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Abstract— The paper discusses elementary control strategies
to control the phase of an oscillator. Both feedforward and
feedback (P and PI) control laws are designed based on the
phase response curve (PRC) calculated from the linearized
model. The performance is evaluated on a popular model of
circadian oscillations.

I. INTRODUCTION

Rhythmic phenomena are essential to the dynamic behav-

ior of many physical, chemical and biological systems [1],

[2], [3], [4], [5], [6]. The last decades have witnessed a

growing interest in the analysis and the synthesis of limit

cycles [7], [8], [9]. Global and local stability of limit cycles

but also the generation of limit cycle oscillations with large

basin of attraction in stabilizable nonlinear systems were

widely addressed in the control theory literature (see [10]

and references therein).

This paper focusses on a different problem. Any periodic

oscillation can be characterized by its amplitude, frequency

(or frequencies spectrum), and phase. Several strategies have

been proposed to control each of these characteristics [11],

[12], [13], [14], [15]. Here, we propose elementary strategies

to assign the phase of a large class of nonlinear oscillators.

Our control objective is to drive an oscillatory system to track

the phase of a reference trajectory evolving at the natural

frequency of the system.

While this problem can be found in many applications, it

has been motived by biological applications in the study of

circadian rhythm. Recent work addressing the phase control

using model predictive control includes [16], [17]. In biology,

a very common and useful tool for studying the phase shift

induced by a particular (brief) input is the phase response

curve (PRC) [5], [6]. The purpose of this paper is to develop

elementary control strategies based on this specific tool.

An independent but closely related idea has been proposed

in [18] in the context of a neuronal model.

The organization of this paper is as follows. In Section II,

we introduce a biological toy motivating example. Section III

provides the phase reduction procedure and the definition of

the PRC. PRC control map and PRC-based control strategies

are the focus of Section IV. Application of these control laws

to the motivating example is considered in Section V.

II. A MOTIVATING EXAMPLE

A common illustration of phase assignment is the jet-lag

that most scientists experience when traveling to conferences.

The authors are with the Department of Electrical Engineering and Com-
puter Science (Montefiore Institute, B28), University of Liège, 4000 Liège,
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Fig. 1. Illustration of the phase shift caused by a pulse of amplitude
∆ = 1.6 and duration Tw = 1 h at time t = T/4 h in the Goldbeter
model.

The organism needs some time to “reset” the phase of

its initial circadian rhythm to shifted environmental light

conditions. This problem prompts biologists to study phase

resetting and entrainment mechanisms in simple models of

circadian oscillations.

The key assumption to the Goldbeter model of Neurospora

circadian rhythms is the auto-inhibition of the transcription of

the gene frq [19], [21]. This inhibition is through a feedback

loop that involves nuclear translocation. Light (modeled by

input u) controls the circadian system by enhancing the rate

of frq gene expression.

Corresponding to these assumptions, one obtains an ordi-

nary differential equation (ODE) system for concentrations

as follows:

Ṁ = (vs + u)
Kn

I

Kn

I
+ Fn

N

− vm

M

Km + M
,

ḞC = ks M − vd

FC

Kd + FC

− k1 FC + k2 FN ,

ḞN = k1 FC − k2 FN ,

where M > 0 denotes the concentration of frq mRNA, and

FC > 0 and FN > 0 are used to indicate the concentrations

of FRQ in the cytoplasm and in the nucleus, respectively.

The parameters used by Goldbeter are given in Section V.

With these parameters, there are limit cycle oscillations (a

unique unstable equilibrium and an asymptotically stable

limit cycle). If vs is used as a bifurcation parameter, a Hopf

bifurcation occurs at vs ≈ 0.60.

Periodic excitation by light input results in phase and fre-

quency entrainment of the natural circadian oscillations [19],

[21], [20]. This means that the application of a suitable

input u over a periodic time window close to the natural

limit cycle period T may entrain the phase of the system.

