

# Intelligent robotics

The RAGI project

# Summary

- What is RAGI?
- The Loomo robot
- Loomo's navigation system
  - I) Localization
  - II) Path computation
  - III) Path following
  - IV) Obstacle avoidance



Système de Reconnaissance, d'Accueil et de Guidance Intelligent



Main goals:

Localizing people

guiding visitors



## Loomo robot



# Why Loomo?

- Cheap
- Powerful & reliable locomotion
- 2D & 3D cameras
- API for developers



## Navigation system

4 main problems:

I) Localization

II) Path computation

III) Path following

IV) Obstacle avoidance

## Navigation system

Our solutions:

I) Localization

Particle filter : Corrective Gradient Refinement [1]

II) Path computation

III) Path following

IV) Obstacle avoidance

## Particle filter principle



## Particle filter principle



## Step 1: particles generation

## Particle filter principle



## Step 2: particles weight update

## Particle filter principle



## Step 2: particles weight update

## Particle filter principle



## Step 2: particles weight update

## Particle filter principle



## Step 2: particles weight update

## Particle filter principle



## Step 2: particles weight update

## Particle filter principle



## Step 3: resampling

## Particle filter principle



## Step 4: move the particles as the vehicle moves

## Particle filter principle



#### Back to step 2: update the weights

## Particle filter principle



## Back to step 3: resampling

## Particle filter principle



## Back to step 4: move the particles

## Particle filter principle



## And so on...

## Particle filter principle



## And so on...

## Particle filter principle



## And so on...

## Particle filter principle



## And so on...

## Particle filter principle



## And so on...

## Particle filter principle



## And so on...
#### General algorithm:

- Particles initialization
  Weights update based on measurements
- 3) Resampling
- 4) Particles propagation Through motion model

Our case, corrective gradient refinement (CGR):

- 1) Particles initialization
- 2) Weights update based on measurements
  - **I**
- 3) Resampling
- 4) Particles propagation Through motion model





Our case, corrective gradient refinement (CGR) :



The less particles, the faster the computation time!

Our case, corrective gradient refinement (CGR):

- 2) Weights update based on measurements
  - a) Wall planes extraction
    - b) 2D projection
    - c) For each particle, probability of pointcloud observation



Not the only way to go, could add other types of measures (Lidar,...)

Our case, corrective gradient refinement (CGR):

2) Weights update based on measurements

Wall planes extraction
 with Fast Sampling Plane Filtering [2] algorithm

Our case, corrective gradient refinement (CGR):

2) Weights update based on measurements

Wall planes extraction
 with Fast Sampling Plane Filtering [2] algorithm

#### RANSAC [3] based



Our case, corrective gradient refinement (CGR):

2) Weights update based on measurements

a) Wall planes extraction
 with Fast Sampling Plane Filtering [2] algorithm

Extraction directly from depthmap

#### Reduced pointclouds







Our case, corrective gradient refinement (CGR):

- 2) Weights update based on measurements
  - a) Wall planes extraction
    - b) 2D projection —> *trivial*
    - c) For each particle, probability of pointcloud observation

Our case, corrective gradient refinement:

- 2) Weights update based on measurements
  - For each particle,
    probability of pointcloud
    observation

$$p(y|x) = \prod_{i=1}^{n} \exp\left[-\frac{d_i^2}{2f\sigma^2}\right]$$

- y = pointcloud observation
- x = considered particle
- n = number of points in y
- $\sigma$  = standart deviation of distance measurement
- f = factor to discount for the correlation between rays





Do not consider all **n** points, need outliers rejection!

Our case, corrective gradient refinement (CGR):

3) Resampling



Our case, corrective gradient refinement (CGR):

3) Resampling



Our case, corrective gradient refinement (CGR):

3) Resampling



Our case, corrective gradient refinement (CGR):

3) Resampling



- Roulette wheel
- O(n log n)

Source: <a href="https://www.youtube.com/watch?v=eAqAFSrTGGY">https://www.youtube.com/watch?v=eAqAFSrTGGY</a>

Our case, corrective gradient refinement (CGR):

3) Resampling



- Roulette wheel
- O(n log n)

Low varianceO(n)

Wn

W<sub>n</sub>-

W<sub>2</sub>

W<sub>3</sub>

Source: <a href="https://www.youtube.com/watch?v=eAqAFSrTGGY">https://www.youtube.com/watch?v=eAqAFSrTGGY</a>

Our case, corrective gradient refinement: (CGR)



Our case, corrective gradient refinement (CGR):



Our case, corrective gradient refinement (CGR):

5) Refinement — Correcting sample estimates that contradicts the observation

Our case, corrective gradient refinement (CGR):

5) Refinement — Correcting sample estimates that contradicts the observation



Our case, corrective gradient refinement (CGR):

