Computation Structures

Project 1
Quicksort in [-assembly

October 11, 2016

General information

Deadline: November 1, 2016, 23:59.

Project must be done individually.

There will be a penalty for late submission.

Questions will no longer be answered 24 hours before the deadline.

English is strongly encouraged.

Contact: r.mormont@ulg.ac.be, Office 1.128 (B28).

1 Introduction

The goal of this project is to make you more familiar with the S-assembly language by
getting your hands dirty and writing code. Especially, you will implement the well-known
Quicksort sorting algorithm.

2 Project

2.1 Quicksort

Quicksort is an algorithm created by C.A.R. Hoare in the late fifties for sorting arrays.
Quicksort is a recursive procedure which works as follows:

1. Base case: if the array size is less than or equal to 1, the array is already sorted
and nothing has to be done.

2. Recursive case:

(a) Select a pivot value in the array (see below for the selection strategy)

(b) Partition the array around this pivot value (see an example of partitioning in
Figure |1

(¢) Sort recursively the sub-arrays to the left and to the right of the pivot value
using Quicksort

The pivot can be selected using various strategies:
e Picking a specific element (e.g. the first of the array)
e Picking an element at random

e Picking the median element among three (e.g. the first, the element at the middle
of the array and the last element)

For more information about Quicksort, you can check online resources:

e Pierre Geurts’s course on data structures and algorithms: http://www.montefiore.
ulg.ac.be/~geurts/Cours/sda/2015/sda-2015-2016.pdf (from slide 121, in french)

e Explanation and interactive illustration: http://me.dt.in.th/page/Quicksort/
(in english)

e Wikipedia: https://en.wikipedia.org/wiki/Quicksort

Before partition After partition
[1[s[6]7]2[3[9[8[4[o] [1]5]3[2[4[o]6]7]9]8]
<=6 >6

Figure 1: Example of array partitioning. Chosen pivot is value 6 at index 2 in the initial

array.

2.2 Objective

You task is to implement a quicksort procedure in a file called quicksort.asm. This
procedure should be callable using a label quicksort and should take two parameters:

1. array: the memory address of the first element of the array
2. size : the size of the array (size > 0)

There will be a penalty for not conforming to this interface. Whatever you
write in your quicksort.asm file, your procedure should be callable using the example
code shown in Listing [1}

Listing 1: Example of call to the quicksort procedure

|; Reg[R1]: address of array[0]
|; Reg[R2]: size of the array
PUSH(R1)

PUSH (R2)

CALL (quicksort)

DEALLOCATE (2)

http://www.montefiore.ulg.ac.be/~geurts/Cours/sda/2015/sda-2015-2016.pdf
http://www.montefiore.ulg.ac.be/~geurts/Cours/sda/2015/sda-2015-2016.pdf
http://me.dt.in.th/page/Quicksort/
https://en.wikipedia.org/wiki/Quicksort

You are provided with a file quicksort.c, a C implementation of Quicksort, that you
can use as basis for your implementation. While you are not bound to translate all
implementation details contained in this file in your assembly code (see Section , you
are still expected to implement the recursive Quicksort procedure presented in Section

21

In addition to quicksort.c, you are provided with three other assembly files:

e beta.uasm: the definition of the S-assembly. You can check this file to see which
macros you can use in your own code.

e main.asm: you can use this file to test your code. It does the following:

1. It reserves some memory for an array of size n (starting at address 0x0008 in
the DRAM).

2. It initializes it with increasing values ranging from 1 to n.

3. It shuffles the array.

4. Tt calls the quicksort procedure that you must define.

e util.asm: contains some code needed by the main.asm file (for filling the array and
shuffling it).

2.3 Bonus

You can choose any pivot selection strategy for your implementation, the simpler be-
ing picking the first element of the array. However, implementing the median of three
strategy will earn you a bonus. Using this strategy induces the modifications in the C
implementation presented in Listing [2]

Listing 2: Modifications to the C implementation of Quicksort for using the median of
three pivot selection strategy.

VEX:

*

* X X X *

*

* /

Return

Gparam
Gparam
@param

the address

first int*
second int*
third intx*

of the median of the values located at the given addresses

Address of the first element
Address of the second element
Address of the third element

@Qreturn int* Address of the median element

int* median_of_three(int* first, int* second, int* third) {
if (xfirst < *second) {
if (xthird <= *xfirst) {
return first;
else if (*xsecond < *third) {
return second;

}

3

}

else {

return third;

} else {
if (xfirst <= *third) {
return first;
} else if (*second < *third) {
return third;
} else {
return second;

}
}
}
void quicksort(int* array, size_t size) {
//
int* pivot_addr = median_of_three(
array,
array + (size / 2) - 1,
array + size - 1
);
size_t pivot = pivot_addr - array;
//

3 Additional guidelines

3.1 Practical organization

In order to learn [-assembly effectively, this project will be done individually. A
report of maximum two pages can be provided if you want to explain things that are
not easy to understand by just looking at the code and comments. Providing a report
does not necessarily mean that you will earn a better grade; it should be provided only if
it brings something that is not mentioned clearly elsewhere.

Plagiarism is of course not allowed and severely punished. Any detected attempt will
result in the grade 0/20 for all who have participated in this practice.

You will include your completed quicksort.asm and your (optional) report (PDF
only) in a ZIP archive named sXXXXXX_NAME.zip where sXXXXXX is your student ID and
NAME your family name in uppercase. Insert your quicksort.asm in a ZIP archive even if
you do not provide a report. Naming your files differently or submitting other files will
result in a penalty.

Submit your archive to the Montefiore Submission Platform{| after having created
an account if necessary. If you encounter any problem with the platform, let me know.
However problems that unexpectedly and mysteriously appear five minutes before the
deadline will not be considered. Do not send your work by e-mail; it will not be
read.

"http://submit.run.montefiore.ulg.ac.be/

http://submit.run.montefiore.ulg.ac.be/

3.2 Code guidelines

Choose a coding style and stick to it. You are advised to use the coding style used in
main.uasm and util.asm. The goal here is not to write code which is as compact and
efficient as possible, but to learn the concepts of S-assembly. However, your code should
not be unreasonably long and inefficient: minimize the number of registers you use in
your recursive procedures, as it impacts the growth rate of your stack.

3.3 Documentation

One of the challenges when writing assembly code is to write a program which is relatively
easy to understand. Thus, the second most important element taken into account for your
grade (after correctness) will be your code’s readability. Use comments extensively (your
comments can be larger than your code), but don’t be verbose : explain the non obvious,
not the immediately apparent.

In addition to the comments written alongside your code, all your procedures should
be documented using pre- and post-conditions:

e Arguments have to be properly defined
e Any return value must be documented
e Any side effect (e.g. modification of the dynamic memory) must be documented

Your are free (and advised) to use macros to reduce the redundancy in your code.
Those macros should be documented like your procedures (arguments, returned value
and side effects).

Good luck and have fun !

	Introduction
	Project
	Quicksort
	Objective
	Bonus

	Additional guidelines
	Practical organization
	Code guidelines
	Documentation