This phenomenon is illustrated for the specific model in [19],

[21]. The input is usually modeled as a sequence of pulses

of limited duration and amplitude (for instance, one unique
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pulse of duration Tw = 12 h and amplitude ∆ = vs/4 is

applied every 24 hours). Figure 1 illustrates the phase shift

resulting from a pulse of duration Tw = 1 h and amplitude

∆ = vs. In mathematical biology, the steady state phase

shift that results from a particular (brief) input is commonly

studied via the phase response curve (PRC) [5], [6].

III. DERIVING A PHASE MODEL IN THE NEIGHBORHOOD

OF A STABLE LIMIT CYCLE

In this section, we summarize the phase reduction pro-

cedure. Starting with a set of ordinary differential equations

exhibiting a stable limit cycle, we arrive at a one-dimensional

nonlinear phase oscillator model. This phase-reduced model

has a single state evolving on the unit circle. Details about

this standard procedure can be found in [3], [5], [6], [22].

A. Linearized model

We consider a (smooth) dynamical system Σ defined by

differential equations with inputs

ẋ = f(x, u) (1)

in which states x(t) evolve on some subset X ⊆ R
n, and

input values u(t) belong to some subset U ⊆ R
m (see [23]

for basic definitions and properties regarding such systems).

We write φ(t, x0, u) for the solution of ẋ = f(x, u) with

initial condition x(0) = x0.

We assume that the “zero-input” system ẋ = f(x, 0) has

an exponentially stable limit cycle Γ ⊂ R
n with period T

and pulsation ω = 2π/T . The limit cycle is described by

the (non-constant) periodic trajectory γ(t) = γ(t + T ) ∈
X for all times t ≥ 0. This means that the set Γ =
{x ∈ X ⊆ R

n : x = γ(t), t ∈ [0, T )} attracts a non-empty

open set of initial conditions in X and that the linearized

system Σ∗ along the trajectory γ(t)

δẋ(t) = A(t) δx(t) + B(t)u(t),

with

A(t) =
∂f

∂x
(γ(t), 0) and B(t) =

∂f

∂u
(γ(t), 0) ,

has n − 1 multipliers strictly inside the unit circle and one

multiplier equal to one [24]. Multipliers are the eigenvalues

of the monodromy matrix M = Φ(T ) defined for any A(·)
via the fundamental solution Φ(t) associated to the linear

equation

Φ̇(t) = A(t)Φ(t) , Φ(0) = In ,

and the fundamental solution Ψ(t) associated to the adjoint

equation

Ψ̇(t) = −A(t)T Ψ(t) , Ψ(0) = In ,

(In is the n × n identity matrix). From those equations, it

follows that Ψ(t)T Φ(t) = In.

Note that the matrix functions A(t) and B(t) are T -

periodic due to the periodicity of γ(t).

B. Phase variables

Any point x0 ∈ Γ can be characterized by a scalar phase

θ0 ∈ S
1 = [0, 2π), that uniquely determines the position of

the point x0 on the limit cycle Γ, because the limit cycle Γ
is a one-dimensional closed curve in R

n [3], [5], [6]. The

smooth bijective phase map Θ : Γ → S
1 associates to each

point x0 on the limit cycle its phase θ0 = Θ(x0), such that

φ(t, x0, 0) = γ(t + ω−1 θ0) if we choose the convention

Θ(γ(0)) = 0. The phase variable θ : R≥0 → S
1 is defined

for each trajectory φ(t, x0, 0) starting from a point x0 on the

limit cycle Γ, as θ(t) = Θ[φ(t, x0, 0)] = Θ[γ(t + ω−1 θ0)].
Due to the periodic nature of γ(t), the function θ(t) is also

periodic. Moreover, the map Θ can be defined in such a way

that θ(t) = ω t+ θ0 and θ̇(t) = ω [5], [6]. That is, θ evolves

linearly in time.

