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The dining philosophers problem: definition

It is an artificial problem widely used to illustrate the problems linked to

resource sharing in concurrent programming.

The problem is usually described as follows.

• A given number of philosopher are seated at a round table.

• Each of the philosophers shares his time between two activities:

thinking and eating.

• To think, a philosopher does not need any resources; to eat he needs

two pieces of silverware.
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• However, the table is set in a very peculiar way: between every pair of

adjacent plates, there is only one fork.

• A philosopher being clumsy, he needs two forks to eat: the one on his

right and the one on his left.

• It is thus impossible for a philosopher to eat at the same time as one

of his neighbors: the forks are a shared resource for which the

philosophers are competing.

• The problem is to organize access to these shared resources in such a

way that everything proceeds smoothly.
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The dining philosophers problem: illustration
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The dining philosophers problem:
a first solution

• This first solution uses a semaphore to model each fork.

• Taking a fork is then done by executing a operation wait on the

semaphore, which suspends the process if the fork is not available.

• Freeing a fork is naturally done with a signal operation.
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/* Definitions and global initializations */

#define N = ? /* number of philosophers */

semaphore fork[N]; /* semaphores modeling

the forks */

int j; for (j=0, j < N, j++) fork[j]=1;

Each philosopher (0 to N-1) corresponds to a process executing the

following procedure, where i is the number of the philosopher.

philospher(i)

int i;

{ while(true)

{ think();

wait(fork[i]); wait(fork[(i+1)%N]);

eat();

signal(fork[i]); signal(fork[(i+1)%N]);

}

}
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The dining philosophers problem:
a first solution - the deadlock

• With this first solution, a deadlock is possible.

• Indeed, if each philosopher executes wait(fork[i]) before any
philosopher has executed wait(fork[(i+1)%N]), each philosopher is then
holding one fork and waiting for the second.

• The problem is that each philosopher must acquire two resources and
does this

1. in two steps,

2. in an order that can lead to a deadlock, and

3. without the possibility of the operation being canceled

To avoid deadlocks, one of these three items has to be eliminated.
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The dining philosophers problem:
a second solution

In this solution, the order in which the philosopher N-1 picks up his forks is

modified.

/* Philosophes 0 à N-2 */

philospher(i)

int i;

{ while(true)

{ think();

wait(fork[i]);

wait(fork[(i+1)%N]);

eat();

signal(fork[i]);

signal(fork[(i+1)%N]);

}

}

/* Philosophe N-1*/

philospher(i)

int i;

{ while(true)

{ think();

wait(fork[(i+1)%N]);

wait(fork[i]);

eat();

signal(fork[(i+1)%N]);

signal(fork[i]);

}

}
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The dining philosophers problem:
a second solution - deadlock ?

In the second solution, no deadlock is possible. The principle that has

been applied is the following.

• The shared resources are ordered (0 to N-1 for the forks).

• A process that needs several resources must acquire them in

increasing order with respect to the global order on resources.

• No deadlock is then possible.

– Indeed, in a hypothetical deadlock situation, consider the process

that holds the highest order resource.

– This process has already acquired all the lower order resources that

it might need and thus cannot be blocked.
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Furthermore, assuming the the semaphores are fair, not process can be

blocked forever.

• Indeed, if a process is waiting for a fork, semaphore fairness ensures

that it will has access to it as soon as it is freed.

• For a fork never to be freed, the process holding it must be waiting for

a higher-order fork.

• Since the chain of blocking waits takes us up in the fork order, it must

stop when the highest-order fork is reached. Indeed, this one will

necessarily be the last one acquired by the process using it and will

thus eventually be freed.
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The dining philosophers problem:
a third solution

In this solution, resource acquisition is done in one step. For this we will
use a monitor through which all the fork management will be done.

• This monitor uses a table f[], where the number of forks available for
each philosopher (0, 1 or 2) is held.

• If philosopher i does not find two available forks, he is suspended on
his own wait queue oktoeat[i]. This queue is implemented by a simple
semaphore since it never contains more than one process. The
implementation is done directly with semaphores and the class
Waitqueue is not used.

• A table of Booleans waiting is used to indicate for each philosopher
whether of not he is waiting in his queue oktoeat. Note that a call to
semNbWait on the semaphore used to implement the queue oktoeat

would not provide the same information as waiting, since mutual
exclusion is freed before the call to SemWait.
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The dining philosophers problem:
The fork monitor - constructors

public class ForkMonitor

{ private int nb;

private int urcount, f[];

private boolean waiting[];

private Semaphore urgent, mutex, oktoeat[];

public ForkMonitor(int N)

{ nb = N; urcount = 0;

f = new int[nb];

for (int i=0; i<nb ; i++) f[i] = 2;

urgent = new SemaphoreFIFO(0);

mutex = new SemaphoreFIFO(1);

oktoeat = new Semaphore[nb];

for (int i=0; i<nb ; i++)

{ oktoeat[i] = new Semaphore(0);

waiting[i] = false;

}

}
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The dining philosophers problem:
the fork monitor - picking up forks

public void takeFork(int i)

{ mutex.semWait();

if (f[i] != 2)

{ waiting[i] = true;

if (urcount > 0) urgent.semSignal;

else mutex.semSignal();

oktoeat[i].semWait();

waiting[i] = false;

