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O 
scillator models—whose steady-state behavior is periodic rath-
er than constant—are fundamental to rhythmic modeling, and 
they appear in many areas of engineering, physics, chemistry, 
and biology [1]–[6]. Many oscillators are, by nature, open dy-
namical systems in that they interact with their environment 

[7]. Whether functioning as clocks, information transmitters, or rhythm 
generators, these oscillators have the robust ability to respond to a par-
ticular input (entrainment) and to behave collectively in a network (syn-
chronization or clustering).Date of publication: 14 March 2014
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The phase-response curve of an oscillator has emerged 
as a fundamental input–output characteristic of oscillators 
[1]. Analogously to the static (zero-frequency) gain of a 
transfer function, the phase-response curve measures a 
steady-state (asymptotic) property of the system output in 
response to an impulse input. For the zero-frequency gain, 
the measured quantity is the integral of the response; for 
the phase-response curve, the measured quantity is the 
phase shift between the perturbed and unperturbed 
responses. Because of the periodic nature of the steady-
state behavior, the magnitude and the sign (advance or 
delay) of this phase shift depend on the phase of the 
impulse input. The phase-response curve is therefore a 
curve rather than a scalar. In many situations, the phase-
response curve can be determined experimentally and pro-
vides unique data for the systems analysis of the oscillator. 
Alternatively, numerical methods exist to compute the 
phase-response curve from a mathematical model of the 
oscillator. The phase-response curve is the fundamental 
mathematical information required to reduce an n-dimen-
sional state-space model to a one-dimensional (phase) 
center manifold of a hyperbolic periodic orbit.

Motivated by the prevalence of the input–output repre-
sentation in experiments and the growing interest in sys-
tem-theoretic questions related to oscillators, this article 
extends fundamental concepts of systems theory to the 
space of phase-response curves. Comparing systems with a 
proper metric has been central to systems theory (see [8]–
[11] for exemplative milestones). In a similar spirit, this 
article aims to endow the space of phase-response curves 
with the right metrics (accounting for natural equivalence 
properties) and sensitivity analysis tools. This framework 
provides mathematical and numerical grounds for robust-
ness analysis and system identification of oscillator models. 
Although classical in their definitions, several of these 
tools appear to be novel, particularly in the context of bio-
logical applications.

The focus of the article is on oscillator models in sys-
tems biology and neurodynamics—two areas where sensi-
tivity analysis is particularly useful to assist the increasing 
focus on quantitative models. In systems biology, phase-
response curves have been primarily studied in the context 
of circadian rhythms models [4], [12], [13]. A circadian oscilla-
tor is at the core of most living organisms that need to adapt 
their physiological activity to the 24-h environmental cycle 
associated with the earth’s rotation (for example variations 

in light or temperature condition). Circadian oscillators 
have a period close to 24 h under constant environmental 
conditions and can lock oscillations (in frequency and 
phase) to an environmental cue that has a period equal to 
24 h. In neurodynamics, the use of phase-response curves 
is more recent but increasingly popular [14]. A spiking oscil-
lator is the repeated discharge of action potentials by a 
neuron, which is the basis for neural coding and informa-
tion transfer in the brain. This oscillatory system is capable 
of exhibiting oscillations on a wide range of periods—from 
0.001 to 10 s—and of behaving collectively in a neural net-
work. Phase-response curves are also used in many other 
areas of sciences and engineering (such as planar particle 
kinematics, Josephson junctions, and alternating current 
power networks) for which the reader is referred to the 
abundant literature (see, for example, the pioneering con-
tributions [1], [2], [15]–[18], and the detailed review [19, and 
references therein]).

The results of the article are primarily drawn from the 
Ph.D. dissertation of the first author [20]. A preliminary 
version of this work was presented in [21]. The first case 
study on circadian rhythms was discussed in detail in [22].

The article is organized as follows. The first section 
presents the concept of phase-response curves derived 
from phase-resetting experiments. The second section is a 
review of the notion of phase-response curves character-
izing the input–output behavior of an oscillator model in 
the neighborhood of an exponentially stable periodic 
orbit. The third section defines several relevant metrics on 
(nonlinear) spaces of phase-response curves induced by 
natural equivalence properties. The fourth section devel-
ops the sensitivity analysis for oscillators in terms of the 
sensitivity of its periodic orbit and its phase-response 
curve. The fifth section illustrates how these tools solve 
system-theoretic problems arising in biological systems, 
including robustness analysis, system identification, and 
model classification.

The main developments of the article are supple-
mented by several supporting discussions. “A Brief His-
tory of Phase-Response Curves” sets the use of phase-
response curves in its historical context. “Phase Maps” 
defines the key ingredients for studying oscillator 
models on the unit circle. “From Infinitesimal to Finite 
Phase-Response Curves” provides details on the mathe-
matical relationship between finite and infinitesimal 
phase-response curves. “Basic Concepts of Differential 

The article describes a framework for the analysis of oscillator  

models in the space of phase-response curves and to answer  

systems questions about oscillator models.
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Geometry on Manifolds” and “Basics Concepts of Local 
Sensitivity Analysis” present distinct features of differ-
ential geometry and sensitivity analysis used in this 
article, respectively. “Numerical Tools” provides the 
numerical tools to turn the abstract developments into 
concrete algorithms. The notation is defined in “List of 
Symbols.” 

Phase-response curves from  
Experimental Data
The interest of a biologist in an oscillator model comes 
through the observation of a rhythm, that is, the regular 
repetition of a particular event. Examples include the onset 
of daily locomotor activity of rodents, the initiation of an 
action potential in neural or cardiac cells, or the onset of 
mitosis in cells growing in a tissue culture (see “A Brief 
History of Phase-Response Curves”). One of the simplest 
modeling experiments is to perturb the oscillatory behav-
ior for a short (with respect to the oscillation period) dura-
tion and record the altered timing of subsequent repeats of 
the observable event. Once the system has recovered its 
prior rhythmicity, the phase of the oscillator is said to have 
reset. In general, the phase reset depends not only on the 
perturbation itself (magnitude and shape) but also on its 
timing (or phase) during the cycle. This section formalizes 
the basic experimental paradigm of phase-resetting experi-
ments and describes the concept of phase-response curves 
following the terminology in [1] and [3].

An isolated oscillator (closed system) exhibits a precise 
rhythm, that is, a periodic behavior, and the period T  of 
the rhythm is assumed constant [see Figure 1(a)]. To facili-
tate the comparison of rhythms with different periods 
(for example, due to the variability in experimental prep-
aration), it is convenient to define the notion of phase. In 
the absence of perturbations, the phase is a normalized 
time evolving on the unit circle. Associating the onset of 
the observable event with phase 0 (or 2r ), the phase vari-
able ( )ti  at time t  corresponds to the fraction of a period 
elapsed since the last occurrence of the observable event. 
It evolves linearly in time, that is, ( ) : ( ) ( ),modt t t 2ii ~ r= -t  
where : /T2~ r=  is the angular frequency of the oscillator 
and tit  is the time of the last observable event.