The notion of phase can be extended to any solution

φ(t, x0, 0) converging to the limit cycle. For an initial

condition x0 in the basin of attraction of the limit cycle,

there exists a unique asymptotic phase ϑ0 ∈ S
1 such that

lim
t→+∞

∣

∣φ(t, x0, 0) − γ(t + ω−1ϑ0)
∣

∣ = 0 . (2)

The asymptotic phase map Θ : R
n → S

1 maps a point x0 in

the basin of attraction of the limit cycle to the corresponding

asymptotic phase ϑ0 = Θ(x0) such that (2) is verified. The

asymptotic phase variable ϑ : R≥0 → S
1 is defined along

each solution φ(t, x0, 0) starting in the basin of attraction

of Γ, as ϑ(t) = Θ [φ(t, x0, 0)]. For the particular solution

θ(t) = ω t+θ0, we have also ϑ(t) = ω t+ϑ0 and ϑ̇(t) = ω.

The notion of asymptotic phase variable can be extended

to a nonzero input u(·) provided that the corresponding

trajectory φ(t, x0, u) stays in the basin of attraction of the

limit cycle for all t ≥ 0. In this case, the asymptotic phase

variable is defined as ϑ(t) = Θ[φ(t, x0, u)], t ≥ 0. Then the

variable ϑ(t′) at an instant t′ ≥ 0 evaluates the asymptotic

phase of the point φ(t′, x0, u) such that

lim
t→+∞

∣

∣φ(t, φ(t′, x0, u), 0) − γ(t + ω−1ϑ(t′))
∣

∣ = 0.

The dynamics of the asymptotic phase variable ϑ(t) in the

case of a nonzero input is hard to derive.

C. Phase-reduced model

From the linearized model and the asymptotic phase

variable definition, we derive a local phase-reduced model in

a small neighborhood of the limit cycle Γ for infinitesimal

inputs [2], [5], [6].

For a solution of (1) defined in the neighborhood of γ(t),
the chain rule yields

dΘ(x)

dt
=

∂Θ

∂x
(φ(t, x0, 0)) · f(φ(t, x0, 0), 0)

+
∂Θ

∂x
(γ(t)) · B(t)u(t)

= ω +
∂Θ

∂x
(γ(t)) · B(t)u(t)

Defining the infinitesimal phase response curve (iPRC) as

Q(t) =
∂Θ

∂x
(γ(t)) ,
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we obtain the one-dimensional phase equation

dϑ

dt
= ω + Q(t) · B(t)u(t)

which is valid (up to the first-order approximation) in a

neighborhood of the limit cycle.

Infinitesimal PRC Q serves as a delta-impulse response

characteristics in the direction of phase change. It can be

computed by solving the adjoint equation: tacking the time

derivative of Q(t) · f(γ(t), 0) = ω yields

Q̇(t) · f(γ(t), 0) = −Q(t) · A(t) γ̇(t)

= −A(t)T Q(t) · f(γ(t), 0) .

Thus, the infinitesimal PRC is the solution of the following

equation

Q̇(t) = −A(t)T Q(t)

subject to the initial condition

Q(0) · f(γ(0), 0) = ω.

For an arbitrary input u(·) that converges exponentially to

zero, the phase response curve (PRC) is a map

PRCu : S
1 → [−π, π)

characterizing the (asymptotic) phase shift. It is defined as

PRCu(ϕ) = lim
T→+∞

∫ T

0

Q(τ+ω−1ϕ)·B(τ+ω−1ϕ)u(τ) dτ .

(3)

When the input u is the Dirac delta function and B is the ith
vector of the canonical basis of R

n, the PRC map reduces to

the ith component of the infinitesimal response curve Qi(t)
(up to a change of parameterization ϕ = ωt).

IV. PRC-BASED CONTROL DESIGN

This section presents the main contribution of the paper.

It starts with the derivation of the PRC control map. Next,

we propose three control strategies: feedforward, propor-

tional (P) feedback and proportional-integral (PI) feedback

control.

A. PRC control map

For control purposes, we consider the application of a fixed

input w(t) of finite duration 0 < Tw ≪ T at different time

instants t0, < t1, < · · · . The time instants ti, i ∈ N, are the

control parameters. For an initial phase ϕ, the input w(t)
(asymptotically) causes a phase shift measured by

PRCw(ϕ) =

∫ Tw

0

Q(τ + ω−1ϕ) · B(τ + ω−1ϕ)w(τ) dτ .