}

f[(i+1) % nb]--;

f[(i-1+nb) % nb]--;

if (urcount > 0) urgent.semSignal();

else mutex.semSignal();

}
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The dining philosophers problem:
the fork monitor - releasing forks

public void releaseFork(int i)

{ mutex.semWait();

f[(i+1) % nb]++;

f[(i-1+nb) % nb]++;

if ((f[(i+1) % nb] == 2) && (waiting[(i+1) % nb])

{ urcount++;

oktoeat[(i+1) % nb].semSignal();

urgent.semWait(); urcount--;

}

if ((f[(i-1+nb) % nb] == 2) && (waiting[(i-1+nb) % nb]))

{ urcount++;

oktoeat[(i-1+nb) % nb].semSignal();

urgent.semWait(); urcount--;

}

if (urcount > 0) urgent.semSignal();

else mutex.semSignal();

}

}
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The dining philosophers problem:
Using the fork monitor

Once an object for the forks has been created,

ForkMonitor F = new ForkMonitor(nb);

each philosopher executes the following procedure, in which the argument
is the philosopher number.

philosophe(int i)

{ while(true)

{ think();

F.takeFork(i);

eat();

F.releaseFork(i);

}

}

In this solution no deadlock is possible. Indeed, if all processes are
waiting, no fork is used, a contradiction. Nevertheless, it is possible for
two philosophers to exclude a third.
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Cache memory
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Cache memory: principle

• In the machine ULg03, access to DRAM is done at the same speed as

access to registers.

• This is only possible if the operation of the machine is very

significantly slowed down.

• There is however another possibility: to keep in a small fast memory a

copy of part of the DRAM. Such a memory is called acache.

• One can then hope that most accesses will be to the cache and will

thus be fast. When the required data is not in the cache, it must be

transferred from DRAM, which is slow and will force the processor to

wait.
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Cache memory: its associative character

• Main memory creates an association between values and addresses.

• Cache memory must provide the same function and thus associate

data, not to its own addresses, but to those of the main memory.

• Cache memory must thus contain pairs (address, data) and make it

possible to very quickly find the data part of a pair given its address

part.

• A memory providing this function is called an associative memory.

• When searching for the data corresponding to an address in a cache

memory, either it is present in the cache (cache hit), or it cannot be

found there (cache miss).
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Cache memory: the overall schema

CPU CACHE DRAM

address

Mem[address] Mem[address]

Fast

address

Slow

When the required data is not in the cache, the processor is blocked until

the data is transferred from the DRAM to the cache.
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Why are cache memories effective?

• If accesses to DRAM where perfectly random, a cache memory would

not be very effective. Fortunately, these accesses are far from random.

• Indeed, at times that are close to each other, one often accesses the

same addresses. This is called temporal locality.

• When accessing a given address, it is frequent that the next addresses

to be accessed will be close. This is called spatial locality.

• Cache memories and their management are thus designed to exploit

these localities.
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Totally associative cache
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Totally associative cache: characteristics

• An address is associated to each memory word stored in the cache. As

much space is thus used for addresses as for the data.

• The cache includes a comparator for each stored word, which limits its

capacity.

• A good replacement policy is LRU (Least Recently Used), but it is

costly to implement.

• It is also possible to associate an address to more than one word. This

is called a block cache.

275



Block cache

The organization is the same as in an associative cache, but a data block

of 2B words is now associated with each 30 −B bit address.

=

28 bits 32bits 32bits 32bits 32bits

Data

228 bits

hit

address

When there is a “cache miss”, an entire block must thus be transferred

from memory. However, because of spatial locality, this is usually useful.

In practice, there is s block size that minimizes the number of cache

misses.
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Direct mapped cache

• A direct mapped cache uses part of the memory address as cache

address. The rest of the address is then compared when doing a cache

look up.

• There is only one possible cache address for each memory address. A

replacement policy is thus not needed.

• On the other hand, it is not possible to have in cache the content of

different addresses that correspond to the same cache address.

• In a direct mapped cache, only one comparator is needed. It can thus

be built with ordinary memory.
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A block direct mapped cache
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An intermediate solution: set associative cache

• A compromise between totally associative cache and direct mapped

cache is set associative cache, which combines the two techniques.

• In this organization there are N direct mapped caches, the selection

between these being done as in an associative cache.

• A set associative cache, can also use blocks instead of words.

• From a practical point of view, N = 8 is usually sufficient.

• For a large enough cache, a random replacement strategy yields

results that are almost as good as LRU.
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A set associative cache
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Cache and write operations

• Most memory operations are reads. What must be done for writes? Is

it necessary to immediately modify the memory? There are several

options.

– write-through : immediate modification of the memory, the CPU

waiting for the operation to be completed.

– write-back : delayed modification.

• Delayed modification can improve performance, but it is necessary to

know for each element stored in the cache if it needs to be written to

memory or not.

• In the case of multiprocessors, one has to deal with the cache

coherence problem.
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Cache memory versus virtual memory

• In the context of virtual memory, the cache can use either physical or

virtual addresses.

• A cache working with virtual addresses avoids address translation as

long as one remains within the cache. However, the entire cache

becomes non valid upon a change of context.

• A virtual cache is problematic if several virtual addresses can

correspond to the same physical address (data sharing through

aliasing).
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