
Abstract—Sensorimotor control and the involvement of 
motor brain regions has been extensively studied, but the role 
nonmotor brain regions play during movements has been 
overlooked. This is particularly due to the difficulty of 
recording from multiple regions in the brain during motor 
control. In this study, we utilize stereoelectroencephalography 
(SEEG) recording techniques to explore the role nonmotor 
brain areas have on the way we move. Nine humans were 
implanted with SEEG depth electrodes for clinical purposes, 
which rendered access to local field potential (LFP) activity in 
deep and peripheral nonmotor structures. Participants 
performed fast and slow arm reaching movements using a 
robotic manipulandum. In this study, we explored whether 
neural activity in a given nonmotor brain structure correlated 
to movement path metrics including: path length, path 
deviation, and path speed. Statistical analysis revealed 
correlations between averaged neural activity in middle 
temporal gyrus, supramarginal gyrus, and fusiform gyrus and 
our path metrics both within and across the subjects. 
Furthermore, we split trials across subjects into two groups: 
one group consisted of trials with high values of each path 
metric and the other with low values. We then found significant 
differences in LFP power in specific frequency bands (e.g. beta) 
during movement between each group. These results suggest 
that nonmotor regions may dynamically encode path-related 
information during movement.  1

I. INTRODUCTION 

First mapped in 1917, recordings of cortical motor 
regions have been valued for their explicit involvement in 
movement execution, both in human and nonhuman 
primates [1,2]. However, successful motor control relies on 
communication between motor and nonmotor areas, such as 
integrating sensory information to update the movement 
trajectory or to attenuate movement or to respond to 
unexpected perturbations [3-6]. Lesion studies and 
nonhuman primate studies have shown that nonmotor 
regions play an important role in movement but remain 
largely undocumented [7,8]. However, these regions could 
prove critical for future brain-machine interface applications 
for subjects whose motor areas are too impaired to provide 
reliable information. 

What makes nonmotor regions studies in humans 
particularly limited is the difficulty in recording from these 
regions during strenuous movement tasks. Previous studies 

of these regions have relied on fMRI, ECoG, and MEG to 
record in humans, each suffering from spatial or temporal 
resolution issues in one way or another [9,10]. The 
cumbersome set-ups required to perform natural movements 
also proves problematic within confined spaces [11]. 

In this study, we exploit a unique experimental set-up 
wherein we gain access to brain areas in humans not 
previously studied while executing a motor task. SEEG 
allows for the recording of multiple brain structures 
simultaneously with millisecond temporal resolution [11]. 
This technique has been previously used to correlate high-
frequency activity (HFA) to responses of movement 
perturbations [12]. 

Here we examined the correlation between behavioral 
features and nonmotor areas to investigate whether these 
regions encode aspects related to the way we move. In this 
study, epileptic patients implanted with electrodes for 
clinical purposes performed center-out reaching task using a 
robotic arm under instructed speed conditions. Upon 
behavioral analysis, movements were broken down into 
three basic path features (path length, path deviation, and 
path speed). These path features were found to correlate with 
neural activity in nonmotor areas in specific frequency bands 
(e.g. beta), including the supramarginal gyrus, middle 
temporal gyrus (MTG), and fusiform gyrus, both within and 
across the subjects. These results suggest that nonmotor 
regions may encode static, path-related information during 
movement. 

II. METHODS 

A. Subjects 
SEEG recordings were performed in medically refractory 

epileptic patients for the clinical purpose of finding the 
epileptogenic zone for possible resection. This study did not 
alter any invasive procedure as electrode location was made 
independently of the previous study based on pre-operative 
measures. Subject enrollment was completely voluntarily 
and all subjects gave informed consent. Experimental 
protocols were approved by the Cleveland Clinic 
Institutional Review Board. Methods were carried out in 
accordance with approved guidelines. Criteria allowed for 9 
individuals over the age of 18 with the ability to provide 
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informed consent and to perform the behavioral task. 
Alterations were not made to their clinical care other than 
the behavioral experiments. 

B. Stereoelectroencephalographic (SEEG) Implantations 
The SEEG depth electrodes (PMT Corporation, MN, 

USA) were implanted at the Cleveland Clinic using co-
registered three-dimensional CT and MRI scans [11]. 