The phase difference

χ = (ϑ − ϑr) mod 2π

between a reference oscillator

ϑr(t) = (ω t + ϑr(0)) mod 2π

and a controlled oscillator evolving according to

ϑ̇ = ω + Q(t) · B(t)w(t − t0)

thus satisfies

χ(t) = χ(0) for 0 ≤ t ≤ t0 , (4)

and

χ(t0 + Tw) = χ(0) + PRCw(ϑ(t0))

= χ(0) + PRCw(ω t0 + ϑr(0) + χ(0)) . (5)

If the input signal is no longer an isolated application of

w(t) but instead a train of such finite-duration inputs

u(t) =

+∞
∑

i=0

w(t − ti) ,

the equations (4)-(5) suggest to study the evolution of the

phase difference via the discrete map

χi+1 = χi + PRCw(ω ti + ϑr(0) + χi) (6)

where χi denotes the phase error χ(ti). This discrete map

rests on the assumption that the (asymptotic) phase shift

PRCw(ϑ(ti)) has been reached after the (finite) duration

ti+1 − ti. To validate the assumption, one must impose

ti+1 − ti ≥ Ts ∀i ∈ N

where the minimal “sampling” time Ts is typically chosen

according to the limit cycle attractivity.

The discrete map (6) is a first-order discrete-time control

system whose control parameters are the pulse timings ti,
i ∈ N. Equivalently, one may rewrite (6) as

χi+1 = χi + PRCw(ϑi) (7)

(where ϑi denotes the phase ϑ(ti)) and treat ϑi as the control

variable.

In the remaining section, we discuss three elementary

control strategies to select these control parameters: a feed-

forward control, a proportional feedback control, and a

proportional-integral feedback control.

B. Feedforward control of the PRC control map

The feedforward control strategy is based on the model

(6) and does not require any measurement about the current

phase of the system. As the phase variable ϑ evolves on the

unit circle S
1, phase shifts in both directions can be used to

modify the phase.

For the ease of exposition, we assume that PRC has

particular properties (it is similar to type II PRC from [25] or

type 1 PRC from [1]). The corresponding control strategies

for other types of PRCs can be easily deduced from this

main case.

Assumption 1: The PRC map is continuous and it has one

zero θ0
s ∈ S

1 with negative slope and another θ0
u ∈ S

1 with

positive slope, θ0
s < θ0

u.

Since the PRC map is 2π-periodic from (3), the zeros can

be arranged in the required order θ0
s < θ0

u changing the initial

point on the limit cycle. Define

θmax = arg max
θ∈S1

PRCw(θ) , PRCmax = PRCw(θmax) ,

θmin = arg min
θ∈S1

PRCw(θ) , PRCmin = PRCw(θmin) ,
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with θ0
s < θmin < θ0

u < θmax, PRCmax > 0, and

PRCmin < 0.

The integer part of the numbers

n+ = (2π − χ0)/PRCmax, n− = −χ0/PRCmin,

determine the number of steps required to drive the initial

phase error χ0 into a neighborhood of zero applying positive

or negative phase shift, respectively. These numbers are

minimal since for their calculation we use the maximum

amplitudes of shift (PRCmax or PRCmin). Defining N =
floor[min(n+, n−)], where the function floor[n] returns the

greatest integer not bigger than n, a natural feedforward

control is to apply N pulses of maximal phase shift (0 ≤
i < N )

ϑi =

{

θmax , for n+ ≤ n−

θmin , for n+ > n−
. (8)

A last pulse is needed to annihilate the residual error. The

corresponding phase ϑN is thus the solution of the following

equation (obtained by annihilating the phase error χN+1

in (7))

ϑN :

{

PRCw(ϑN ) + χN = 2π , for n+ ≤ n−

PRCw(ϑN ) + χN = 0 , for n+ > n−
. (9)

