
The readers-writers problem

Communication through

message passing

223

The readers-writers problem:
definition

This problem is a generalization of the mutual exclusion problem. There

are two types of processes:

The readers that only read the information and thus can simultaneously

access the critical section;

The writers that modify (write) the data and thus must have access in

strict mutual exclusion.

Thus, may simultaneous have access to the critical section either

• A single writer and no readers, or

• Several readers and no writers.

224

The readers-writers problem:
Solution structure

• The idea of the solution if to generalize the notion of semaphore into

a shared object of type RWflag designed to manage the required more

elaborate notion of mutual exclusion.

• Four operations are possible on the shared object:

– startRead and startWrite that, respectively for the readers and

writers, replace the operation wait used in the semaphore

implementation of mutual exclusion;

– endRead and endWrite that, respectively for the readers and writers,

replace the operation signal.

225

The readers-writers problem:
The reader and the writer processes

The reader and writer processes respectively execute the programs below.

- rw is a shared object of type RWflag,

- readthedata() is the method performing read access to the shared
data, and

- writethedata() is the method performing write access to the data.

Reader

{ while(true)

{ rw.startRead();

readthedata();

rw.endRead();

}

}

Writer

{ while(true)

{ rw.startWrite();

writethedata();

rw.endWrite();

}

}

The class RWflag still needs to be defined.

226

The readers-writers problem:
The class RWflag

• The class RWflag uses two wait queues: okw for the processes waiting
to write and okr for the processes waiting to read. These queues will
be directly implemented with semaphores.

• In order to have immediate resumption, mutual exclusion of the
methods of the class RWflag is explicitly implemented with a
semaphore mutex.

public class RWflag {

private int readers; /* nb of readers */

private boolean writing; /* writer active ? */

private SemaphoreFIFO mutex, okw, okr;

public RWflag()

{ writing = false; readers = 0; mutex = new SemaphoreFIFO(1);

okw = new SemaphoreFIFO(0); okr = new SemaphoreFIFO(0);

}

227

The readers-writers problem:
The methods startRead() and startWrite() (1st attempt)

public void startRead()

{ mutex.semWait();

if (writing)

{ mutex.semSignal();

okr.semWait();

}

readers++;

mutex.semSignal();

}

public void startWrite()

{ mutex.semWait();

if ((readers != 0) ||

writing)

{ mutex.semSignal();

okw.semWait();

}

writing = true;

mutex.semSignal();

}

228

The readers-writers problem:
The methods endRead() and endWrite() (1st attempt)

public void endRead()

{ mutex.semWait();

readers--;

if ((readers == 0)

&& (okw.semNbWait() > 0))

okw.semSignal();

else mutex.semSignal();

}

public void endWrite()

{ mutex.semWait();

writing = false ;

if (okr.semNbWait() > 0)

okr.semSignal();

else

if (okw.semNbWait() > 0)

okw.semSignal();

else mutex.semSignal();

}

229

The readers-writers problem:
Notes on the 1st attempt

• In startRead (startWrite), the process is placed on the corresponding

wait queue, if the condition for reading (writing) is not satisfied.

• In endRead a waiting writer (if any) is freed when the number of

readers reaches 0.

• In endWrite one can choose between freeing a waiting reader of a

waiting writer. If there is a waiting reader, he is allowed to proceed, if

not a waiting writer (if any) is freed.

• A major drawback of the solution is that it allows a group of readers,

one of which always being active, to exclude the writers.

• A solution is to block readers as soon as a writer is waiting.

230

The readers-writers problem:
The methods startRead() and startWrite() (2nd attempt)

public void startRead()

{ mutex.semWait();

if ((writing) ||

(okw.semNbWait() > 0))

{ mutex.semSignal();

okr.semWait();

}

readers++;

mutex.semSignal();

}

public void startWrite()

{ mutex.semWait();

if ((readers != 0) ||

writing)

{ mutex.semSignal();

okw.semWait();

}

writing = true;

mutex.semSignal();

}

The methods endRead and endWrite are not modified.

231

The readers-writers problem:
Notes on the second attempt

• In this second version, all readers wishing to access the shared data
are blocked as soon as a writer is waiting.

• The waiting writer will eventually have access to the shared data.
Indeed, since no new reader is allowed to proceed, the number of
readers will eventually reach 0.

• Once the writer has finished, he yields access to the first waiting
reader (if any), or to the next writer if there is one.