Approximately 8 to 13 stereotactically placed electrodes 
were implanted per subjects. Each electrode contact had a 
0.8 mm diameter, was 2 mm long, and contacts were spaced 
1.5 mm apart. Depth electrodes were inserted using a robotic 
surgical implantation platform, (ROSA, Medtech Surgical 
Inc., USA) in either orthogonal or oblique orientation. This 
allowed for intracranial recording from lateral, intermediate 
and/or deep cortical and subcortical structures in a three-
dimensional arrangement [13]. The day prior to surgery, 
volumetric pre-operative MRIs (T1, contrasted with 
Multihance® - 0.1 mmol/Kg) were obtained and used to pre-
operative plan safe electrodes trajectories. Insertion 
trajectories were adjusted to avoid vascular structures. 
Electrode contacts were labeled according to the anatomical 
location from post-operative images with the agreement of 
two clinical experts. 

C. Electrophysiological Recordings 
Neural recordings were collected onsite using a clinical 

electrophysiology acquiring system activity (Nihon Kohden 
1200, Nihon Kohden America, USA) in the Epilepsy 
Monitoring unit at a sampling rate of 2 KHz from peripheral 
to deep brain structures. Recording sessions for this study 
were absent of epileptic activity. 

D. Behavioral Task 
Subjects (n=9) performed a speed and goal-directed 

reaching movements using a robotic manipulandum from the 
InMotion ARM Interactive Therapy System (Interactive 
Motion Technologies, Watertown, MA, USA) to move the 
cursor to complete the behavioral task displayed on a 
monitor as previously described (Fig. 1 (top)) [12,14,15]. 
This system allowed for precise tracking of arm movements 
over a horizontal plane as the subjects manipulated a cursor 
presented on the screen along with the task stimuli. The 
behavioral task was prepared with a MATLAB® interface 
(Mathworks, Natick, MA) using MonkeyLogic [16,17]. 

The overview of the behavioral task was to move and 
maintain the cursor from the center to a target within an 
instructed fast or slow time. Speeds were relative to the 
subject based on calibrated trials of their fastest movements 
prior to task initiation. A successful fast speed required a 
trial time between 60-80% of their calibrated speed while a 
slow speed required 20-40% of their calibrated speed. 

Visual stimuli and task details are explained in Fig. 1 
(bottom). Trials begin with speed instruction, visualized by a 
vertical bar. The top or bottom portion would be highlighted 
green to indicate the instructed speed of fast or slow, 
respectively. After fixation by means of moving the cursor 
into the center, the target of the trial is displayed prior to 
movement for 2 ± 0.25 seconds. Go cue initiates when the 
target turns green after the delay. Movement onset is 
triggered when the subject’s cursor leaves the center. The 

subject is expected to move their cursor into the target within 
8 seconds including 0.5 seconds of holding. After successful 
holding, speed feedback is provided comparing the subject’s 
trial speed to the instructed speed on the speed bar for 2 
seconds. The outcome is revealed as a visual field of either a 
$5 bill upon success or a red X upon failure based on their 
performance. 

E. Behavioral Analysis 
All electrophysiological and behavioral analyses were 

conducted offline using custom MATLAB scripts. 
Behavioral analysis was performed on positional data 
between movement onset and the first hit in the target during 
the movement phase of unperturbed trials. Positional data 
were smoothed with a low-pass Butterworth filter (cutoff 
frequency of 10 Hz). 

Three metrics were chosen to capture key features of 
movements on a trial-by-trail basis. These uncorrelated 
metrics are path length, path deviation, and path speed. Path 
length is the arc length normalized by the length of the 
straight line between the point where they left the center and 
where they entered the target [18]. Path deviation measures 
the average deviation each sample point is away from the 
task axis, defined as the straight line from the center of 
fixation to the target [19]. Path speed is the distance 
covered in the trial divided by the time of the trial. This 
metric was used by the task program to evaluate trial speed 
compared to the instructed speed for each session. All 
metrics were normalized for each subject. 