Following a phase-resetting stimulus at time ( )t ts 0-t after 
one observable event (open system), the next event times ,tit  for 

,i N 0>!  are altered. For simplicity, it is assumed that the origi-
nal rhythm is restored immediately after the first post-stimu-
lus event, meaning that observable events repeat with the 
original period T  [see Figure 1(b)]. The duration :T t t1 0= -t t t  
denotes the time interval from the event immediately before 
the stimulus to the next event after stimulation. Once again, it 
is convenient to normalize each quantity to facilitate compari-
son between different experimental preparations. Multiplying 
by /T2~ r=  leads to ( ): t ts 0i ~ -= t  and ( ) .: T t t1 0x ~ ~= -=t t t t

The effect of a stimulation is to produce a phase shift iD
between the perturbed oscillator and the unperturbed 
oscillator. The phase shift iD  is
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Figure 1  A schematic representation of a phase-resetting experi-
ment. (a) In isolated conditions (closed system), the observable 
event (vertical arrow) occurs every T  units of time. (b) Following a 
phase-resetting stimulus at time t ts 0- t^ h after an event (open 
system), the successive observable event times ,tit  for ,i N 0! 2  are 
altered. :T t t1 0= -t t t  denotes the time interval between the pre- and 
post-stimulus events.

List of Symbols
u 	 Input value of a system

y 	 Output value of a system

x 	 State variable of a system

c 	 Periodic orbit of an oscillator

xc 	 Zero-input steady-state solution of an oscillator

H 	 Asymptotic phase map of an oscillator

i 	 Phase variable of an oscillator

Q 	 (Finite) phase-response curve

q 	 Infinitesimal phase-response curve

p 	� Gradient of the asymptotic phase map evaluated 

along the periodic orbit, ( ): ( ( ))p x$ $d \H= c  

R 	 Set of real numbers

Rn 	 n-dimensional Euclidean space
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xo 	 Derivative, with respect to time, of the variable x

xl	 Derivative, with respect to phase, of the variable x

0 	 Input identically equal to zero

z* 	 Complex conjugate of the complex number z

AT 	 Transpose of the matrix A

( , )x y 	 Equivalent notation for the vector [ ]x yT T T

x 3 	� Maximum norm of the vector x , =: maxx 3  

( , , )x xn1 f
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: (wrap to [ , )),2i r x r rD = - -t

where the operation x  (wrap to [ , )) [ ( )]modx 2r r r r- = +  
r-  wraps x  to the interval [ , )r r-  (see Figure 2). Given a 

phase-resetting input ( ),u $  the dependence of the phase 
shift iD  on the (old) phase i  at which the stimulus was 
delivered is commonly called the phase-response curve. It is 
denoted by ( ; ( )),uQ $i  to stress that it is a function of the 
phase but that it also depends on the input ( )u $ .

An alternative representation emphasizes the new 
phase i+ instead of the phase difference. Just before the 
stimulus, the oscillator had reached old phase ;i  just after, 
the oscillator appears to resume from the new phase

: ( ) ( ) .mod2 2i r x i r= - -+ t

Given a phase-resetting input ( ),u $  the dependence of the 
new phase i+ on the (old) phase i  at which the stimulus 
was delivered is called the phase-transition curve denoted by 

( ; ( )) .uR $i

Under the approximation that the initial rhythm is 
recovered immediately after the perturbation, the phase 
shift computed from the first post-stimulus event is identi-
cal to the asymptotic phase shift computed long after the 
perturbation. This assumption neglects the transient 
change in the rhythm until a new steady state is reached. To 
model the transient, the normalized time from the event 
before the stimulus to the i th event is denoted by 

: ( ),t ti i 0x ~= -t t t  leading to the phase shift : 2ii rD = -

(wrap to [ , ))ix r r-t  and the new phase : ( )2i ii r x i= - -+ t
( ) .mod 2r  If the oscillating phenomenon is time invariant, 

a new steady-state behavior is expected asymptotically, 
such that ( ) ,lim 2i i i1x x r- ="3 +t t  : ,limi ii iD D="3  and 

:limi ii i="3
+ +.

Phase-response curves from  
State-Space Models
This section reviews the mathematical characterization of 
phase-response curves for oscillators described by time-
invariant, state-space models.

State-Space Models of Oscillators
Limit cycle oscillations appear in the context of nonlinear 
time-invariant, state-space models

	 ( , ),x f x u=o � (1a)
	 ( ),y h x= � (1b)

0

(wrap to [-r, r))x
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Figure 2  A graphical representation of the wrap-to-[ , )r r-  oper-
ation. Given a real number x  in radians, x  (wrap to [ , )r r- )/
[ ( )]modx 2r r r+ -  wraps x  to the interval [ , ) .r r-  It adds or 
subtracts an integer multiple of 2r  such that the result belongs to 
[ , ) .r r-  (A solid dot indicates that the end point is included in the 
set, whereas an open dot indicates that the end point is excluded 
from the set.)

A Brief History of Phase-Response Curves

Phase-response curves were used for the first time in 1960 

by a biological experimentalist to represent the results of 

phase-resetting experiments on the rhythm of the daily loco-

motor activity in flying squirrels [12]. The author was inves-

tigating the effect of short light pulses on the daily onsets 

of running activity in the wheel in constant darkness. The 

response to these stimulations varied according to the time 

of the day—the squirrel’s subjective day—at which the light 

pulse was administered. To represent her data, the author 

plotted the observed time shift (advance or delay) as a func-

tion of time of perturbation.

Phase-Response Curves in Biology

Phase-response curves are widely used to study biological 

rhythms (see the pioneering book [1]). The two main applications 

are circadian rhythms and neural (or cardiac) excitable cells.

In circadian rhythms, the phase-response curve is used to 

study the effect of light (and sometimes the effect of drugs, 

such as melatonin) on the rhythm. In particular, the mecha-

nism of entrainment to light is of critical importance in circa-

dian rhythm studies. Numerous experimental phase-response 

curves for circadian rhythms have been compiled in an atlas 

[74]. Most of these phase-response curves have a typical 

shape including a dead zone, which is an interval of zero sen-

sitivity during the subjective day of the studied organism.

In neural (or cardiac) excitable cells, the phase-response 

curve is used to study ensemble behavior in a network, par-

ticularly, synchronization in coupled neurons and entrainment 

in uncoupled neurons subject to correlated inputs (also known 

as stochastic synchronization). The book [14] compiles several 

applications of phase-response curves in neuroscience.

