
Project 2

Parallel programming

To be done by teams of two people

Deadline : December 18, 2017, 23:59



Bouncy squares



Dimensions

256 px
(customizable)

256 px
(customizable)

16px

16px



Speed

Velocity on x-axis  {-1,0,1}

Velocity on y-axis  {-1,0,1}

A square can move towards 8 directions (or stay in the same spot)



Collisions/Out of bounds

• Out of bounds
• Change the direction that lead to crossing the boundary

X-velocity = 1
Y-velocity = 1

X-velocity = 1
Y-velocity = 1

X-velocity = -1
Y-velocity = 1



Collisions/Out of bounds (2)

• Collisions
• Swap the velocities (special rule for more than 2 squares)

X-velocity = 1
Y-velocity = 0

X-velocity = -1
Y-velocity = 1

X-velocity = 1
Y-velocity = 0

X-velocity = -1
Y-velocity = 1

X-velocity = -1
Y-velocity = 1

X-velocity = 1
Y-velocity = 0



Parallel Processing

• Single-process program provided

• Each square = 1 process (workers)

• Master process for input/output

• Position of squares in shared memory

• Velicities NOT in shared memory

• Shared memory protected by semaphores (if needed)

• Communication between workers and master process by semaphores
and shared memory

• Communication between workers by message queues



Parallel processing (2)

Master process:
– Wait for all workers
– Display new positions
– Warn Workers that display is done
– If user pressed <ENTER>, quit program properly

Worker N :
– Move square N
– See if out of bounds or collision
– If so, find new direction (possibly

by interacting with another process)
– Warn Master process that movement is done
– Wait for Master process to display



Coding Guidelines

• Focus on code clarity and understandability before efficiency 

• Still, your code shouldn’t be unreasonably inefficient (tip: use as few 
IPCs as possible, avoid repeating useless operations) 

• Document your code !! 

• Functions should be documented: 

– Parameters 

– Operations performed



Files and submission

You are provided with: 

• Bounce.zip : a zip archive containing C implementation of the bouncy squares 
program using SDL displays. You can use it as basis for your implementation. 

You must submit in a ZIP file named « sXXXXXX_NAME1_sYYYYYY_NAME2.zip »:

• The source code of your program (.c, .h, makefile)

• report.pdf : Describe using simplified C syntax how you implemented the 
synchronization between processes.

Submitting other files will be sanctioned


