
Computation Structures — Tutorial 12
December 4, 2018

1 A β Machine with a 2-Stage Pipeline

1. Give a plausible implementation of NOP().

*** Solution ***
A possible (safe) implementation of the NOP() instruction could be: ADD(R31,

R31, R31).

2. Give a software solution to the jump problems for each of the following
programs:

(a) 1 Main: ADDC(R31,0,R1)

2 ADDC(R31,2,R2)

3 Incr: ADDC(R1,5,R1)

4 SUBC(R2,1,R2)

5 BT(R2,Incr)

6 Oper: ADD(R1,R3,R3)

(b) 1 Cas1: ADDC(R1,4,R1)

2 SUBC(R2,12,R2)

3 CMPLT(R1,R2,R0)

4 BNE(R0,Cas2)

5 MULC(R1,5,R1)

6 BR(rtn)

7 Cas2: MULC(R2,5,R2)

8 BR(rtn)

*** Solution ***

1. Problem: on a machine with a pipeline, the next instruction execution begins
before the previous one completes. This can lead to problems for codes features
branching and jumping instructions.
In this case, ADD would be executed even if R2 is true, which would corrupt the
register R3 and put the program in an undesired state.

t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6

IF ADDC ADDC ADDC SUBC BT ADD ...
EXE ADDC ADDC ADDC SUBC BT ADD ??

Possible solutions:

• Using a NOP() instruction between BT (line 5) and ADD (line 6). Drawback :
some clock-cycles (one in this case) are used for doing nothing.

• Re-ordering the instructions: move ADDC(R1, 5, R1) after BT. Drawback :
error-prone, the next instruction should be chosen cautiously. Indeed, it must
be taken in the same block as the branching operation and the registers
values should remain consistent. Moreover, we lose portability as the
code doesn’t work on a pipeline-less machine anymore.

2 A β Machine with a 4-Stage Pipeline

1. Give a software and a hardware solution to the data conflicts problems for
the following program:

1 ADD(R1,R2,R3)

2 SUB(R3,R4,R5)

3 MULC(R2,5,R17)

4 ADD(R5,R1,R1)

5 SUB(R17,R1,R17)

*** Solution ***

Problem(s):

(1) SUB needs the result of the preceeding ADD in R3 but ADD is only at the ALU

phase so the hasn’t been written back yet.

(2) The second ADD needs the result of the preceeding SUB in R5 but SUB is
only at the WB phase so the result will only be written back at the next
clock cycle.

(3) The second SUB needs the results of both the second ADD and MULC which
are respectively at phases ALU and WB. Therefore, they haven’t written back
yet.

t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8

IF ADD SUB MULC ADD SUB

RF ADD SUB(1) MULC ADD(2) SUB(3)

ALU ADD(1) SUB MULC ADD(3) SUB

WB/MEM ADD SUB(2) MULC(3) ADD SUB ...

• Software solution: in this case, one cannot re-order the instructions (too
many conflicts and too few instructions). One could use NOP() operations
at the cost of doubling the number of instructions:

1 ADD(R1,R2,R3)

2 NOP()

3 NOP()

4 SUB(R3,R4,R5)

5 NOP()

6 MULC(R2,5,R17)

7 ADD(R5,R1,R1)

8 NOP()

9 NOP()

10 SUB(R17,R1,R17)

• Hardware solution: one could do the NOP insertion at the hardware level
(still we double the execution time). Second solution would consist in
using bypasses. We need a ALU-out bypass for problems (1) and (3)

and a WB-out bypass for problems (2) and (3).

2. Give a hardware solution to the data conflicts problems for the following
program:

1 LD(R1,0,R4)

2 ADD(R1,R4,R5)

3 XOR(R3,R4,R6)

*** Solution ***

(1) ADD needs the value loaded in R4 from memory by LD, but R4 is only saved
at step t + 4 as the memory is in the phase WB/MEM.

(2) XOR needs the value loaded in R4 from memory by LD (same reason as
above).

t t + 1 t + 2 t + 3 t + 4 t + 5

IF LD ADD XOR

RF LD ADD(1) XOR(2)

ALU LD(1) ADD XOR ...

WB/MEM LD(2) ADD XOR

• Problem (2) can be handled by using a WB-out bypass.

• Problem (1) cannot be handled by using a bypass as the value from the
memory is nowhere on the path (because the memory is only queried in the
last phase WB/MEM). The only (simple) solution is to introduce a NOP

instruction and then use a WB-out bypass:

1 LD(R1,0,R4)

2 NOP()

3 ADD(R1,R4,R5)

4 XOR(R3,R4,R6)

3. If the β Machine features 2 bypasses, what will be the result stored at 0x1000
after the execution of the following program? Why?

1 ADDC(R31,3,R0)

2 SUBC(R0,1,R1)

3 MUL(R0,R1,R2)

4 XOR(R0,R2,R3)

5 ST(R3,0x1000,R31)

*** Solution ***

Thanks to the bypasses, there is no conflicts and the result is that same as if this
code ran on a pipeline-less machine. The operation performed is 3 ⊕ (3 × 2):

0 1 1
⊕ 1 1 0

1 0 1 = 5

t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8

IF ADDC SUBC MUL XOR ST

RF ADDC SUBC(1) MUL(2) XOR(3) ST(4)

ALU ADDC(1) SUBC(2) MUL(3) XOR(4) ST

WB/MEM SUBC(2) SUBC MUL XOR ST ...

	A Machine with a 2-Stage Pipeline
	A Machine with a 4-Stage Pipeline