Phase-Response Curves in Engineering

Phase-response curves are not often used in engineering 

applications. An exception is in electronic circuits, where the 

concept of a perturbation projection vector was developed to 

study phase noise in oscillators [75]–[79]. Mathematically, the 

perturbation projection vector is identical to the infinitesimal 

phase-response curve. It is used as a reduction tool to study 

oscillators and to design electronic circuits [80].
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where the states ( )x t  evolve on some subset ,RX n3  and  
the input and output values ( )u t  and ( )y t  belong to  
subsets RU 3  and ,RY 3  respectively. The vector field 

:f RX U n
"#  and the measurement map :h X Y"  support 

all the usual smoothness conditions necessary for the exis-
tence and uniqueness of solutions. An input is a signal 

: [ , )u 0 U"3  that is locally essentially compact (meaning that 
images of restrictions to finite intervals are compact). The solu-
tion at time t  to the initial value problem ( , )x f x u=o  from the 
initial condition x X0 !  at time zero is denoted by ( , , ( ))t x u0 $z  
[with ( , , ( ))x u x0 0 0$z = ]. For convenience, single-input and 
single-output systems are considered. All developments gen-
eralize to multiple-input and multiple-output systems.

The state-space model (1) is called an oscillator if the zero-
input system ( , )x f x 0=o  admits an exponentially stable limit 
cycle, that is, a periodic orbit X3c  with period T  that attracts 
nearby solutions at an exponential rate [23]. Picking an initial 
condition ,x0 ! c

c  the periodic orbit c  is described by the locus 
of the (nonconstant) T -periodic solution ( , , ),0x0$z

c  that is,

: : ( , , ), [ , ) ,0x x t x t T0X 0! !c z= = c" ,

where the period T 0>  is the smallest positive constant 
such that ( , , ) ( , , )0 0t t Tx x0 0z z= +c c  for all t 0$  and 0  is the 
input signal identically equal to zero for all times. The peri-
odic orbit is an invariant set.

Because of the periodic nature of the steady-state behav-
ior, it is appealing to study the oscillator dynamics directly 
on the unit circle .S1  The key ingredient of this phase 
reduction is the phase map concept. A phase map : ( )B 3cH

SX 1
"  is a mapping that associates with every point in the 

basin of attraction ( )B X3c  a phase on the unit circle .S1  
Away from a finite number of isolated points (called singu-
lar points), the phase map H  is a continuous map. The 
phase variable ( )ti  is the image of the flow through the 
phase map, that is, ( ) : ( ( , , ( ))) .t t x u0 $i zH=  By the definition 
of the phase map, the phase dynamics reduce to i ~=o  for 
the input 0 . For nonzero inputs, the phase dynamics are 
often hard to derive. See “Phase Maps” for details.

For convenience, the periodic orbit c  is parameterized by 
the map :x S1

" cc  that associates with each phase i  on the 
unit circle a point ( / , , ) ( ):0x x0i ~ iz =c c  on the periodic orbit.

Response to Phase-Resetting Inputs
If a solution of (1) asymptotically converges to the periodic 
orbit, the corresponding input ( )u $  is said to be phase reset-
ting. If an input is phase resetting for an initial condition ,x0  
then there exists a (reset) phase S1!i+  that satisfies

( , , ( )) ( , ( / , , ), ) .0 0lim t x u t x 0
t

0 20$z z z i ~- =
"3

c+

Definition 1 
Given a phase-resetting input ( ),u $  the (finite) phase-response 
curve is the map ( ; ( )) : [ , )uQ S1

"$ $ r r-  that associates with 
each phase i  a phase shift ( ; ( )),uQ $i iD =  defined as

( ; ( )) ( ( , ( ), ( ))) ( )

(wrap to , )) .

limQ u t x u t
t

$ $i z i ~ i

r r

H= - +

-

" 3

c

+
6

6
@

Similarly, the phase-transition curve is the map ( ; ( )) :R u$ $

S S1 1
"  that associates with each phase i  the new phase 

( ; ( )),uR $i i=+  defined as

( ; ( )) ( ( , ( ), ( ))) ( ) .lim modR u t x u t 2
t

$ $i z i ~ rH= -
" 3

c

+
6 @

A mathematically more abstract—yet useful—tool is the 
infinitesimal phase-response curve. It captures the same 
information as the finite phase-response curve in the limit 
of Dirac delta input with infinitesimal amplitude (that is, 

( ) ( )u $ $ad=  with 0"a ).

Definition 2
The infinitesimal phase-response curve is the map : ,q S R1

"  
defined as the directional derivative

( ) : ( )) ( ( ), )( ,u
f

xq D x 0
2

2
i i iH= cc ; E

where

( ) :
( ) ( )

.limD x h
x h x

h 0
h

h
H

H H
=

+ -

"
6 @

The directional derivative can be computed as the inner 
product in Rn

	
( ) ( ( )) ( ( ), )

( ( )), ( ( ), ) ,

q D x u
f

x

x u
f

x

0

0x

2

2

d
2

2

i i i

i i

H

H

=

=

c c

c c

; E
�

(2)

where ( )) ( )( : pxxd i iH =c  is the gradient of the asymptotic 
phase map H  at the point ( )x ic .

The main benefit of an infinitesimal characterization of 
phase-response curves is that the concept is independent of 
the input signal. Limitations of the infinitesimal approach 
have been well identified since the early days of phase-
resetting studies [1] and strongly depend on the application 
context. For instance, infinitesimal phase-response curves 
have proven very useful in the study of circadian rhythms 
[24] but come with severe limitations in the context of neu-
rodynamics, as recently studied in [25]–[27].

Remark 
By definition, the finite phase-response curve for an impulse 
input is well approximated by the infinitesimal phase-
response curve, that is, ( ; ( )) ( ) ( ) .qQ O 2$ $ $ad a a= +  See “From 
Infinitesimal to Finite Phase-Response Curves” for details.

Phase Models as Reduced Models of Oscillators
Phase-response curves are the basis for the reduction of  
n-dimensional state-space models of oscillators to one-
dimensional phase models. Phase models are the main rep-
resentation of oscillators for networks. However, the focus 
of this article is on single oscillator models. For a compre-
hensive treatment of phase models, the reader is referred to 
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pioneering papers [15], [16], [28], and [29]; review articles 
[19], [30], and [31]; and books [1], [3], [6], [14], and [32].

Below is a review of two popular phase models obtained 
through phase reduction methods in the case of weak input 
and impulse train input, respectively.

Under the simplifying assumption of weak input, that is,

| ( )| , for all ,u t t1 0% $

any solution ( , , ( ))t x u0 $z  of the oscillator model that starts 
in the neighborhood of the hyperbolic stable periodic 
orbit c  stays in its neighborhood. The n-dimensional 
state-space model (1) can thus be approximated by a one-
dimensional continuous-time phase model (see [2], [6], 
[30], and [32]–[34])

	 ( ) ,uqi ~ i= +o � (3a)

Phase Maps

Phase maps, as well as the associated notion of isochrons, 

are key ingredients for studying oscillator models. The below 

exposition of phase maps follows the terminology and definitions 

of [1] and [3]. The notation is illustrated in Figure S1.

Consider an oscillator described by (1).