• When there is high demand from both readers and writers, access will
be alternately given to a writer and and single reader. This is not
efficient since several readers could operate simultaneously.

• A better solution would be to free all waiting readers when a writer
exits the critical section.

232

The readers-writers problem:
The methods startRead() and startWrite()

public void startRead()

{ mutex.semWait();

if ((writing) ||

(okw.semNbWait() > 0))

{ mutex.semSignal();

okr.semWait();

}

readers++;

if (okr.semNbWait() > 0)

okr.semSignal();

else mutex.semSignal();

}

public void startWrite()

{ mutex.semWait();

if ((readers != 0) ||

writing)

{ mutex.semSignal();

okw.semWait();

}

writing = true;

mutex.semSignal();

}

233

The readers-writers problem:
The methods endRead() and endWrite()

public void endRead()

{ mutex.semWait();

readers--;

if ((readers == 0)

&& (okw.semNbWait() > 0))

okw.semSignal();

else mutex.semSignal();

}

public void endWrite()

{ mutex.semWait();

writing = false ;

if (okr.semNbWait() > 0)

okr.semSignal();

else

if (okw.semNbWait() > 0)

okw.semSignal();

else mutex.semSignal();

}

234

The readers-writers problem:
Notes on the final solution

• The only change with respect to the previous version can be found at

the end of the method startRead.

• A cascade wake up is used: when a reader exits startRead, it wakes up

the next reader, if one is waiting.

• The result is that, when a writer finishes, all waiting readers are freed.

• However, readers arriving after the reader has started executing

endWrite have to wait on the semaphore mutex as long as the cascade

wake up is not finished and will thus not be involved in it.

235

Communication through

message passing

236

Communication through message passing:
Motivation

• So far, shared memory, in one form or another, has been used as an

interprocess communication mechanism.

• Communicating through shared memory is not adapted to situations in

which processes do not share physical memory (machines connected

through a network, parallel machines without shared memory).

• In these situations, interprocess communication through message

passing is used.

237

Communication through message passing:
Concept

• Communication through message passing is done with communication

channels or message queues. A communication channel appears as a

FIFO queue to which (from which) messages of a given type can be

added (removed). A channel can be declared as follows:

chan q type;

• There are then two possible operations on the communication channel.

– q!expr which places the value of expr in the channel.

– q?var which removes the head element of the channel and copies it

to the variable var.

238

• Clearly, the types of the channel and of the expressions being placed

on the channel (the variable receiving an element from the channel)

must match. If this is not the case, the operation is not executed and

there is an error.

• In some circumstances, it is useful to allow a receive operation q?const

in which a constant rather than a variable is used.

– No value is then received, but the operation is only possible if the

value to be received is identical to the constant.

– This amounts to testing the value at the head of the queue and to

remove it only if it matches the expected value.

• It is not a priori necessary to impose a bound on channel capacity, but

one will exist in practice in any implementation.

239

The producer-consumer problem in a message passing
framework

With message passing, the solution to this problem is immediate.

chan q int;

append(v)

int v

{ q!v;

}

int take()

{ int v;

q?v;

return v;

}

240

Implementing message queues

• In a shared memory machine, message queues can simply be

implemented by an appropriate data structure in kernel memory,

operation in the queues being implemented by system calls.

• In a distributed environment, communication goes through a network

and relies on network communication protocols (such as TCP/IP).

• We will limit our study to message queues implemented by a data

structure held in kernel memory.

• It is still necessary to specify what happens when a message is placed

in a queue that is full, or read from a queue that is empty.

241

Full queues - empty queues

• When the queue to which one writes (from which one reads) is full

(empty), the process executing the operation can

– be suspended, or

– receive an error message indicating that the operation has not been

executed.

• Blocking the process has the advantage of allowing process

synchronization, but is a constraint on the use of queues.

• Signaling that the operation is not possible leaves the responsibility of

handling errors to the programmer.

242

An implementation of message queues in the context of
ULg03

• The message queues are managed with a table kept in kernel memory.

A queue is characterized by its number that corresponds to its position

in this table.

• There are system calls for creating and releasing queues, as well for

executing the operations q! et q?

• In ULg03, to execute for instance the operation q!, the arguments to

the system call (the code MSGSND, the queue number, and the value to

be sent) are placed on the stack. Assuming that the queue number is

in r0 and the value to be sent is in r1, this can be done as follows.

