Project 2

Parallel programming

To be done by teams of two people
Deadline : December 18, 2017, 23:59



Bouncy squares




Dimensions

256 px
(customizable)

256 px
(customizable)



Speed

Velocity on x-axis € {-1,0,1}
Velocity on y-axis € {-1,0,1}

A square can move towards 8 directions (or stay in the same spot)



Collisions/Out of bounds

e Out of bounds

* Change the direction that lead to crossing the boundary

=)

X-velocity = 1
Y-velocity =1

X-velocity = 1
Y-velocity =1

=)

X-velocity = -1
Y-velocity =1



Collisions/Out of bounds (2)

e Collisions

» Swap the velocities (special rule for more than 2 squares)

=Sl 4

X-velocity =1 X-velocity = -1
Y-velocity =0 Y-velocity = 1

=)

X-velocity =1 X-velocity = -1
Y-velocity =0 Y-velocity =1

= ¢

=)

X-velocity =-1 X-velocity = 1
Y-velocity =1 Y-velocity =0



Parallel Processing

* Single-process program provided

* Each square = 1 process (workers)

* Master process for input/output

* Position of squares in shared memory

* Velicities NOT in shared memory

* Shared memory protected by semaphores (if needed)

* Communication between workers and master process by semaphores
and shared memory

* Communication between workers by message queues



Parallel processing (2)

Worker N :

Move square N

See if out of bounds or collision

If so, find new direction (possibly

by interacting with another process)

Warn Master process that movement is done
Wait for Master process to display

Master process:

Wait for all workers

Display new positions

Warn Workers that display is done

If user pressed <ENTER>, quit program properly



Coding Guidelines

* Focus on code clarity and understandability before efficiency

e Still, your code shouldn’t be unreasonably inefficient (tip: use as few
IPCs as possible, avoid repeating useless operations)

 Document your code !!
 Functions should be documented:

— Parameters

— Operations performed



Files and submission

You are provided with:

* Bounce.zip : a zip archive containing C implementation of the bouncy squares
program using SDL displays. You can use it as basis for your implementation.

You must submit in a ZIP file named « sXXXXXX_NAME1 _sYYYYYY NAME2.zip »:
* The source code of your program (.c, .h, makefile)

 report.pdf : Describe using simplified C syntax how you implemented the
synchronization between processes.

Submitting other files will be sanctioned