The basin of attraction of c  (the oscillator stable set) is 

the maximal open set from which the periodic orbit c  attracts, 

that is,

	 ( ) : { : dist( ( , , ), ) },0limx t x 0B X
t

0 0!c z c= =
" 3+

where dist ( , ) : infx x yy 2c = -!c  is the distance from the point 

x X!  to the set X3c  based on the Euclidean norm 2$  

in .Rn

Since the periodic orbit c  is a one-dimensional manifold in 

,Rn  it is homeomorphic to the unit circle .S1  It is thus naturally 

parameterized in terms of a single scalar phase. The smooth 

bijective phase map : S1
"cH  associates with each point x  on 

the periodic orbit c  its phase ( ) :x jH =  on the unit circle ,S1  

such that

	 ( / , , ) .x x 00oz j ~- =
c �

This mapping is constructed such that the image of the ref-

erence point x0
c  is equal to zero (that is, ( )x 00H =

c ) and the 

progression along the periodic orbit (in absence of perturba-

tions) produces a constant increase in .j  The phase vari-

able :R S0
1

"j $  is defined along each zero-input trajectory 

( , , )x 00$z  starting from a point x0  on the periodic orbit ,c  as 

( ) : ( ( , , ))t t x 00j zH=  for all times .t 0$  The phase dynamics 

are thus given by .j ~=o
For a hyperbolic stable periodic orbit, the notion of phase 

can be extended to any point x  in the basin ( )B c  by defining 

the concept of asymptotic phase. The asymptotic phase map

: ( ) SB 1
"cH  associates with each point x  in the basin ( )B c  

its asymptotic phase ( ) :x iH =  on the unit circle ,S1  such that

	 ( , , ) ( , ( / , , ), ) .lim t x t x 00 0 00 2t
z z z i ~- =

c

" 3+
�

Again, this mapping is constructed such that the image of x0
c  

is equal to zero and such that the progression along any orbit 

in ( )B c  (in absence of perturbations) produces a constant 

increase in .i  The asymptotic phase variable :R S0
1

"i $  is 

defined along each zero-input trajectory , ,x 00$z^ h starting from 

a point x0  in the basin of attraction of c  as : ( , , )t t x 00i zH=^ ^h h 
for all times .t 0$  The asymptotic phase dynamics are thus 

given by .i ~=o
The notion of the asymptotic phase variable can be 

extended to any nonzero-input trajectory ( , , ( ))x u0$ $z  in the 

basin of attraction of c . In this case, the asymptotic phase 

variable is defined as ( ) : ( ( , , ( )))t t x u0 $i zH=  for all times .t 0$  

Thus, the phase variable ( ),ti )  at an instant ,t 0$)  evaluates 

the asymptotic phase of the point ( , , ( )) .t x u0 $z )  The asymptotic 

phase dynamics in the case of a nonzero input are often hard 

to derive.

Level sets of the asymptotic phase map ,H  that is, sets of 

all points in the basin of c  with the same asymptotic phase, are 

termed isochrons. Formally, the isochron ( )I i  associated with 

the asymptotic phase i  is the set ( ) : ( ): ( ) .x xI B!i c iH= =" ,  

Considering hyperbolic periodic orbits, isochrons are codi-

mension-1 submanifolds (diffeomorphic to Rn 1- ) crossing the 

periodic orbit transversally and foliating the entire basin of 

attraction [81].

In general, the (asymptotic) phase maps and their isochrons 

are complex, which often makes analytical computation impos-

sible and even numerical computation intractable (or at least 

expensive, particularly for high-dimensional oscillator models). 

Most numerical techniques rely on backward integration [82]–

[84]. An elegant forward integration method was developed in 

[85] and extended to stable fixed points in [86].

H : B(c) " S1

0

i
S1x

I(i)

x0
c

B(c)

Figure S1  An asymptotic phase map and isochrons. The asymp-
totic phase map : SB 1

"cH ^ h  associates with each point x  in the 
basin of attraction B c^ h a scalar phase x iH =^ h  on the unit circle 
S1  such that lim , , / , , .t x t x 00 0t 0 2z z i ~- + =" 3

c
+ ^ ^h h  The image 

of x0
c  through the phase map H  is equal to zero. The set of points 

associated with the same phase i  (that is, a level set of the phase 
map) is called an isochron and is denoted by .I i^ h
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	 ( ),y h i= u � (3b)

where the phase variable i  evolves on the unit circle .S1

The phase model is fully characterized by the angular fre-
quency ,0>~  the infinitesimal phase-response curve 

: ,q S R1
"  and the measurement map : ,h S Y1

"u  which is 
defined as ( ) ( ( )) .h h xi i= cu

An alternative simplification is when the input is a train 
of resetting impulses, that is,

( ) ( ), with ,u t t t t 0
k

k k
0

$a d= -
3

=

/

where it is assumed that the time interval between succes-
sive impulses is sufficient for convergence to the periodic 
orbit between each of them. Under this assumption, any 
solution ( , , ( ))t x u0 $z  of the oscillator model that starts 
from the periodic orbit c  leaves the periodic orbit under 
the effect of one impulse from the train and then con-
verges back toward the periodic orbit. Assuming that the 
steady state of the periodic orbit is recovered between any 
two successive impulses, the n-dimensional state-space 
model (1) can be approximated by a one-dimensional 
hybrid phase model (see [3], [6], and [30]) with

1)	 the (constant-time) flow rule

	 ,i ~=o     for all t tk! � (4a)

2)	 the (discrete-time) jump rule

	 ( ; ( )),Q $i i a di = ++     for all t tk= � (4b)

3)	 the measurement map

	 ( ),hy i= u     for all ,t � (4c)

where the phase variable i  evolves on the unit circle .S1  The 
phase model is fully characterized by the angular frequency 

,0>~  the phase-response curve ( ; ( )) :Q $ $ad [ , ),S1
" r r-  

and the measurement map :h S Y1
"u .

It should be emphasized that the assumption of “weak 
inputs” or “trains of resetting impulses” is relative to the 
attractivity of the periodic orbit. Strongly attractive periodic 
orbits allow for larger inputs to meet the simplifying 
assumption. The use of phase models is, for instance, popu-
lar in the study of oscillator networks under the assumption 
that the coupling strength is weak with respect to the attrac-
tivity of each oscillator [19], [30], [31].

From Infinitesimal to Finite Phase-Response Curves

The concept of infinitesimal and finite phase-response 

curves are closely related under the assumption of weak 

input. The exposition below highlights the relationship between 

these two concepts.