PUSH(r1) | 3rd argument

PUSH(r0) | 2nd argument

CMOVE(MSGSND,r2) | 1st argument

PUSH(r2)

SVC() | system call

243

The SVC handler

Remember that executing SVC() leads to the following stub.

h_stub: ST(r0, User, r31) | save

ST(r1, User+4, r31) | the registers

. . .

ST(r30, User+30*4, r31)

CMOVE(KStack, SP) | Load the system SP

BR(Svc_handler,LP) | Call to the Handler

LD(r31, User, r0) | restore

LD(r31, User+4, r1)

LD(r31, User+30*4, r30)

JMP(XP) | return to application

Svc_handler collects the arguments and calls the handler for the requested

operation.

244

The handler for the MSGSND system call

In kernel memory, the (bounded) queues are kept in the following data
structure.

struct Qdescr {int count, in, out = 0; int content[N];} Qtbl[K];

An the handler then is

Msgsnd_h(qno,v)

int qno,v;

{ if (Qtbl[qno].count < N)

{Qtbl[qno].content[Qtbl[qno].in] = v;

Qtbl[qno].in = (Qtbl[qno].in + 1) % N;

Qtbl[qno].count++;

return 1;

}

else return 0;

}

The returned value, which can be found in r0 by the process having
executed the call, indicates whether the sent value could be placed in the
queue or not.

245

A blocking implementation ?

• If a blocking implementation is desired, one could use the

semaphore-based implementation of a buffer studied previously.

• But, can systems calls be used in supervisor mode?

• Not in the context we have seen so far, because what is done when a

system call occurs does not make sense if the kernel is already running.

• It is however possible to directly call the corresponding handler.

However, if a process is suspended upon a system call, it is only the

process state that is preserved, the state of the handler is not.

• One must thus make sure that everything is correct if, when a process

is reactivated, the system call is re-executed from the beginning.

246

Blocking queues of capacity 0:
the rendez-vous

• A special case of blocking queues are queues of capacity 0.

• In this case, the process placing an element in the queue is always

blocked until another process takes this element from the queue.

• Conversely, a process receiving an element from a queue is always

blocked until a process places an element in the queue.

• The operations q! and q? executed by the processes are thus

synchronized: the first that is ready to execute its operation waits for

the other. This is called a rendez-vous

247

Implementing rendez-vous

To implement rendez-vous, it is sufficient to adapt the implementation of

a buffer as follows.

/* mémoire partagée */

int buf;

semaphore placed = 0;

semaphore taken = 0;

msgsnd(v)

int v

{ buf = v;

signal(placed);

wait(taken);

}

int msgrcv()

{ int v;

wait(placed);

v = buf;

signal(taken);

return v;

}

In msgsnd(v), signaling that the element is placed must be done before

waiting for it to be taken; if not there would be a deadlock.

248

Programming with rendez-vous

• Since with a rendez-vous, the process waiting to receive an element is

blocked, if is necessary to be able to simultaneously wait on several

queues, for example used by different processes; or to wait for

different types of messages on the same queue.

• Languages in which rendez-vous is used (CSP, OCCAM, ADA) include

a special instruction for this.

• This instruction also allows accepting a message from a queue only if

a given condition is satisfied.

249

An instruction for waiting on several rendez-vous

We will use the instruction below, which is inspired by ADA, but written

with a C-style syntax.

select

{ when (cond1) q1?m1 ; statement1;

when (cond2) q2?m2 ; statement2;

........

when (condk) qk?mk ; statementk;

else defaultstatement;

}

This instruction is interpreted as follows.

• First determine for which alternatives the condition is true and the

input operation executable (i.e. there is a process ready to execute

the corresponding send operation).

250

• For one of these alternatives, the receive operation and the following

statement are executed.

• If there is no alternative for which this is possible,

– wait for a send operation on one of the queues in an alternative for

which the condition is true; or

– execute the else clause if it is present.

251

Simulating a semaphore using rendez-vous

#define wait = 1

#define signal = 0

semsimul(inival)

int inival;

{ int value;

value = inival

while (true)

select

{ when (value > O) q?wait ; value--;

when (true) q?signal ; value++;

}

}

252

Mutual exclusion with the simulated semaphore

chan q int [0];

Process 1 :

while (True)

{ nc1: /* non critical

section */ ;

q!wait;

crit1: /* critical section */ ;

q!signal;

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

q!wait;

crit2: /* critical section */

q!signal;

}

Processus 0 :

semsimul(1);

In this setting, the semaphore is embodied by a process, not just a shared

object.

253