F. Neural Data Analysis 
Neuronal activity collected from SEEG electrodes are 

analyzed using frequency analysis on the voltage data. The 
log power spectrum is cut into 10 sections with widths of 10 
Hz. The z-scored of the log power is calculated from the 
distribution of the log power per section over the entire 

Figure 1. (Top) Subject sat approximately 2 feet in front of screen. 
Movements were made holding the robotic arm. Manipulandum recorded 
positional information of the cursor. (Bottom) Each trial comprised of a 
instructional phase (visual time instruction (SpeedInst), move to center 
(CenterCue), target presentation (TargetApp)), the movement phase (Go 
cue (GoCue), reach and hold cursor on target), and a feedback phase 
(actual movement duration (MoveFeedback), outcome with visual $5 
(reward) or X (failure) comparing actual time to instructed time). Below 
times represent mean and standard deviation of trials.
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session time with the top and bottom 5 percentile excluded 
for artifact rejection. 

To capture a form of neural spiking from the data, three 
frequency bands were chosen: beta (15-30 Hz), gamma 
(30-100 Hz), high gamma (100-200 Hz). Each band 
contained approximately ten frequency bins. The z-scored 
log power was averaged over these bins across bands to 
obtain a temporal representation of neuronal firing. For trial-
by-trial correlation analysis, mean band power was averaged 
between movement onset and first target hit to obtain one 
number per trial for each subject. 

G. Subject Specific Analysis 
To investigate if path-related information was being 

encoded by any nonmotor brain regions, a static analysis 
was devised. This comprised of correlating the average 
neural activity in each band to each path metric on a trial-by-
trial basis within each subject. The Pearson correlation 
coefficient and corresponding p-value were calculated. This 
was repeated for each condition (band, metric, subject). 

Conditions with significant correlations (p<0.05) were 
split into two groups: one group consisted of the top 20% of 

trials with the highest values and the other with the bottom 
20% of trials with the lowest values. These trials were 
temporally plotted against each other time locked at 
movement onset and a nonparametric cluster analysis was 
performed between these two conditions [20]. Conditions 
with a significant difference (p<0.05) in neural activity were 
extracted and deemed as encoding path-related information. 

H. Population Analysis 
To make a general statement about neural encoding, 

common conditions must be observed across three or more 
sessions. Therefore, the trial-average analysis described 
above was repeated on brain regions that were significant in 
both correlation and temporal analysis as well as observed in 
at least three sessions. The combined trials were separated 
into groups by high and low values within each path metric, 
relative to the subject. Again, correlation coefficients were 
calculated and a nonparametric cluster analysis was 
performed on the separated groups. 

III. RESULTS 

Multiple nonmotor regions correlated with path-related 
metrics. Here we examine brain areas that were found to 
encode each metric according to the population analysis. 

A. Path analysis 
Since metrics were calculated relative to each subject, 

subject performance varied greatly; e.g. what was a fast trial 
for one subject may have been considered a slow trial for 
another. Fig. 2A demonstrates the ability of the metrics to 
represent different types of paths, where red paths indicate 
trials with high metric values and blue paths represent trials 
with low values. Path length separates direct paths (blue) 
from indirect paths (red) to the target. Path deviation 
separates paths that were inline with the task axis (blue) 
from paths that deviated from the target (red). Path speed 
meant to separate trials with a slow time (blue) from fast 
trials (red). Though the metric inherently does not directly 
related to visual path characteristics, slow trials appear to be 
a combination of wavier or have larger path lengths than fast 
trials. 

B. Population correlations 
Many regions were found to be correlated with path 

information but only a select few were common across 
subjects. All regions selected had a significant correlation 
with the metric (p<0.05) with the highest correlation 
coefficients amongst other regions. These regions were 
supramarginal gyrus for path length, MTG for path 
deviation, and fusiform gyrus for path speed. Fig. 2C shows 
the scatter plots with the associated correlation values per 
metric. Supramarginal gyrus has a positive correlation with 
path length, whereas middle temporal gyrus and fusiform 
gyrus have negative correlations with path deviation and 
speed, respectively. Fig. 2B shows the anatomical location of 
the brain regions, highlighted in an MRI slice. 

C. Population average power plots 
Shown in Fig. 2D are the normalized beta band power 

temporally averaged for each metric and associated brain 
area time locked to movement onset. The signs of the 
correlations in Fig. 2C are exhibited in the average power 

A
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D

Figure 2. Example of a complete population analysis for each metric. 
Columns represent the path metric and rows associates to corresponding 
description. (A) Raw paths overlaid with groups where high metric 
values are red and low metric values are blue. (B) Population scatter plot 
of average beta power and metric normalized to the subject with least 
square line (magenta) to show trend. Number of subjects, correlation 
coefficient, and associated p-value also shown. (C) Coronal view of brain 
MRI with areas of interest highlighted for demonstrative purposes. (D) 
Average normalized beta power plotted over time for two groups, with a 
window of [-1, 1.5] seconds time locked to movement onset at 0 seconds. 
Average population trial completion was about 1 second after movement 
onset. The colors are consistent with previous representations. The 
shaded area shows for one standard error. The dots under the time series 
shows the results of the clustering analysis, where red dots signify a 
significant difference between the two groups.