By definition, the finite phase-response curve ( ; ( ))uQ $i  

measures the asymptotic difference between the images 

through the asymptotic phase map H  of the perturbed trajec-

tory ( , ( ), ( ))t x u $z ic  and the unperturbed trajectory ( , ( ), ),t x 0z ic  

that is,

	
( ; ( )) ( ( , ( ), ( ))) ( ( , ( ), ))

(wrap to [ , )) .

limu t x u t xQ 0
t

$ $i z i z i

r r

H H= -

-

"3

c c6 @
� (S1)

Linearizing (S1) around the unperturbed trajectory ( ( ),t*z

( )) : ( ( , ( ), ), )u t t x 0 0* z i= c  and defining the perturbations ( ( ),tdz  

( )) : ( ( , ( ), ( )) ( ), ( ) ( ))u t t x u t u t u t* *$d z i z= - -c  lead to

	

( ; ( )) ( ( ) ( )) ( ( ))

[ ( ( )) ( ( )) ( ) ( ( ))

( ( ) )]

( ( )) ( ) ( ( ) ),

lim

lim

lim

u t t t

t t t t

t

t t t

Q

O

O

* *

* * T *

* T

t

t
x

t
x

2
2

2
2

$

d

d

i z dz z

z z dz z

dz

z dz dz

H H

H H H

H

= + -

= + -

+

= +

"

"

"

3

3

3

6 @

�

where the perturbation ( )tdz  is the solution of the linearized 

system

	
( ) ( ( ), ( )) ( ) ( ( ), ( )) ( )

( , , ) .

t x
f t u t t u

f t u t u t

u uO

.
* *

: ( ) ( )

* *

: ( ) ( )A t A t b t b t

2
2 2

2

2
2

2
2dz z dz z d

dz d dz d

= +

+

~ i ~ i= = + = = +z z

1 2 3444 444 1 2 3444 444 �

The solution of the linearized equation is

	 ( ) ( , ) ( ) ( , ) ( ) ( ) ,t t t s b s u s ds0 0
t

0
dz dz dU U= + z# �

where the fundamental solution ( , )x vU  associated with ( )A tz  

is the solution of the matrix equation

	 ( , ) ) ( , ), ( , ) .A I( n
2
2
x
x v x x v v vU U U= =z �

The gradient of the asymptotic phase map evaluated along 

the unperturbed trajectory is given by ( ( )) ( )t p t*
xd z ~ iH = +  

and is the solution of the adjoint linearized equation (6). 

Exploiting the properties of the fundamental solution leads 

to ( ) ( , ) ( ) .p t t s p sT T~ i ~ iU+ = +  Because ( )0 0dz =  and 

( ) ( ),u t u td =  

	

( ; ( )) ( ) ( , ) ( )

( , ) ( ) ( )

( ) ( ) ( ) .

lim

lim

Q u p t t

t s b s u s ds

p s b s u s ds

0 0
t

t

t

t

0

0

T

T

$ .i ~ i dz

~ i d

~ i ~ i

U

U

+

+ +

= + +

"

"

3

3

;

E#

#

�

Finally, the finite phase-response curve is thus approximated 

by the “convolution” between the infinitesimal phase-response 

curve and the phase-resetting input ( ),u t  that is,

	 ( ; ( )) ( ) ( ) .limQ u q s u s ds
t

t

0
$ .i ~ i+

"3
# �
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Both reduced oscillator representations { , ( ), ( )}hq $ $~ u  
and { , ( ; ( )), ( )}hQ $ $ $~ ad u  have characteristics similar to the 
static gain in the transfer-function representation of 
linear time-invariant systems. Both representations 
capture asymptotic properties of the impulse response 
and are external input–output representations of the 
oscillators, independent of the complexity of the inter-
nal state-space representation of the oscillators. More-
over, information on such characteristics is available 
experimentally.

Computations of Phase-Response Curves
A brief review of numerical methods to compute periodic 
orbits and phase-response curves in state-space models is 
useful before introducing the numerics of sensitivity analysis.

Periodic Orbit
The 2r -periodic steady-state solution ( )x $c  and the angular 
frequency ~  are calculated by solving the boundary value 
problem (see [35] and [36])

	 ( ) ( ), ,d
dx f x1 0 0
i
i

~
i- =

c
c^ h � (5a)

	 ( ) ( ) ,x x2 0 0r - =c c � (5b)
	 ( ( )) .x 0 0{ =ct � (5c)

The boundary conditions are given by the periodicity con-
dition (5b), which ensures the periodicity of the map ( ),x $c  
and the phase condition (5c), which anchors a reference 
position ( )x x0 0= cc  along the periodic orbit. The phase con-
dition : RX "{t  is chosen such that it vanishes at an iso-
lated point x0

c  on the periodic orbit c  (see [36] for details). 
Numerical algorithms to solve this boundary value prob-
lem are reviewed in “Numerical Tools.”

Infinitesimal Phase-Response Curve
The infinitesimal phase-response curve ( )q $  is calculated 
by applying (2), which involves computing the gradient of 
the asymptotic phase map evaluated along the periodic 
orbit, that is, the function ( )p $ .

The gradient of the asymptotic phase map evaluated 
along the periodic orbit ( )p $  is calculated by solving the 
boundary value problem (see [2], [28], and [37]–[40])

	 ( ) ( ( ), ) ( ) ,d
dp

x
f

x p1 0 0T

2

2

i
i

~
i i+ =c � (6a)

	 ( ) ( ) ,p p2 0 0r - = � (6b)

	 ( ), ( ( ), ) ,p f x 0 0i i ~- =c � (6c)

where the notation AT  stands for the transpose of the 
matrix A . The boundary condition (6b) imposes the period-
icity of ( )p $  and the normalization condition (6c) ensures a 
linear increase at rate ~  of the phase variable i  along zero-
input trajectories. This method is often called the adjoint 
method. Numerical methods to solve this boundary value 

problem as a by-product of the periodic orbit computation 
are presented in “Numerical Tools.”

Finite Phase-Response Curve
As an alternative to the infinitesimal phase-response curve, 
direct methods compute numerically the phase-response 
curve of an oscillator state-space model as a direct applica-
tion of Definition 1 (see, for example, [1], [3], [33], [34], [41], 
and [42]).

For each point ( ; ( )),uQ i $i  with ,Si
1!i  of the finite 

phase-response curve, a perturbed trajectory ( , ( ),t x iz ic

( ))u $  is computed by solving the initial value problem (1) 
from ( )x ii

c  up to its convergence back in a neighborhood 
of the periodic orbit, that is, up to time t)  such that dist
( ( , ( ), ( )), ) ,t x u <i $z i c e)

c  where e  is a chosen error tolerance. 
The phase ( ( , ( ), ( )))t x ui $z ii H=) )

c  is estimated as

( , ( ), ( )) ( ) .arg max t x u xi 2
S1

$i z i i= -) )

!i

c c

Then, the asymptotic phase shift is measured by direct 
comparison with the phase t i~ i+)  of an unperturbed tra-
jectory at time ,t)  that is,

( ; ( )) ( ) .Q u ti i$i ~ ii= - +) )

An advantage of the direct method over the infinitesi-
mal method is that it applies to arbitrary phase-resetting 
inputs. It only requires an efficient time integrator. How-
ever, it is highly expensive from a computational point of 
view: for each phase-resetting input, each point of the cor-
responding phase-response curve requires the time simu-
lation of the n-dimensional state-space model, up to the 
asymptotic convergence of the perturbed trajectory toward 
the periodic orbit.

