
Tutorial 9 : cache memory



Why use a cache ?

• Main memory (VRAM/DRAM) is slow !

• To deal with this, the 𝛽-machine speed is reduced to match the memory 
read and write speed

• To make the machine faster, one can use a intermediate smaller and faster
memory between the processor and the main memory: a cache.

• The cache associates memory addresses with their values (taken from the 
main memory)



Basic working principle

• Reading a value from memory in presence of a cache is simple:
1. Check whether the cache memory contains the address

2. If it does, read the associated value from the cache

3. Otherwise, save the value in the cache and return it

• This usually works because memory accesses are not random. They
follow the subsequent principles:
• Temporal locality principle

• Spatial locality principle



Cache memory variants

• Totally associative cache

• Totally associative cache in blocks

• Direct mapped cache

• Set associative cache



Totally associative cache

Pros:
• Simple

Cons:
• One comparator and one address per stored word
• Does not exploit fully the locality principle
• Need for a replacement policy (can be costly to 

implement)

For each memory address A, store its corresponding word. Select a location using a replacement policy.



Associative cache in blocks

Pros:
• Exploit the locality principle better
• Better capacity: one comparator for N stored words

Cons:
• Need for a replacement policy which can be costly

For each address A, it stores the N consecutive words starting with the one stored at A.

0 1 2 3



Direct mapped cache (in blocks)

0 1 2 3

0

1

2

3

4

5

6

7

C
ac

h
e 

ad
d

re
ss

es

Pros:
• No need for a replacement policy
• Only one comparator is needed

Cons:
• Not possible to store simultaneously

the content of different memory 
addresses sharing the same cache 
address

Uses a part of the (memory) address as cache address !



Set associative cache
Compromise between associative cache and direct mapped cache

N direct mapped caches (in blocks or not). 
Selection of cache using a replacement policy. 

Pros:
• Can store the content of memory 

addresses having the same cache 
address

Cons:
• Need for a replacement policy but 

for large enough cache, random
selection yields results almost as 
good as LRU


