c1 = 0;

};

crit1: /* critical section */ ;

Turn = 2;

c1 = 1;

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

c2 = 0;

while (c1 == 0)

{ c2 = 1;

while (Turn == 1) {};

c2 = 0;

};

crit2: /* critical section */

Turn = 1;

c2 = 1;

}

The symmetry of the previous solution id broken thanks to the variable
Turn.

146



Is Dekker’s algorithm correct?

• Apparently yes, but how can one show this rigorously?

• One approach is to systematically examine all possible interleavings of

the actions of the processes.

• For doing this, it is convenient to present the program in which the

the control structure and the actions of the process are explicit.

• One then explores the possible executions of the program, while

remembering the states that have been reached in order to stop the

exploration when reaching a state that has previously been reached.

147



Dekker with explicit control
(slightly modified version)

Initializations : c1 = 1; c2 = 1; trn = 1

����
HH

HH��
��
HH

HH

�
���

HH
HH��

��
H

HH
H

��
��
HHHH��

��
HH

HH

?

?

?

?

?

?

-

-

?

?

�

�

T F

T

F

F T

a1

a2

a3

a5

a7

a4

a6

a8

nc1

c1=0

c2==0

crit1

trn=2
c1=1

trn==2

c1=1

trn==1

����
HH

HH��
��
HH

HH

�
���

HH
HH��

��
H
HH

H

��
��
HHHH��

��
HH

HH

?

?

?

?

?

?

-

-

?

?

�

�

T F

T

F

F T

b1

b2

b3

b5

b7

b4

b6

b8

nc2

c2=0

c1==0

crit2

trn=1
c2=1

trn==1

c2=1

trn==2

148



Exploring the executions of Dekker’s algorithm

• During the execution of the algorithm, a state of the system is

characterized by

– a control location for each process,

– a value for the three variables c1, c2 et trn.

• A state is thus a 5-tuple

(loc1,loc2,c1,c2,trn)

• The initial state is (a1,b1,1,1,1)

• It is then sufficient, starting from the initial state, to generate new

states by considering all possible actions.

• Exploring the executions (the possible states or state space) stops

when no new state can be reached, which is bound to happen since

there are at most 8 × 8 × 2 × 2 × 2 = 512 states.

149



Exploring the state space of Dekker’s algorithm

a1,b1,1,1,1

a3,b1,0,1,1

a2,b1,1,1,1

a2,b2,1,1,1

a1,b2,1,1,1

a5,b1,0,1,1

a7,b1,0,1,1

a1,b1,1,1,2

a2,b3,1,0,1

nc1

a1,b3,1,0,1

a4,b3,0,0,1

a3,b3,0,0,1a5,b2,0,1,1

a7,b2,0,1,1

nc2

nc2

nc2

c1=0

c2==0

a3,b2,0,1,1

nc1

c1=0 nc1

c2==0

nc2 c2==0 c2=0crit1

crit1nc2

c1=0

c2=0

c2=0

150



Interpreting state space exploration

• The mutual exclusion property is satisfied if it is impossible to reach a

state in which the locations are a5-a7 and b5-b7.

• It is also possible to use state space exploration to check if a process

that wishes to do so (reaches a3 or b3) will eventually reach its critical

section.

• To do this, one must, for example, check that every path starting

from a state in which Process 1 is at a3 will eventually reach a5.

• However, one can see that this is not always the case. Why ?

151



Fairness

• The correct operation of Dekker’s algorithm depends on the fact that
each process will always eventually progress.

• This property depends on the process scheduler, all the detail of which
are not always known.

• We will not model the process scheduler, but we will correct the
interleaving model with a constraint that represent a minimal
condition that has to be satisfied by any process scheduler: a fairness
hypothesis.

• A simple fairness hypothesis that is sufficient to reason about Dekker’s
algorithm is the following.

Every process that has the possibility of exe-

cuting an instruction will always eventually do

so.

152



Safety properties - Liveness properties

Among the properties that can be specified for a concurrent programs one

distinguishes the two following categories.

• The safety properties. These are the properties that specify the

undesirable states are never reached. They do not depend on a

fairness hypothesis.

The liveness properties. These specify that desirable states will

inevitably be reached. Usually, these properties are true only if a

fairness hypothesis is taken into account.

153



The limitations of shared memory

• Even if it is possible, synchronizing processes using only shared

memory is a difficult.

• Indeed, an algorithm such as Dekker’s is non obvious and is not easily

extended to more than two processes.

• Another drawback of an algorithm such as Dekker’s is that a waiting

process still uses the CPU.

• It would be very useful to have another synchronization mechanism

that makes a better implementation of mutual exclusion possible.

• We will study semaphores which appear as shared variables only

accessible through specific system calls.

154



The semaphore concept

A semaphore is a shared integer variable. Its value is positive or 0 and it

can only be accessed through the two operations wait(s) and signal(s),

where s is an identifier representing the semaphore.

• wait(s) decrements s if s > 0 ; if not, the process executing the

operation wait(s) is suspended.

• signal(s) increments s. The execution of signal(s) can have as result

(possibly delayed) that a process waiting on the semaphore s resumes

its execution. Executing a wait(s) or a signal(s) operation is done

without any possible interaction (atomically).

155



Mutual exclusion with semaphores

Semaphores make a very simple implementation of mutual exclusion

possible.

semaphore s = 1;

Process 1 :

while (True)

{ nc1: /* non critical

section */ ;

wait(s);

crit1: /* critical section */ ;

signal(s);

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

wait(s);

crit2: /* critical section */

signal(s)

}

156



Mutual exclusion and semaphores: notes

• The solution just shown can be directly generalized to any number of

processes.

• If the semaphore is initialized to a value k other than 1, one obtains a

solution that allows k processes to be simultaneously in their critical

section.

• The correct operation of mutual exclusion implemented with

semaphores requires fairness in the handling of the processes

suspended by the wait operation.

157


