The Dining Philosophers
Problem

Cache Memory

254

The dining philosophers problem: definition

It is an artificial problem widely used to illustrate the problems linked to
resource sharing in concurrent programming.

The problem is usually described as follows.

e A given number of philosopher are seated at a round table.

e Each of the philosophers shares his time between two activities:
thinking and eating.

e [0 think, a philosopher does not need any resources; to eat he needs
two pieces of silverware.

255

However, the table is set in a very peculiar way: between every pair of
adjacent plates, there is only one fork.

A philosopher being clumsy, he needs two forks to eat: the one on his
right and the one on his left.

It is thus impossible for a philosopher to eat at the same time as one
of his neighbors: the forks are a shared resource for which the
philosophers are competing.

The problem is to organize access to these shared resources in such a
way that everything proceeds smoothly.

256

T he dining philosophers problem: illustration

fS < .

257

The dining philosophers problem:
a first solution

e [his first solution uses a semaphore to model each fork.

e [aking a fork is then done by executing a operation wait on the
semaphore, which suspends the process if the fork is not available.

e Freeing a fork is naturally done with a signal operation.

258

/* Definitions and global initializations */

#define N = 7 /* number of philosophers */

semaphore fork[N]; /* semaphores modeling
the forks */

int j; for (j=0, j < N, j++) fork[jl=1;

Each philosopher (0 to N-1) corresponds to a process executing the
following procedure, where i is the number of the philosopher.

philospher (i)
int 1i;
{ while(true)
{ think(Q);
wait(fork([i]); wait(fork[(i+1)%N]1);
eat();
signal (fork[i]); signal(fork[(i+1)%N]);

259

The dining philosophers problem:
a first solution - the deadlock

e With this first solution, a deadlock is possible.

e Indeed, if each philosopher executes wait(fork[i]) before any
philosopher has executed wait(fork[(i+1)%N]), each philosopher is then
holding one fork and waiting for the second.

e [he problem is that each philosopher must acquire two resources and
does this

1. in two steps,
2. in an order that can lead to a deadlock, and

3. without the possibility of the operation being canceled

To avoid deadlocks, one of these three items has to be eliminated.

260

The dining philosophers problem:
a second solution

In this solution, the order in which the philosopher N-1 picks up his forks is
modified.

/* Philosophes 0 a N-2 x*/ /* Philosophe N-1x/
philospher (i) philospher (i)
int 1i; int 1i;
{ while(true) { while(true)
{ think(); { think();
wait (fork[i]); wait (fork[(i+1)¥%N]);
wait (fork [(i+1)%N]); wait (fork[i]);
eat () ; eat () ;
signal (fork[i]); signal (fork [(i+1)%N]1) ;
signal (fork [(i+1)%N]); signal (fork[i]);
+
+ +
+

201

The dining philosophers problem:
a second solution - deadlock ?

In the second solution, no deadlock is possible. The principle that has
been applied is the following.

e The shared resources are ordered (0 to N-1 for the forks).

e A process that needs several resources must acquire them in
increasing order with respect to the global order on resources.

e NO deadlock is then possible.

— Indeed, in a hypothetical deadlock situation, consider the process
that holds the highest order resource.

— This process has already acquired all the lower order resources that
it might need and thus cannot be blocked.

262

Furthermore, assuming the the semaphores are fair, not process can be
blocked forever.

e Indeed, if a process is waiting for a fork, semaphore fairness ensures
that it will has access to it as soon as it is freed.

e For a fork never to be freed, the process holding it must be waiting for
a higher-order fork.

e Since the chain of blocking waits takes us up in the fork order, it must
stop when the highest-order fork is reached. Indeed, this one will
necessarily be the last one acquired by the process using it and will
thus eventually be freed.

263

The dining philosophers problem:
a third solution

In this solution, resource acquisition is done in one step. For this we will
use a monitor through which all the fork management will be done.

e [his monitor uses a table f[], where the number of forks available for
each philosopher (0, 1 or 2) is held.

e If philosopher i does not find two available forks, he is suspended on
his own wait queue oktoeat[i]. This queue is implemented by a simple
semaphore since it never contains more than one process. The
implementation is done directly with semaphores and the class
Waitqueue is not used.

e A table of Booleans waiting is used to indicate for each philosopher
whether of not he is waiting in his queue oktoeat. Note that a call to
semNbWait on the semaphore used to implement the queue oktoeat
would not provide the same information as waiting, since mutual
exclusion is freed before the call to SemWait.

264

The dining philosophers problem:
The fork monitor - constructors

public class ForkMonitor
{ private int nb;
private int urcount, f[];
private boolean waitingl];
private Semaphore urgent, mutex, oktoeatl[];

public ForkMonitor(int N)
{ nb = N; urcount = 0;
f = new int[nb];
for (int i=0; i<nb ; i++) f[i] = 2;
urgent = new SemaphoreFIF0(0);
mutex = new SemaphoreFIF0(1);
oktoeat = new Semaphore[nb];
for (int i=0; i<nb ; i++)
{ oktoeat[i] = new Semaphore(0);
waiting[i] = false;

}

265

The dining philosophers problem:
the fork monitor - picking up forks

public void takeFork(int i)
{ mutex.semWait();
if (£[i] '= 2)
{ waitingl[i] = true;
if (urcount > 0) urgent.semSignal;
else mutex.semSignal();
oktoeat[i] .semWait () ;
waiting[i] = false;
+
f[(i+1) % nb]l--;
f[(i-1+nb) % nbl--;
if (urcount > 0) urgent.semSignal();

else mutex.semSignal();