3341



plots. Negatively correlated conditions, (MTG, path 
deviation) and (fusiform gyrus, path speed), appear to have a 
decrease in neural activity after movement onset for trials 
with high valued metrics and conversely for positively 
correlated conditions (supramarginal gyrus, path length). 

IV. DISCUSSION 

Our results suggest that neural activity in nonmotor 
regions is associated with observed behavioral patterns 
through metrics that characterize path execution. This 
suggests that these nonmotor areas may be encoding 
information about the movement that was not previously 
known. Overall, beta band activity was more commonly 
correlated with the path metrics than gamma or high gamma 
activity. Beta band is known to become suppressed after 
movement onset and has been correlated with post-
movements error [18]. This is similar to our observations 
with path deviation, a type of error, and MTG with 
suppressed beta sustained during the trials. 

Path length: The supramarginal gyrus, a division of the 
inferior parietal lobe, has been previously imaged to be 
involved with motor attention [7,21]. The results from the 
population analysis indicate that trials with longer paths 
have an increase in neural activity that is delayed towards 
the end of the trial (Fig. 2D left). This suggests that longer 
trials may require more attention to motor control and hence 
more recruitment of neuronal firing at the end of the 
movement. 

Path deviation: The MTG has been identified as apart of the 
visual processing known as V5, which has been shown to 
perceive and direct attention to motion in nonhuman 
primates and in humans [22,23]. It has also been shown in 
fMRI studies to correlate with distance along with the 
cingulate cortex (not shown) [24]. The negative correlation 
between path deviation and MTG produces a sharp 
suppression in neural activity for trials with large deviations 
(Fig. 2D center). This suggests that the MTG could be 
reacting to the movement deviation, perhaps due to the extra 
distance covered or attenuation required to complete drifted 
paths. 

Path speed: Fusiform gyrus has been proposed to be 
associated with color processing, recognition, and spatial 
attention [23,25,26]. In Fig. 2D right, initially there is a 
decrease in activity for both fast and slow trials followed by 
a return to baseline for slow trials and a sustained 
suppression in fast trials until trial completion around 1 
second. Based on our results, this difference in activity could 
be observing a form of selectivity that distinguishes between 
the motion being fast or slow. In this case, it is selective 
towards fast speeds through suppression whereas slow 
speeds return to baseline. 

ACKNOWLEDGEMENT 
This work was supported by a National Science 

Foundation grant (EFRI-MC3: # 1137237) awarded to 
S.V.S., J.A.G., J.B., and J.T.G. and the ARCS Foundation 
awarded to M.S.B. 

REFERENCES 
[1] A. S. F. Leyton and C. S. Sherrington, “Observations on the excitable 

cortex of the chimpanzee, orangutan and gorilla,” Exp. Physiol,, vol. 
11, no. 2, pp. 135–222, 1917. 

[2] W. Penfield and E. Boldrey, “Somatic motor and sensory representation 
in the cerebral cortex of man as studied by electrical stimulation,” 
Brain: A Journal of Neurology, vol. 60, pp. 389–443, Dec. 1937. 

[3] M. Corbetta and G. L. Shulman, “Control of goal-directed and stimulus-
driven attention in the brain,” Nature Reviews Neuroscience, vol. 3, 
no. 3, pp. 201–215, Mar. 2002. 

[4] M. Desmurget and S. Grafton, “Forward modeling allows feedback 
control for fast reaching movements,” Trends in Cognitive Sciences, 
vol 4, no. 11, pp. 423–431, Nov. 2000. 

[5] R. A. Andersen and C. A. Buneo, “Intentional maps in posterior parietal 
cortex,” Annual Review of Neuroscience, vol. 25, no. 1, pp. 189–220, 
Mar. 2002. 

[6] M. Kerr, et al., “The Role of Associative Cortices and Hippocampus 
during Movement Perturbations,” Front. Neural Circuits, vol. 11, p. 
26, April 2017. 