5) Refinement — Correcting sample estimates that contradicts the observation

Using the gradient of the probability of the observation

Probability

Our case, corrective gradient refinement (CGR):

5) Refinement — Correcting sample estimates that contradicts the observation

Using the gradient of the probability of the observation

Probability



Our case, corrective gradient refinement (CGR):

5) Refinement — Correcting sample estimates that contradicts the observation

Using the gradient of the probability of the observation



Our case, corrective gradient refinement (CGR):

5) Refinement — Correcting sample estimates that contradicts the observation

Using the gradient of the probability of the observation



Our case, corrective gradient refinement (CGR):

5) Refinement — Correcting sample estimates that contradicts the observation

Using the gradient of the probability of the observation

Algorithm 1 The Refine step of CGR1: Let  $q^0 = \left\{ x_{q^0}^j \right\}_{j=1:m}$ 2: for i = 1 to r do3:  $q^i \leftarrow \{\}$ 4: for j = 1 to m do5:  $x_{q^i}^j \leftarrow x_{q^{i-1}}^j + \eta \left[ \frac{\hat{\delta}}{\delta x} p(y_t | x) \right]_{x=x_{q^{i-1}}^j}$ 6:  $q^i \leftarrow q^i \cup x_{q^i}^j$ 7: end for8: end for

Our case, corrective gradient refinement (CGR):

5) Refinement — Correcting sample estimates that contradicts the observation

Using the gradient of the probability of the observation

Acceptance test to be sure that the correction did not make it worse

#### Why choose CGR particle filter?

- Particle filters good for **non-linear systems**
- Particle filters work for any arbitrary noise distribution
  VS kalman filters work for gaussian noise
- Fit our needs & sensors (**Depth camera** based localization)
- Computation speed
- Source code available

- Embedding ROS c++ code into Loomo
  - Java Native Interface
  - Limited debugging tools
  - Not enough computing power



- CGR running on distant machine
  - Odometry & depth maps sent over WIFI
  - Latency
  - Bandwidth overload
  - Issues when switching between hotspots
  - Not reliable





- Embedded Depth camera
  - Intel realsense
  - Very noisy output
  - Bad accuracy



Need to be close to the walls



- Embedded Depth camera Usable under some conditions:
  - Be close to the walls
  - Adapt head orientation in some areas
  - Adapt speed in some areas
  - No large hall crossing





#### CGR in action



#### Navigation system

Our solutions:

I) Localization

Particle filter : corrective gradient refinement

- II) Path computation
  - Hardcoded trajectories
- III) Path following

IV) Obstacle avoidance

# II) Path computation

- Hardcoded base trajectories (centered)
- Corridors divided into 2 aisles
- Automatic computation of aisles paths from base trajectory
- Pro's & con's:
  + fast, simple, control over trajectory
  - not automatically adaptable to a new, bigger building



#### Navigation system

Our solutions:

I) Localization

Particle filter : corrective gradient refinement

II) Path computation

Hardcoded trajectories

III) Path following

PD controller

IV) Obstacle avoidance

# III) Path following

- 2 controls:
  - linear velocity
  - angular velocity
- Pure pursuit
- Proportionnal & Derivative (PD) controller for angle towards destination
- Constant linear velocity


- 2 controls:
  - linear velocity
  - angular velocity
- Pure pursuit
- Proportionnal & Derivative (PD) controller for angle towards destination
- Constant linear velocity



- 2 controls:
  - linear velocity
  - angular velocity
- Pure pursuit
- Proportionnal & Derivative (PD) controller for angle towards destination
- Constant linear velocity



- 2 controls:
  - linear velocity
  - angular velocity
- Pure pursuit
- Proportionnal & Derivative (PD)
   controller for angle <sup>3</sup> towards destination
- Constant linear velocity



- 2 controls:
  - linear velocity
  - angular velocity
- Pure pursuit
- Proportionnal & Derivative (PD)
   controller for angle 

   towards
   destination
- Constant linear velocity



- 2 controls:
  - linear velocity
  - angular velocity
- Pure pursuit
- Proportionnal & Derivative (PD)
   controller for angle 

   towards
   destination
- Constant linear velocity



#### III) Obstacle avoidance

- Ultrasonic sensor
- **Stop** & wait
- Short threshold
- Limit max speed of robot!



(Depth cam based, obstacles extraction, dynamic avoidance)



#### Sources

[1] Biswas, Joydeep, Brian Coltin, and Manuela Veloso. "Corrective gradient refinement for mobile robot localization." 2011 IEEE/RSJ international conference on Intelligent Robots and Systems. IEEE, 2011.

[2] Biswas, Joydeep, and Manuela Veloso. "Fast sampling plane filtering, polygon construction and merging from depth images." RSS, RGB-D Workshop. 2011.

[3] M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.