Metrics in the Space of  
Phase-Response Curves
To answer system-theoretic questions in the space of 
phase-response curves, it is useful to endow this space 
with the differential structure of a Riemannian manifold. 
The differential structure provides a notion of local sensi-
tivity in the tangent space. The Riemannian structure is 
convenient for recasting analysis problems in an optimiza-
tion framework because it provides, for instance, a notion 
of steepest descent. The Riemannian structure also pro-
vides a norm in the tangent space and a (geodesic) distance 
between phase-response curves. See “Basic Concepts of 
Differential Geometry on Manifolds” for a short introduc-
tion to these concepts.

Because phase-response curves are signals defined on 
the unit circle and take values on the real line, the most 
obvious Riemannian structure is provided by the infinite-
dimensional Hilbert space of square-integrable signals

: { : ( ) ( , )},q q S RH L0
2

1$ !=
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where 

	 ( , ) { : : ( ( ) ) },q q d <S R S RL /
2

1 1

0

2 2 1 2
" 3i i=

r#  

 endowed with the standard inner product

	 ( ), ( ) ( ) ( ): d
0

2
$ $G Hp g p i g i i= )r# � (7)

and the associated norm

	 ( ) ( ), ( ) .:2$ $ $G Hp p p= � (8)

For technical reasons detailed later, the first derivative 
of considered signals is also assumed to be square integra-
ble, which restricts the signal space to

: : ( ) ( , ), ( ) ( , ) ,q q qS R S RH L L1
2

1
2

1$ $! != l" ,

where ql denotes the derivative, with respect to the phase ,i  
of the signal q . The space H 1  is a linear subspace of ,H 0  
which inherits its inner product (7) and its norm (8).

The linear space structure H 1  is convenient for calcula-
tions but fails to capture natural equivalence properties 
between phase-response curves. In many applications, it is 
not meaningful to distinguish among phase-response curves 
that are related by a scaling factor and/or a phase shift.

Scaling Equivalence
The actual magnitude of the input signal acting on the 
system is not always known exactly. This uncertainty about 
the input magnitude induces an (inversely proportional) 
uncertainty about the phase-response magnitude. Indeed, 
the phase model (3) is equivalent to

( ( ) ) ,q u1
i ~ i a

a
= +o ` j

	 ( ),y h i= u

for any scaling factor .0>a  A scaling of the input magni-
tude can be counterbalanced by an inverse scaling of the 
phase-response curve. In these cases, a phase-response 
curve q  is considered as the representation of an equiva-
lence class +  characterized by

Basic Concepts of Differential Geometry on Manifolds

This brief exposition recalls basic concepts of differential 

geometry on manifolds, following the terminology and defi-

nitions of [87]. 

A manifold M  is endowed with a Riemannian metric ( , ),gx x xp g  

which is an inner product of two elements xp  and xg  of the tan-

gent space T Mx  at .x  The metric induces a norm on T Mx  at x

	 : ( , ) .gx x x x xp p p= �

The length of a curve : ( , )a b R M"1c  is defined as

	 ( ) : ( ) .L t dt( )t
a

b
c c= c

o# �

The geodesic distance between two points x  and y  on M  is 

defined as

	 dist ( , ) ( ),minx y L c=
C

�

where C  is the set of all curves in M  joining points x  and y

	 { : [ , ] : ( ) , ( ) } .x y0 1 0 1M"c c cC = = = �

The curve(s) c  achieving this minimum is called the shortest 

geodesic between x  and .y  However, the notion of geodesic 

distance between two points is not always obvious. In some 

cases, it may be useful to define the distance between two 

points on M  differently.

The gradient of a smooth scalar function :F RM "  at 

x M!  is the unique element grad ( )F x T Mx x!  that satisfies

  	 ( ) [ ] (grad ( ), ), for all ,DF x g F x T Mx x x!p p p= �

where

	 ( ) [ ]
( ) ( )

limF x
t

F x t F x
D

t 0
h

h
=

+ -

"
�

is the standard directional derivative of F  at x  in the direction .h

For quotient manifolds ,M M +=  where M  is the total 

space and +  is the equivalence relation that defines the quo-

tient, the tangent space T Mxr  at xr  admits a decomposition into 

its vertical and horizontal subspaces

	 .T M V Hx x x5=r r r �

The vertical space Vxr  is the set of directions that contains 

tangent vectors to the equivalence classes. The horizontal 

space Hxr  is a complement of Vxr  in .T Mxr  A tangent vec-

tor xp  at x M!  has a unique representation Hx x!prr r  at .xr  

Provided that the metric gxr r  in the total space is invariant 

along the equivalence classes, it defines a metric on the 

quotient space

	 ( , ) : ( , ) .g gx x x x x xp g p g= r r rr r r �

If Fr  is a function on M  that induces a function F  on ,M  then

	 grad ( ) grad ( ),F x F xx x= r rr �

in which grad ( )F xx rrr  belongs to the horizontal subspace .Hxr
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	 there exists : ( ) ( ) .q q q q0>1 2 2 1+ $ $+ a a= � (9)

For example, in circadian rhythms, the stimulus could 
be a pulse of light, the effect of drugs, or the intake of food. 
Pulses are modeled by scaling the intensity of a parameter, 
but the absolute variation of this parameter is not known 
and is empirically fitted to experimental data. The scaling 
equivalence is meaningful in such situations. On the other 
hand, in neurodynamics, the stimulus could be a post-syn-
aptic current of constant magnitude. In this latter case, the 
scaling equivalence is less appropriate.

Phase-Shifting Equivalence
The choice of a reference position (associated with the ini-
tial phase) along the periodic orbit is often arbitrary. In 
these cases, a phase-response curve q  is considered as rep-
resentative of an equivalence class +  characterized by

	 there exists : ( ) ( ),q q q qS1 2
1

2 1+ $ $+ !v v= + � (10)

where v  denotes any phase shift.
For example, in circadian rhythms, experimental data are 

often collected by observing the locomotor activity of the 
animal. The timing of this locomotor activity is not easily 
linked to the time evolution of molecular concentrations. In 
this case, the phase-shifting equivalence is meaningful. On 
the other hand, in neurons, the observable events are the 
action potentials measured as rapid changes in membrane 
potentials. If the membrane potential is a state variable of the 
model, there is no timing ambiguity. In this latter case, the 
phase-shifting equivalence is not appropriate.

The equivalence relations (9) and (10) lead to the 
abstract—yet useful—concept of quotient space. Each point 
of a quotient space is defined as an equivalence class of sig-
nals. Since these equivalence classes are abstract objects, 
they cannot be used explicitly in numerical computations. 
Algorithms on a quotient space work instead with repre-
sentatives (in the total space) of these equivalence classes.

