
  

  

Abstract — Neural prostheses have generally relied on 
signals from cortical motor regions to control reaching 
movements of a robotic arm. However, little work has been 
done in exploring the involvement of nonmotor cortical and 
associative regions during motor tasks. In this study, we 
identify regions which may encode direction during planning 
and movement of a center-out motor task. Local field potentials 
were collected using stereoelectroencephalography (SEEG) 
from nine epilepsy patients implanted with multiple depth 
electrodes for clinical purposes. Spectral analysis of the 
recorded data was performed using nonparametric statistical 
techniques to identify regions that may encode direction of 
movements during the motor task. The analysis revealed 
several nonmotor regions; including the right insular cortex, 
right temporal pole, right superior parietal lobule, and the 
right lingual gyrus, that encode directionality before and after 
movement onset. We observed that each of these regions encode 
direction in different frequency bands. This preliminary study 
suggests that nonmotor regions may be useful in assisting in 
neural prosthetic control. 

I. INTRODUCTION 

Motor control and its neural correlates have been studied 
for decades. Pioneering work describing how neurons in the 
motor cortex tune with movement direction led to the 
emergence of a plethora of primate experiments [1]. Unlike 
the primary visual cortex, where the neural activity 
represents patterns of light, there is a debate as to whether 
the neural activity in the motor cortex represents movement 
parameters [2]. It seems that motor control activity is the 
confluence of many distributed neuronal firing patterns [3]. 

Only a few studies have used invasive recording 
techniques to understand the role of nonmotor regions in 
motor control [4-6]. The majority of the studies have been 
conducted using neuroimaging techniques such as positron 
emission tomography (PET) and functional magnetic 
resonance imaging (fMRI) [3]. These signal acquisition 
techniques suffer from limitations such as low spatial 
resolution, low temporal resolution, or recording far from the 
neural source [7]. 

In this study nine epilepsy patients implanted using 
stereoelectroencephalography (SEEG) participated in a 
center-out motor task. SEEG not only offers millisecond 
temporal resolution but also offers a wide coverage of both 
deep and peripheral brain structures, signals that are 
inaccessible by traditional techniques [8]. Thus, SEEG 
allows us to investigate a wide range of nonmotor regions 
and explore their involvement in motor control. 

For each trial, subjects were asked to make reaching 
movements to targets at different speeds. This provides an 
opportunity to analyze the neural correlates of motor control 

 
 

under various movement speeds. Here we examine two 
separate epochs in the task trial; one window is associated 
with motor planning while the other captures the neural 
signals during movement execution. We identified parts of 
the occipital and parietal lobe that encode directions during 
motor planning, while parts of the insular cortex, superior 
frontal sulcus, and lingual gyrus encode direction during 
movement execution. These results suggest that many 
nonmotor regions are involved in motor control and warrant 
further investigation to gain a holistic understanding of how 
movements are generated. 

II.  METHODS 

A. Subjects 
SEEG recording was performed in medically refractory 

epileptic patients in order to define the epileptogenic zone 
for possible resection. The choice of electrode location was 
based on preimplantation video-EEG recordings and was 
made independently of the present study. This study did not 
add any invasive procedure to depth SEEG recordings. All 
subjects enrolled voluntarily and gave informed consent. 
Experimental protocols were approved by the Cleveland 
Clinic Institutional Review Board. Methods were carried out 
in accordance with approved guidelines. Criteria required 9 
individuals over the age of 18 with the ability to provide 
informed consent and perform the behavioral tasks. Besides 
the behavioral experiments, no alterations were made to the 
course of clinical care. 

B. Stereoelectroencephalographic (SEEG) Implantations 
For each subject, approximately 8 to 13 stereotactically 

placed electrodes were implanted. Each electrode contact 
had a 0.8 mm diameter, was 2 mm long, and contacts were 
spaced 1.5 mm apart. Depth electrodes were inserted using a 
robotic surgical implantation platform, (ROSA, Medtech 
Surgical Inc., USA) in either orthogonal or oblique 
orientations, allowing intracranial recording from lateral, 
intermediate and/or deep cortical and subcortical structures 
in a three-dimensional arrangement [9]. See Fig. 1. The day 
prior to surgery, volumetric preoperative MRIs (T contrasted 
with Multihance® - 0.1mmol/Kg) were obtained and used to 
preoperative plan electrodes trajectories. All trajectories 
were evaluated for safety; any trajectory that appeared to 
compromise vascular structures was adjusted appropriately 
without affecting the sampling from areas of interest. 