Following this control strategy, the phase error evolves as

χi =

{

χ0 + i PRCmax , for n+ ≤ n−

χ0 + i PRCmin , for n+ > n−
, (10)

for 0 ≤ i ≤ N and we have χN+1 = 0(= 2π).
The sequence of phases ϑi, 0 ≤ i ≤ N , determines the

sequence of times ti as follows: t0 is chosen as the first t ≥ 0
such that

ϑ0 = (ϑ(0) + ω t) mod 2π . (11)

For i = 0, . . . , n, one assumes

ϑ(ti + Ts) = (ϑi + PRCw(ϑi) + ω Ts) mod 2π . (12)

Since

ϑ̇ = ω , for ti + Ts ≤ t ≤ ti+1 ,

one defines ti+1 as the first time t ≥ ti + Ts such that

ϑi+1 = (ϑ(ti + Ts) + ω (t − (ti + Ts))) mod 2π . (13)

This strategy is called “feedforward” since it does not

require any measurement of the phase variable.

C. Proportional feedback control of the PRC control map

The proportional feedback control strategy assumes on-

line measurements of the current phase variable after each

“pulse” application. To realize this strategy it is enough to

replace in (13) the values ϑ(ti + Ts) computed from (12)

with measurement values. By measurements we mean the

calculation of the phase based on measurements of the state

vector x(ti +Ts). The phase of x(t) can be computed using

the following algorithm:

ϑ(t) = arg inf
ϑ∈S1

{∣

∣x(t) − γ(ω−1 ϑ)
∣

∣

}

. (14)

Of course the application of (14) is valid only in the

neighborhood of the limit cycle.

The overall strategy for proportional feedback control is

similar to the feedforward one. The desired phases ϑi are

computed by

ni

+ = (2π − χi)/PRCmax, ni

− = −χi/PRCmin,

ϑi =







θmax , for 1 ≤ ni
+ ≤ ni

− ,
θmin , for 1 ≤ ni

− < ni
+ ,

h(χi) , otherwise ,

where the function h(χ) represents a solution of the equation

h(χ) :

{

PRCw(h(χ)) + χ = 2π , for ni
+ ≤ ni

−

PRCw(h(χ)) + χ = 0 , for ni
+ > ni

−

.

The time instants ti are given by (11) and (13).

D. Proportional-integral feedback control of the PRC con-

trol map

In the previous sections, it was assumed that the PRC

is exactly known, but the map (3) is an approximation

only valid for infinitesimal inputs. Suppose, that the static

uncertainty on the model (7) is modeled by

χi+1 = χi + PRCw(ϑi) + d (15)

where PRCmin < d < PRCmax is an unknown constant

additive disturbance. The presence of d results in a steady

state error for both the feedforward and the proportional

feedback control.

For proportional-integral feedback control, the desired

phases ϑi are given by a solution of the following equation

PRCw(ϑi) := sat(−d̂i − κχi) , (16)

with

d̂i+1 = d̂i + γ [χi+1 − (1 − κ)χi] , d̂0 = 0 . (17)

The parameters κ and γ are chosen such that 0 < κ < 1 and

0 < γ < 1. The function sat(·) is defined as

sat(u) =







u for PRCmin ≤ u ≤ PRCmax ,
PRCmax for u > PRCmax ,
PRCmin for u < PRCmin .

The time instants ti are given by (11) and (13).

Note that the proportional-integral feedback control is

implemented with an anti-wind up compensator.

V. APPLICATION TO MOTIVATING EXAMPLE

In this section, we apply our control strategies to the

circadian oscillator model presented in Section II. We choose

the parameters used by Goldbeter [19] and given (in suitable

units nM or h−1) in Table I.

We use a very simple pulse input defined as

w(t) =

{

∆ for t < Tw

0 otherwise

with Tw = 1 and with different values of ∆. Fig. 2 represents

analytical and numerical PRC. The “analytical” PRC is

obtained from (3) while the “numerical” PRC is computed
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TABLE I

PARAMETER VALUES

Parameter Value Parameter Value

vm 0.505 vd 1.4
vs 1.6 ks 0.5
k1 0.5 k2 0.6

Km 0.5 Kd 0.13
KI 1 n 4

0 1/4 pi 1/2 pi 3/4 pi pi 5/4 pi 3/2 pi 7/4 pi 2 pi
−2

−1.5

−1

−0.5

0

0.5

1

phases (rad)

P
R

C
w

(⋅
) 

(r
a

d
)

Fig. 2. Analytical (lines) and numerical (cross) PRCs of the Goldbeter
model for inputs with Tw = 1 and increasing ∆. The amplitude of the
PRC increases with the amplitude of the input (respectively ∆ = 0.1,
∆ = 0.8, and ∆ = 1.6).

by simulating the nonlinear model. The analytical and the

numerical PRCs are very similar for small inputs (the first-

order approximation is valid) but differ for larger inputs.