Combining (or not) equivalence properties (9) and (10) 
ends up with four infinite-dimensional spaces: one Hil-
bert space and three quotient spaces, respectively, denoted 
by ,QA  ,QB  ,QC  and QD  (see Table 1). In the next four sub-
sections, each space is endowed with an appropriate Rie-
mannian metric and an expression of tangent vectors, 
needed for the sensitivity analysis in subsequent sections, 
is provided.

Below, the symbol q  denotes an element of the consid-
ered space, which can be a signal (a finite or infinitesimal 
phase-response curve) or an equivalence class of these sig-
nals. In the latter case, a signal is denoted by qr .

Metric on Hilbert Space H1

The simplest space structure is the Hilbert space :QA = .H 1  
The (flat) Riemannian metric on QA  is the inner product

( , ) : ,gq q q q qG Hp g p g=

with (Euclidean) induced norm

( , ) ,: .gq q q q q q q q 2G Hp p p p p p= ==

Because the space QA  is a linear space structure, the short-
est path between two elements q1  and q2  on QA  is the straight 
line joining these elements. The natural (geodesic) distance 
between two points q1  and q2  on QA  is then given by

dist( , ) .:q q q q1 2 1 2 2-=

Metric on the Quotient Space 0/RH1
>

The space capturing the scaling equivalence (9) is the quo-
tient space / .: RQ HB

1
0>=  Each element q  in QB  represents 

an equivalence class

[ ] : { : } .q q q 0>a a= =r r

These equivalence classes are rays (starting at zero) in the 
total space : .HQB

1=

The normalized metric on ,QB

	 ( , ) :
,
,

,g
q qq q q
q q

G H
G H

p g
p g

=r r r
r r

r r
r r r

r r
� (11)

is invariant by scaling. As a consequence, it induces a Rie-
mannian metric ( , ) : ( , )g gq q q q q qp g p g= r r rr r r  on QB . The norm in 
the tangent space T Qq B  at q  is

	 : ( , ) .g
qq q q q q

q

2

2p p p
p

= =
r

r
� (12)

A signal representation of a tangent vector at q QB!  
relies on the decomposition of the tangent space T Qq Br  into 
its vertical and horizontal subspaces. The vertical subspace 
Vqr  is the subspace of T Qq Br  that is tangent to the equiva-
lence class [ ],qr  that is,

{ : } .q RVq !b b= r

The horizontal space Hq  is chosen as the orthogonal com-
plement of Vqr  for the metric ( , ),gq $ $r r  that is,

{ : ( , ) } .T g q 0H Qq q B q!h h b= =r rr r r

Table 1 Combining equivalence properties defines 
different quotient spaces for phase-response curves.

( ) ( )q q$ $? a ( ) ( )q q$ $+ a

( ) ( )q q$ $? v+ :Q HA
1= : RHQB

1
0>=

( ) ( )q q$ $+ v+ Shift ( ): SHQC
1 1= : ( )ShiftR SHQD

1
0

1
> #=
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The orthogonal projection Pq
hhr  of a vector T Qq B!h r  onto 

the horizontal space Hqr  is

: ( , )
( , )

,
,

.P g q q
g q

q
q q

q
qq

h

q

q

G H
G H

h h
b b

h b
b h

h
= - = -

r r r

r r
r

r r

r
rr

r

r

The distance between two points q1  and q2  on QB  is 
defined as

dist( , ) :
,

cosq q
q q

q q
1 2

1

1 2 2 2

1 2G H
= -

r r

r re o

(see [43] for metrics on the unit sphere).

Metric on the Quotient Space hift/ ( )S SH1 1

The space capturing the phase-shifting equivalence (10) is 
the quotient space : /Shift ( ) .SQ HC

1 1=  Each element q  in 
QC  represents an equivalence class

[ ] { ( ): } .q q q S1$ !v v= = +r r

These equivalence classes are closed one-dimensional 
curves (due to the periodicity of the shift) on the infinite-
dimensional hypersphere of radius q 2r  in the total space 

.:Q HC
1=

The (flat) metric on QC

( , ) : , ,gq q q q qG Hp g p g=r r r r rr r r r r

is invariant by phase shifting along the equivalence classes. 
As a consequence, it induces a Riemannian metric 

( , ) : ( , )g gq q q q q qp g p g= r r rr r r  on .QC  The norm in the tangent space 
T Qq C  at q  is

: ( , ) .gq q q q q q 2p p p p= = r r

The vertical space Vqr  is the subspace of T Qq Cr  that is 
tangent to the equivalence class [ ],qr  that is,

{ : },q RVq !b b= lr

where qlr  has to belong to ( , )S RL2
1  to ensure the regularity 

of .Vqr  The horizontal space Hqr  is chosen as the orthogonal 
complement of Vqr  for the metric ( , ),gq $ $r r  that is,

{ : ( , ) } .T g q 0H Qq q C q!h h b= =lr rr r r

The orthogonal projection Pq
hhr  of a vector T Qq C!h r  onto 

the horizontal space Hqr  is

:
( , )
( , )

,
,

.P
g q q
g q

q
q q

q
qq

h

q

q

G H
G H

h h
b b

h b
b h

h
= - = -

l l

l
l

l l

l
l

r r r

r r
r

r r

r
rr

r

r

The distance between two points q1  and q2  on QC  is 
defined as

dist( , ) : ( ) ( ) ( ) ( ) ,minq q q q q q1 2 1 2 2 1 2 2
S1

$ $ $ $v v= - + = - + )
!v
r r r r

where v)  denotes the phase shift achieving this minimiza-
tion. It corresponds to the phase shift maximizing the cir-
cular cross-correlation

	 ( ), ( ) .arg max q q1 2
S1

$ $G Hv v= +)

!v

r r � (13)

The global optimization problem (13) is solved in two 
steps. The first step is the computation of the circular cross-
correlation :c S R1

"r  between the two periodic signals q1r

and q2r

( ) ( ), ( ) .c q q1 2$ $G Hv v= +r r r

By definition, the circular cross-correlation is also a peri-
odic signal. An efficient computation of this circular cross-
correlation is performed in the Fourier domain. The circu-
lar cross-correlation can be expressed as the circular 
convolution ( ) ( ( ) ( )) ( ) .c q q1 2$ 9 $v v= - )r r r  Exploiting the prop-
erties of Fourier coefficients and the convolution-multipli-
cation duality property leads to

[ ] [ ] [ ],c k k q kq1 2= )rt rt rt

where [ ]x $t  denotes the discrete signal of Fourier coeffi-
cients for the periodic signal ( )x $ , and x)  denotes the com-
plex conjugate of .x  The second step is the identification of 
the optimal phase-shift value ,S1!v)  which achieves the 
maximal value of the circular cross-correlation. This maxi-
mum is global and generically unique. Multiplicity of the 
optimum would mean that one of the signals has a period 
that is actually equal to /k2r  with .k N 0>!