266

The dining philosophers problem:
the fork monitor - releasing forks

public void releaseFork(int i)
{ mutex.semWait();
fL(i+1) % nb]++;
f[(i-1+nb) % nb]++;
if ((£0(i+1) % nb]l == 2) && (waiting[(i+1) % nb])
{ urcount++;
oktoeat[(i+1) % nb].semSignal();
urgent .semWait () ; urcount--;
+
if ((£[(i-1+nb) % nbl == 2) && (waiting[(i-1+nb) % nbl))
{ urcount++;
oktoeat[(i-1+nb) % nb].semSignal();
urgent.semWait () ; urcount--;
+
if (urcount > 0) urgent.semSignal();
else mutex.semSignal();

267

The dining philosophers problem:
Using the fork monitor

Once an object for the forks has been created,

ForkMonitor F = new ForkMonitor (nb) ;

each philosopher executes the following procedure, in which the argument
is the philosopher number.

philosophe(int i)
{ while(true)

{ think(Q);
F.takeFork(i);
eat();
F.releaseFork(i);

}

}

In this solution no deadlock is possible. Indeed, if all processes are
waiting, no fork is used, a contradiction. Nevertheless, it is possible for

two philosophers to exclude a third.

268

Cache memory

269

Cache memory: principle

In the machine ULg03, access to DRAM is done at the same speed as
access to registers.

This is only possible if the operation of the machine is very
significantly slowed down.

There is however another possibility: to keep in a small fast memory a
copy of part of the DRAM. Such a memory is called acache.

One can then hope that most accesses will be to the cache and will
thus be fast. When the required data is not in the cache, it must be
transferred from DRAM, which is slow and will force the processor to
wait.

270

Cache memory: its associative character

Main memory creates an association between values and addresses.

Cache memory must provide the same function and thus associate
data, not to its own addresses, but to those of the main memory.

Cache memory must thus contain pairs (address, data) and make it
possible to very quickly find the data part of a pair given its address
part.

A memory providing this function is called an associative memory.

When searching for the data corresponding to an address in a cache
memory, either it is present in the cache (cache hit), or it cannot be
found there (cache miss).

271

Cache memory: the overall schema

CPU

Y

address

Mem[address]

When the required data is not in the cache, the processor is blocked until

Fast

CACHE

Y

address

Mem[address]

—
-

Slow

the data is transferred from the DRAM to the cache.

DRAM

272

Why are cache memories effective?

If accesses to DRAM where perfectly random, a cache memory would

not be very effective. Fortunately, these accesses are far from random.

Indeed, at times that are close to each other, one often accesses the
same addresses. This is called temporal locality.

When accessing a given address, it is frequent that the next addresses
to be accessed will be close. This is called spatial locality.

Cache memories and their management are thus designed to exploit
these localities.

273

address

Totally associative cache

30 bits

32bits

L~

Y

Y

Y

Y

Nt

Y

Y

:

Y

Indwin

-t

Data

Y

hit

274

Totally associative cache: characteristics

An address is associated to each memory word stored in the cache. As
much space is thus used for addresses as for the data.

The cache includes a comparator for each stored word, which limits its
capacity.

A good replacement policy is LRU (Least Recently Used), but it is
costly to implement.

It is also possible to associate an address to more than one word. This
is called a block cache.

275

Block cache

The organization is the same as in an associative cache, but a data block

of 28 words is now associated with each 30 — B bit address.

28 bits 32bits

32bits

32bits

32bits

1

1

1

1

2\ ~C

U g

28 bits |2
|

address

-
L

Data

hit

When there is a ‘“cache miss”, an entire block must thus be transferred

from memory. However, because of spatial locality, this is usually useful.

In practice, there is s block size that minimizes the number of cache

misses.

276

Direct mapped cache

A direct mapped cache uses part of the memory address as cache
address. The rest of the address is then compared when doing a cache
look up.

There is only one possible cache address for each memory address. A
replacement policy is thus not needed.

On the other hand, it is not possible to have in cache the content of
different addresses that correspond to the same cache address.

In a direct mapped cache, only one comparator is needed. It can thus
be built with ordinary memory.

277

address

25 bits

A block direct mapped cache

Y

25 bits

32bits

32Dbits

32Dbits

32bits

1

1

1

1

Data

hit

278

An intermediate solution: set associative cache

A compromise between totally associative cache and direct mapped
cache is set associative cache, which combines the two techniques.

In this organization there are N direct mapped caches, the selection
between these being done as in an associative cache.

A set associative cache, can also use blocks instead of words.

From a practical point of view, N = 8 is usually sufficient.

For a large enough cache, a random replacement strategy vields
results that are almost as good as LRU.

279

A set associative cache

address |

27 bits |3

27 bits | 32bits 27 bits| 32bits 27 bits| 32bits 27 bits| 32bits

i i l ~ Data

hit

Y

280

Cache and write operations

e Most memory operations are reads. What must be done for writes? 1Is
it necessary to immediately modify the memory? There are several
options.

— write-through ! immediate modification of the memory, the CPU
waiting for the operation to be completed.

— write-back @ delayed modification.

e Delayed modification can improve performance, but it is necessary to
know for each element stored in the cache if it needs to be written to
memory or not.

e In the case of multiprocessors, one has to deal with the cache
coherence problem.

281

Cache memory versus virtual memory

e In the context of virtual memory, the cache can use either physical or
virtual addresses.

e A cache working with virtual addresses avoids address translation as
long as one remains within the cache. However, the entire cache
becomes non valid upon a change of context.

e A virtual cache is problematic if several virtual addresses can
correspond to the same physical address (data sharing through
aliasing).

282

