
Computation structures
Support for problem-solving lesson #7

Exercise 1
Consider the following Java class:

What could be the outcome of the following programs?

public class MyClass {

public MyClass () {}

public synchronized void m1() {

System.out.println("Entering method 1");

try {Thread.sleep(5000); } catch(Exception e){}

System.out.println("Exiting method 1");

}

public synchronized void m2() {

System.out.println("Entering method 2");

try {Thread.sleep(5000); } catch (Exception e){}

System.out.println("Exiting method 2");

}

MyClass o1, o2 ;

o1 = new MyClass (); o2 = new MyClass () ;

new Thread () { public void run () {

o1.m1(); } }.start() ;

new Thread () { public void run () {

o1.m2(); } }.start() ;

MyClass o1, o2 ;

o1 = new MyClass (); o2 = new MyClass () ;

new Thread () { public void run () {

o1.m1(); } }.start() ;

new Thread () { public void run () {

o2.m1(); } }.start() ;

Exercise 1

• Both methods m1() and m2() are synchronized.

• Thus, for a given object, several threads cannot
access its method simultaneously.

• Consider the first case :
• One thread wants to execute o1.m1().

• Another thread wants to execute o1.m2().

Exercise 1

• First possibility:
• Thread 1 is executed. Entering the function, it aquires the lock

on o1.
• From that point, even if Thread 2 wants to execute, it will be

blocked outside of m2().
• Thread 1 executes o1.m1() until completion, then releases

the lock on o1.
• Thread 2 now can execute o1.m2().

• Second possibility:
• Same as before, but Thread 2 is executed first, locks Thread 1

outside of m1(), finishes o1.m2(), releases the lock and
Thread 1 can execute o1.m1().

Exercise 1

• Output:

or

Entering method 1

<waits 5 seconds>
Exiting method 1

Entering method 2

<waits 5 seconds>
Exiting method 2

Entering method 2

<waits 5 seconds>
Exiting method 2

Entering method 1

<waits 5 seconds>
Exiting method 1

Exercise 1

• Consider the second case:
• One thread wants to execute o1.m1().
• Another thread wants to execute o2.m1().

• The lock is aquired on a given object, thus Thread 1
obtains the lock on o1 while Thread 2 obtains the
lock on o2.

• Thread 1 and Thread 2 are thus not in mutual
exclusion, even though they both called the same
method that was declared synchronized.

Exercise 1

• Output:

Entering method 1

Entering method 1

<waits ~5 seconds>
Exiting method 1

Exiting method 1

Exercise 2

An animal shelter has a room to temporarily store animals that
transit from their cages to the vet clinic and reversely.

Rules are :

• The room is only used to hold cats or dogs.

• A cat can never enter the room if it already contains a cat or a dog.

• A dog can never enter the room if it already contains a cat.

• There cannot be more than 4 dogs in the room.

Write a solution to this problem using synchronized methods as
well as wait(), notify() and notifyAll() calls. Use variables cats and
dogs to represent the number of cats and dogs in the room
respectively.

Exercise 2

Recall:

• wait() will lock the calling thread and release the mutex
aquired by synchronized until another thread calls notify() or
notifyAll() in a synchronized method of the same object.

• notify() will unlock a single thread that called wait(). The
choice of the Thread to unlock is arbitrary and depends on
the implementation. In Java 8, the Thread that called wait()
first is notified first. If there's none, notify() does nothing. The
calling thread can continue its execution.

• notifyAll() will unlock all threads that called wait(),if any. The
calling thread can continue its execution.

Exercise 2

public class Room {

public Room() { }

public synchronized void dogEnter()

throws InterruptedException{

while(dogs>=4 || cats>0)

wait();

dogs++;

}

public synchronized void dogExit(){

if(dogs > 0) {

dogs--;

}

}

public synchronized void catEnter()

throws InterruptedException{

while(cats>0 || dogs>0)

wait();

cats++;

}

public synchronized void catExit(){

if(cats > 0) {

--cats;

}

}

int dogs=0; //number of dogs in the room

int cats=0; //number of cats in the room

}

1 2

Let's first start without any synchronization.

Exercise 2

public class Room {

public Room() { }

public synchronized void dogEnter()

throws InterruptedException{

while(dogs>=4 || cats>0)

wait();

dogs++;

}

public synchronized void dogExit(){

if(dogs > 0) {

dogs--;

}

}

public synchronized void catEnter()

throws InterruptedException{

while(cats>0 || dogs>0)

wait();

cats++;

}

public synchronized void catExit(){

if(cats > 0) {

--cats;

}

}

int dogs=0; //number of dogs in the room

int cats=0; //number of cats in the room

}

1 2

I need to protect cats and dogs, so I use the mutex offered by synchronized.

Exercise 2

public class Room {

public Room() { }

public synchronized void dogEnter()

throws InterruptedException{

while(dogs>=4 || cats>0)

wait();

dogs++;

}

public synchronized void dogExit(){

if(dogs > 0) {

dogs--;

}

}

public synchronized void catEnter()

throws InterruptedException{

while(cats>0 || dogs>0)

wait();

cats++;

}

public synchronized void catExit(){

if(cats > 0) {

--cats;

}

}

int dogs=0; //number of dogs in the room

int cats=0; //number of cats in the room

}

1 2

Dogs can only enter if there's less than 4 dogs, and cats can only be alone.

Exercise 2

public class Room {

public Room() { }

public synchronized void dogEnter()

throws InterruptedException{

while(dogs>=4 || cats>0)

wait();

dogs++;

}

public synchronized void dogExit(){

if(dogs > 0) {

dogs--;

notifyAll();

}

}

public synchronized void catEnter()

throws InterruptedException{

while(cats>0 || dogs>0)

wait();

cats++;

}

public synchronized void catExit(){

if(cats > 0) {

--cats;

notifyAll();

}

}

int dogs=0; //number of dogs in the room

int cats=0; //number of cats in the room

}

1 2

When an animal leaves the room, it might let another animal come in, so we must unlock
the waiting threads.