C. Electrophysiological Recordings 
SEEG electrophysiological data was acquired and 

achieved using a conventional clinical electrophysiology 

The Role of Nonmotor Brain Regions during Human Motor Control 

Jacob J. Johnson, Macauley S. Breault, Pierre Sacre, Matthew S. D. Kerr, Mathew Johnson, Juan 
Bulacio, Jorge Gonzalez-Martinez, Sridevi V. Sarma -Member IEEE, John T. Gale 

J.J.Johnson is with the Department of Electrical and Electronics Engineering, Indian Institute of Technology Guwahati, Assam 780139 India (e-mail: 
j.johnson@iitg.ernet.in). M. S. Breault, P. Sacre, M. Kerr, K. Kahn and S.V. Sarma are with the Department of Biomedical Engineering, Johns Hopkins 
University, Baltimore, MD 21218 USA (e-mail: ssarma2@ jhu.edu). J. T. Gale is with the Department of Neurosurgery, Emory University (e-mail: 
john.t.gale@emory.edu) 

978-1-5090-2809-2/17/$31.00 ©2017 IEEE 2498



  

acquiring system (Nihon Kohden 1200, Nihon Kohden 
America, USA) at a sampling rate of 1 KHz for the motor 
task. Behavioral event data were simultaneously acquired 
during behavioral experiments along with the SEEG 
electrophysiology and stored for subsequent analysis. This is 
a provisional file, not the final typeset article SEEG 
electrophysiology and stored for subsequent analysis. All 
signals were referenced to contact affixed to skull. Archived 
electrophysiological data was not filtered prior to offline 
analysis. 

Each patient had electrode contacts characterized 
according to anatomical location. The anatomical locations 
of all contacts were identified through inspection of post-
operative imaging, requiring agreement by two clinical 
experts. Coronal and sagittal views were available for every 
contact. None of the recording electrodes selected for this 
study demonstrated epileptic activity (ictal or interictal) 
during the recording session. 

D. Motor Task 
Subjects performed the behavioral task in their Epilepsy 

Monitoring Unit (EMU) room while seated in a chair that 
was placed in front of the behavioral system (Fig. 1A), using 
methods previously described in [10]. The behavioral system 
consisted of a computer presentation screen, an InMotion2 
robotic manipulandum (Interactive Motion Technologies, 
USA), and a behavioral control system. The computer screen 
was used to present task stimuli to the subject and was 
located approximately two feet from the subject’s sitting 
position. The robotic manipulandum is an FDA-approved 
device for motor recovery and allows for the precise tracking 
of arm position in a horizontal two-dimensional plane 
relative to the subject. This manipulandum allows the 
subject to control the position of a cursor during the 
behavioral task and was used to apply force perturbations to 
the subject during precise elements of the behavioral task. 
The behavioral control system consisted of a Windows-
based laptop computer running MonkeyLogic through a 
MATLAB® interface (MathWorks, USA). 

E. Data Analysis 
All electrophysiological and behavioral analyses were 

conducted offline using custom MATLAB scripts. To search 
for direction-encoding brain regions, we examined 
differences in the neural responses between two specified 
direction conditions (condition 1 and condition 2) during 
specific epochs in the trial (target cue and go cue) by means 
of a nonparametric cluster statistic, applied to spectrograms 
[11].  

Oscillatory power was calculated using multitapers from 
the Chronux toolbox [12]. Three orthogonal tapers were 
used with a 300 ms window sliding at 50 ms steps was used. 
The power for each frequency time bin was log normalized 
based on the power across the entire recording session by 
fitting the log of the power in each frequency bin to a 
Gaussian distribution.  

The task conditions were defined as groups of directions. 
For example, condition 1 could be (Up and Right) and 
condition 2 would be (Down and Left). Therefore, 7 unique 

combinations of conditions called for comparison. 
Spectrograms for each brain region were constructed and 
averaged across trials time-locked to the specified epoch all 
subjects. 

A nonparametric cluster-based test was performed to 
compare spectrograms of both conditions. This test finds 
statistically significant differences between any given 
contiguous time-frequency windows for comparative 
conditions by leverages the dependency between adjacent 
frequency-time windows in order to avoid over penalizing 
with multiple comparison corrections [11]. 

Clusters are defined as a set of adjacent time-frequency 
windows whose activity differs significantly between 
condition 1 and condition 2 trials. For each frequency-time 
window in the spectrogram, a null distribution was created 
by shuffling the condition labels for trials within each 
subject 1000 times. For each shuffle, the average difference 
between the newly labeled spectrograms was calculated. A 
p-value was assigned to each window by comparing the 
difference acquired from the true labels with the distribution 
of differences acquired from the shuffled labels. Clusters 
were formed by grouping windows with significant p-values 
(p<0.01) that were adjacent in either time or frequency. The 
test statistic for each cluster was calculated by taking the 
sum of the log of the p-values for each window in the 
cluster. This prioritizes clusters that have both strong 
differences as well as large sizes. The observed cluster 
statistic was obtained with the original labels. It, in turn, was 
then compared against the null distribution of cluster 
statistics in order to obtain the final p-value of the test. 