[7] R. J. Perry and S. Zeki, “The neurology of saccades and covert shifts in 
spatial attention,” Brain, vol. 123, no. 11, pp. 2273–2288, Nov. 2000. 

[8] T. Aflalo, et al., “Decoding motor imagery from the posterior parietal 
cortex of a tetraplegic human,” Science, vol. 348, no. 6237, pp. 906–
910, May 2015. 

[9] N. K. Logothetis, “What we can do and what we cannot do with fMRI,” 
Nature, vol. 453, no. 7197, pp. 869–878, June 2008. 

[10] J. Diedrichsen, et al., “Neural correlates of reach errors,” Journal of 
Neuroscience, vol. 25, no. 43, pp. 9919–9931, Oct. 2005. 

[11] J. González-Martínez, et al., “Technique, results, and complications 
related to robot-assisted stereoelectroencephalography,” 
Neurosurgery, vol. 78, no. 2, pp. 169-180, 2016. 

[12] M. S. D. Kerr, et al., “High frequency activity correlates of robust 
movement in humans,” in Proc. 36th Annu. IEEE EMBC, Chicago, 
2014, pp. 4391–4394. 

[13] J. González-Martínez, et al., “Robotic Epilepsy Surgery: Technique, 
Results and Complications Related to Robotic Assisted SEEG,” 
Neurosurgery, vol. 78, no. 2, pp. 169–179, 2016. 

[14] M. A. Johnson, et al., “Performing behavioral tasks in subjects with 
intracranial electrodes,” J. Vis. Exp., no. 92, 2014. 

[15] P. Sacré, et al., “Lucky rhythms in orbitofrontal cortex bias gambling 
decisions in humans,” Scientific Reports, vol. 6, 36206, 2016. 

[16] W. F. Asaad and E. N. Eskandar, “A flexible software tool for 
temporally-precise behavioral control in MATLAB,” Journal of 
Neuroscience Methods, vol. 174, no. 2, pp. 245–258, Sep. 2008. 

[17] W. F. Asaad, et al., “High-performance execution of psychophysical 
tasks with complex visual stimuli in MATLAB,” Journal of 
neurophysiology, vol. 109, no. 1, pp. 249–260, Jan. 2013. 

[18] H. Tan, N. Jenkinson, and P. Brown, “Dynamic neural correlates of 
motor error monitoring and adaptation during trial-to-trial learning,” J 
Neurosci., vol. 34, no. 16, pp. 5678–5688, Apr. 2014. 

[19] S. I. MacKenzie, T. Kauppinen, and M. Silfverberg, “Accuracy 
measures for evaluating computer pointing devices,” in Proc. of the 
SIGCHI conference on Human factors in computing systems, Seattle, 
2001, pp. 9–16. 

[20] E. Maris and R. Oostenveld, “Nonparametric statistical testing of EEG 
and MEG-data,” J. Neurosci. Methods, vol. 164, no. 1, pp. 177–190, 
2007. 

[21] M. F. S. Rushworth, Matthew, A. Ellison, and V. Walsh, 
“Complementary localization and lateralization of orienting and motor 
attention,” Nature neuroscience, vol. 4, no. 6, pp. 656–661, 2001. 

[22] E. P. Simoncelli and D. J. Heeger, “A model of neuronal responses in 
visual area MT,” Vision research, vol. 38, no. 5, pp. 743–761, 1998. 

[23] M. Corbetta, et al., “Attentional modulation of neural processing of 
shape, color, and velocity in humans,” Science, vol. 248, no. 4962, p. 
1556, 1990. 

[24] P. Pinel, et al., “Modulation of parietal activation by semantic distance 
in a number comparison task,” Neuroimage, vol. 14, no. 5, pp. 1013–
1026, 2001. 

[25] F. Castelli, et al., “Movement and mind: a functional imaging study of 
perception and interpretation of complex intentional movement 
patterns,” Neuroimage, vol. 12, no. 3, pp. 314–325, 2000. 

[26] L. Michels, et al., “Brain activity for peripheral biological motion in 
the posterior superior temporal gyrus and the fusiform gyrus: 
Dependence on visual hemifield and view orientation,” Neuroimage, 
vol. 45, no. 1, pp. 151–159, 2009.

3342



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