Exercise 2

public class Room {

public Room() { }

public synchronized void dogEnter()

throws InterruptedException{

while(dogs>=4 || cats>0)

wait();

dogs++;

}

public synchronized void dogExit(){

if(dogs > 0) {

dogs--;

notifyAll();

}

}

public synchronized void catEnter()

throws InterruptedException{

while(cats>0 || dogs>0)

wait();

cats++;

}

public synchronized void catExit(){

if(cats > 0) {

--cats;

notifyAll();

}

}

int dogs=0; //number of dogs in the room

int cats=0; //number of cats in the room

}

1 2

Why did we use notifyAll() instead of notify()?
Because we could potentially lose a notification.

Exercise 2

Losing a notification:

• Dog 1 wants to enter OK, dogs = 1, cats = 0
• Cat 1 wants to enter KO, calls wait()

• Dog 2 wants to enter OK, dogs = 2, cats = 0
• Dog 3 wants to enter OK, dogs = 3, cats = 0
• Dog 4 wants to enter OK, dogs = 4, cats = 0
• Dog 5 wants to enter KO, calls wait()

• Dog 1 leaves the room calls notify(), dogs = 3, cats = 0
• Cat 1 is awaken by notify(), checks dogs and cats KO
 wait()

• But Dog 5 could enter and is not notified.

Exercise 2

public class Room {

public Room() { }

public synchronized void dogEnter()

throws InterruptedException{

while(dogs>=4 || cats>0)

wait();

dogs++;

}

public synchronized void dogExit(){

if(dogs > 0) {

dogs--;

notifyAll();

}

}

public synchronized void catEnter()

throws InterruptedException{

while(cats>0 || dogs>0)

wait();

cats++;

}

public synchronized void catExit(){

if(cats > 0) {

--cats;

notifyAll();

}

}

int dogs=0; //number of dogs in the room

int cats=0; //number of cats in the room

}

1 2

Why did we use while instead of if?
Because triggering notifyAll() (and even notify()) does not guarantee that the condition
that lead to the wait() is now false.

Exercise 2

Using if instead of while (even replacing notifyAll() by notify()):

• Dog 1 wants to enter OK, dogs = 1, cats = 0

• Cat 1 wants to enter KO, calls wait()

• Dog 2 wants to enter OK, dogs = 2, cats = 0

• Dog 1 leaves the room calls notify(), dogs = 1, cats = 0

• Cat 1 is awaken by notify(), and resumes its execution

 dogs = 1, cats = 1 KO

Exercise 3
A bank asks your help to develop a Java program that performs the
payments.

Bank accounts are stored in objects of class Account that advertise three
non-atomic methods:

• void credit(double amount) to credit amount to the account,

• void debit(double amount) to debit amount from the account, and

• String getIBAN() to get the IBAN of the account.

You must write a method called

transfer(Account from, Account to, double amount)

that will be used in the context of multi-threading, and ensure
synchronization is performed in such a way as to keep the accounts in a
coherent state while avoiding deadlocks.

We assume infinite overdraft for all clients.

Exercise 3

Recall

You can use synchronized in three ways:

• For a whole method
• e.g. synchronized int theMethod() { /* mutex on the method*/}

• For a block inside a method (on the current object)
• e.g. synchronized(this) { /* mutex for this block only */}

• For a block inside a method (on a different object)
• e.g. synchonized(obj) { /*mutex aquired for object obj*/ }

Exercise 3

First try

Is it good? If not, why?

The mutex is aquired on the whole object.

 I cannot work on account3 and account4 if I'm already working on
account1 and account2.

 Too restrictive

public synchronized void transfer(Account from, Account to, double amount)

{

from.debit(amount);

to.credit(amount);

}

Exercise 3

Second try

Is it good? If not, why?

Imagine the following :

Two transfer orders arrive, one from account1 to account2, and one from
account2 to account1

Thread1 gets the lock on account1, then Thread2 gets the lock on account2,
hence Thread1 cannot get the lock on account2 and Thread2 cannot get the
lock on account1

deadlock!

public void transfer(Account from, Account to, double amount)

{

synchronized(from) {

synchronized(to) {

from.debit(amount);

to.credit(amount);

}

}

}

Exercise 3

Third try

To solve, the deadlock problem, we must find an order for the resources,
and lock them accordingly;

public void transfer(Account from, Account to, double amount)

{

if(from.getIBAN().compareTo(to.getIBAN()) < 0) {

synchronized(from) {

synchronized(to) {

from.debit(amount); to.credit(amount);

}

}

} else {

synchronized(to) {

synchronized(from) {

from.debit(amount); to.credit(amount);

}

}

}

}

Transfer from BE43 0000 0000 0101
to BE32 0000 0000 0202 (Thread1)

Transfer from BE32 0000 0000 0202
to BE43 0000 0000 0101 (Thread2)

BE32… < BE43… lock on BE32…
for both threads

 No deadlock

Exercise 3

Wouldn’t this be acceptable?

Well, it would in the context of synchronization, but one might have to
wait between the two synchronized blocks, leading to money disappearing
from one account and not being transfered to the other account.

In this exercise, it would be OK since we assume infinite overdraft, but we
would miss the goal, which is to learn how to deal with atomic multiple
locks.

public void transfer(Account from, Account to, double amount)

{

synchronized(from) {

from.debit(amount);

}

synchronized(to) {

to.credit(amount);

}

}