 
Figure 1: Motor Task. (A) Subject sits in front of screen. (B) 
Slides are numbers left to right, the cursor controlled by the 
manipulandum is yellow. (1) Bar instructing the subject how 
fast to move. (2) Home target appears. (3) Upon the cursor 
reaching the home target, a new target appears. (4) The new 
target turns green, functioning as a go cue. (5) In this example, 
the movement speed is inside the allowable range, so the image 
of a five-dollar bill was shown, functioning as a reward. 
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TABLE 2 
Go cue regions and corresponding spectrograms 

Regions Frequency 
Band Condition 1 Condition 2 

Superior frontal 
sulcus 2 – 4 Hz Right Up, down, 

and right 
Right lingual 

gyrus 5 – 19 Hz Right Up, down, 
and right 

Right temporal 
pole 17 – 78 Hz Up and 

down 
Right and 

left 
Right insular 

cortex 50 – 92 Hz Right Up, down, 
and right 

Right insular 
cortex 50 – 92 Hz Up and 

Right 
Down and 

left 
Supracalcarine 

cortex 92 – 200 Hz Left Up, right, 
and down 

TABLE 1 
Target cue regions and corresponding spectrograms 

Regions Frequency 
Band Condition 1 Condition 2 

Right lingual 
gyrus 4 – 38 Hz Up and left Down and 

right 

Right occipital 
gyrus 7 – 32 Hz Up and left Down and 

right 
Right temporal 

pole 27 – 109 Hz Down Up, right, 
and left 

Right superior 
parietal lobe 51 – 142 Hz Up and left Down and 

right 
Postcentral 

gyrus 38 – 200 Hz Up Right, down, 
and left 

Left parietal 
lobe 46 – 200 Hz Up and left Down and 

right 

 

Figure 2: Right temporal pole during go cue. The number n 
represents the number of trials pooled for the condition from 
all subjects. (1) Average spectrogram for condition 1 (Up and 
Down). (2) Average spectrogram for condition 2 (Left and 
Right). (3) Significant Cluster (p=0.001) obtained from the 
cluster based nonparametric cluster statistic. (4) Mean 
oscillatory power within 17-78 Hz. (5) Position of right 
temporal pole. 

Figure 3: Right lingual gyrus during target cue. The number n 
represents the number of trials pooled for the condition from 
all subjects. (1) Average spectrogram for condition 1 (Up and 
Left). (2) Average spectrogram for condition 2 (Down and 
Right). (3) Significant Cluster (p=0.001) obtained from the 
cluster based nonparametric cluster statistic. (4) Mean 
oscillatory power within 4-38 Hz. Error bars represent two 
standard error from mean. (5) Position of right lingual gyrus. 

2500



  

III. RESULTS 

A. Nonmotor Regions during Target Cue 
During the target cue, six regions were identified with 

significant clusters. Table 1 lists out these regions and their 
corresponding significant frequency bands. Figure 3 shows 
the mean spectrogram and the significant cluster of a region 
during target cue. 

B. Nonmotor Regions during Go Cue 
For the movement execution, six regions were identified 

with significant clusters. Table 2 lists out these regions and 
their corresponding significant frequency bands. Figure 2 
shows the mean spectrogram and the significant cluster of a 
region during go cue. 

IV. DISCUSSION 

The above analysis shows that SEEG spectrogram 
analysis has the ability to capture neural responses encoding 
direction from nonmotor brain regions which are typically 
difficult to probe in human subjects. With the ability to 
detect differences in neural activity across different 
frequency bands using cluster analysis, the use of SEEG as 
an incredibly useful tool for examining neural correlates is 
further bolstered. of frequency but distributed in multiple 
bands of frequencies for different set of directions. 

The lingual gyrus and superior parietal lobule have been 
previously reported to be correlated with motor imagery 
through neuroimaging techniques [13,14]. The results in this 
paper not only coincide with previous claims but further 
pinpoint the frequency bands where directional information 
may be encoded in these regions. 

The insular cortex has been associated with the motor 
function because of its anatomical connections while 
neuroimaging techniques have identified superior frontal 
sulcus to motor commands [3,15]. Based on the evidence 
shown here, the posterior insular cortex and superior frontal 
sulcus may be encoding direction during movement 
execution. 

The right lingual gyrus and the right temporal pole were 
observed to encode different direction sets during target cue 
and go cue. This suggests that different neurons from these 
regions could encode different sets of directions as the 
recording sites for each region vary across subjects. 

V. FUTURE WORK 

In this study, nonmotor regions were identified that may 
encode direction during a motor task. To further understand 
the role these regions have on movement execution, neural 
correlates should be identified using metrics that 
characterize the motor activity during reaching movements 
such as path trajectory and speed. This would enable the 
ability to perform a network-based analysis to track the flow 
of movement information across multiple brain regions.  
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