The simulation results in Fig. 3 are for the input with the

largest magnitude (∆ = 1.6). For the control design, we

only use the analytical PRC over the domain [θmax, θmin].
In this region, the phase model has a clear and robust

response to the stimulation. We observe the existence of a

disturbance d (not exactly constant) between the analytical

PRC and the numerical one. The discrete-time evolution of

the phase error χ is shown for four cases: χFF is for the

feedforward reference (10), χOL presents the phase error

for the feedforward control, χP shows the error of the

proportional feedback control, and χPI is the error when

applying the proportional-integral feedback control strategy.

Input curves correspond to the control signal in feedforward,

proportional feedback, and proportional-integral feedback

control cases (they almost all overlap). The algorithm (14) is

used to compute the phase based on measurement of the state

vector. The curve χFF indicates the reference behavior for

the variable χOL. We choose Ts = T such that the discrete

model (10) captures the main behavior of the nonlinear

model and χOL accurately follows χFF . The phase error

χP of the proportional feedback control evolves almost as

the phase error χOL. As expected, we observe a steady state

error for both the feedforward and the proportional feedback

control. The proportional-integral feedback asymptotically

reject this constant error.

Figure 4 illustrates the time-evolution of the output vari-

0 50 100 150 200 250 300 350 400 450
−1/2 pi

−1/4 pi

0

1/4 pi

1/2 pi

3/4 pi

pi

5/4 pi

3/2 pi

χ
i (

ra
d

)

0 50 100 150 200 250 300 350 400 450
0

1

2

time (h)

in
p

u
t

PI

P

OL

FF

Fig. 3. Discrete-time evolution of the phase error χ for four cases:
χFF is for the feedforward reference (10), χOL presents the phase
error for the feedforward control, χP shows the error of the proportional
feedback control, and χPI is the error when applying the proportional-
integral feedback control strategy (κ = 0.25 and γ = 0.9). Input curves
correspond to the control signal in feedforward, proportional feedback, and
proportional-integral feedback control cases (they almost all overlap).

0 50 100 150 200 250 300 350 400 450
0

1

2
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4
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7

M
 (

n
M

)

0 50 100 150 200 250 300 350 400 450
0

1

2

time (h)

in
p

u
t

PI REF

Fig. 4. Time-evolution of the output variable M for the reference
oscillator (MREF ) and for the initially shifted oscillator controlled with
the proportional-integral feedback control strategy (MPI ). The input curve
corresponds to the control signal in proportional-integral feedback control
case.

able M for the reference oscillator (MREF ) and for the

initially shifted oscillator controlled with the proportional-

integral feedback control strategy (MPI ). The timing dif-

ference of the maxima in M between those trajectories is

a measure of the phase difference for the full-dimensional

model. The proportional-integral feedback control strategy

(asymptotically) annihilates this difference.

VI. CONCLUSION

We have presented different control strategies to ensure

the convergence of an oscillator’s phase to that of a ref-

erence phase trajectory with the same natural frequency.

The control laws are based on a first-order discrete con-

trol system computed from the infinitesimal phase response
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curve of the model. Three control laws were considered:

feedforward, proportional feedback and proportional-integral

feedback strategies. The control algorithms developed in this

paper have been illustrated on the original Goldbeter model

of Neurospora circadian rhythm.

The proposed approach is basic but it opens several inter-

esting questions including a formal proof of convergence and

its potential use in addressing more challenging engineering

questions such as the rendez-vous problem in satellite orbital

control.
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