Metric on the Quotient Space ( )Shift S0#/( )RH 1 1
>

The space capturing both scaling and phase-shifting 
equivalences (9)–(10) is the quotient space 0: /(RHQD

1
> #=

Shift ( )) .S1  Each element q  in QD  represents an equiva-
lence class

[ ] { ( ) : , } .q q q 0> S1$ !v a a v= = +r r

Based on the individual geometric interpretation of both 
equivalence properties, these equivalence classes are infi-
nite cones in the total space : ,HQD

1=  that is, the union of 
rays that start at zero and go through the closed one-
dimensional curve of phase-shifted signals.

Because the metric (11) on QD  is invariant by scaling and 
phase shifting along the equivalence classes, it induces a 
Riemannian metric ( , ) : ( , )g gq q q q q qp g p g= r r rr r r  on .QD  The norm 
in the tangent space T Qq D  at q  is given by (12).

The vertical space Vqr  is the subspace of T Qq Dr  that is 
tangent to the equivalence class [ ],qr  that is,

{ : , } .q q RVq 1 2 1 2 !b b b b= + lr rr

It is the direct sum of vertical spaces for equivalence prop-
erties individually. The horizontal space Hqr  is chosen as 
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the orthogonal complement of Vqr  for the metric ( , ),gq $ $  
that is,

{ : ( , ) } .T g q q 0H Qq q D q 1 2!h h b b= + =lr r rr r r

The orthogonal projection Pq
h hr  of a vector T Qq D!h r  onto 

the horizontal space Hqr  is

: ( , )
( , )

( , )
( , )

,
,

,
,

.

P g q q
g q

q
g q q

g q
q

q q
q

q
q q

q
q

q
h

q

q

q

q

1 1

1
1

2 2

2
2

G H
G H

G H
G H

h h
b b

h b
b

b b

h b
b

h
h h

= - -

= - -

l l

l
l

l l

l
l

r r r

r r
r

r r r

r r
r

r r

r
r

r r

r
r

r
r

r

r

r

The distance between two points q1  and q2  on QD  is 
defined as

dist( , ) : min cos
( ), ( )

cos
( ), ( )

,

q q
q q

q q

q q
q q

1 2
1

1 2 2 2

1 2

1

1 2 2 2

1 2

S1

$ $

$ $

G H

G H

v

v

=
+

=
+ )

!v

-

-

r r

r r

r r

r r

e

e

o

o

where v)  denotes the phase shift achieving this minimiza-
tion. The phase shift v)  corresponds to the phase shift 
maximizing the circular cross-correlation in (13).

Sensitivity Analysis in the Space  
of Phase-response curves
Sensitivity analysis for oscillators has been widely studied 
in terms of sensitivity analysis of periodic orbits [44]–[47]. 
This section develops a sensitivity analysis for phase-
response curves. The sensitivity formula and the develop-
ments in this section are closely related to those in [48], 
which studies the sensitivity analysis of phase-response 
curves, also called perturbation projection vectors, in the 
context of electronic circuits. The use of sensitivity analysis 
of phase-response curves is novel in the context of biologi-
cal applications.

This section summarizes the sensitivity analysis for 
oscillators described by nonlinear time-invariant, state-
space models with one parameter

	 ( , , ),x x uf m=o � (14a)
	 ( , ),y h x m= � (14b)

where the constant parameter m  belongs to some subset   
.R3K  The scalar nature of the parameter is for conve-

nience but all developments generalize to the multidimen-
sional case. See “Basic Concepts of Local Sensitivity Analy-
sis” for a short introduction to these concepts.

Basic Concepts of Local Sensitivity Analysis 

This brief exposition recalls basic concepts of local sensitiv-

ity analysis, following the terminology of [88].

Consider an oscillator described by (14). Most characteris-

tics of this system (defined in the previous sections) depend on 

the value of the parameter .m  It means that, for each character-

istic of the system, there exists a function :c C"K  that associ-

ates with each value of the parameter m  an element ( )c m  in the 

space C  to which belongs the characteristic.

Under appropriate regularity assumptions (see [88] for 

details), the sensitivity function :S T C( )
c

c"K m  of the charac-

teristic ( )c m  associates with each value of the parameter m  the 

element ( )Sc m  in the tangent space T C( )c m  at ( ),c m  defined as

	 ( ) ( )
( ) ( )

.: limS c
h

c h cc

h 02
2m
m
m

m m
=

+ -
=

"
�

The sensitivity ( )Sc m  provides a first-order estimate of the 

effect of parameter variations on the characteristic. It can also 

be used to approximate the characteristic when m  is sufficiently 

close to its nominal value .0m  For small ,0 2m m-  the char-

acteristic ( )c m  can be expanded in a Taylor series about the 

nominal solution ( )c 0m  to obtain

	 ( ) ( ) ( ) .c c S Oc
0 0 0 2 0 2

2m m m m m m m= + - + -^ h �

This means that the knowledge of the nominal characteristic 

( )c 0m  and the sensitivity function suffices to approximate the 

characteristic for all values of m  in a small ball centered at .0m  

The main difficulty of sensitivity analysis is to formulate the 

appropriate (analytical) equation to be solved to find the charac-

teristic ( ).c m  Then, differentiating this (analytical) equation yields 

the sensitivity equation to be solved to find the sensitivity function 

( ) .Sc
0m  The analytical problem can be an algebraic problem, an 

initial value problem, a boundary value problem, etc.

Remark 

If, for a given value of the parameter ,m  the characteristic ( )c m  

is itself a function ( ) :c A B"m  in the space of functions ,C  the 

sensitivity ( )Sc m  is also a function ( ) :S A Bc
"m u u  in the tangent 

space ,T C( )c m  where Au  and Bu  are the domain and the image 

of the sensitivity function. For convenience, the characteristic 

and the sensitivity function are denoted by :c A B"#K  and 

: ,S A Bc
"#Ku u  respectively.

Remark 

It is often meaningful to compute the relative sensitivity function 

( ),cv m  defined as

	 ( ) :
( )

( )
[ ]

[ ( ) ( )] ( )
,lim

c
c

h

c h c c

( )

( )c

c h

c

02
2v m

m
m

m
m

m m m

m m m
= =

+ -

+ -

"
m

m
�

where ( )c$ m  denotes the norm induced by the Riemannian 

metric ,g ( )c $ $m ^ h at ( ).c m  A relative sensitivity function mea-

sures the relative change in the model characteristic to a rela-

tive change in the parameter value.
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Sensitivity Analysis of a Periodic Orbit
The (zero-input) steady-state behavior of an oscillator 
model (that is, its periodic orbit c ) is characterized by an 
angular frequency ( ),~ m  which measures the speed of a 
solution along the orbit, and a 2r -periodic steady-state 
solution ( ; ) ( / ( ), ( ), , ),0x x0$ $m ~ m m mz= cc  which describes the 
locus of this orbit in the state space.

The sensitivity of the angular frequency at a nominal 
parameter value 0m  is the scalar ( ) ,S R0 !m~  defined as

( ) ( )
( ) ( )

.: limS d
d

h
h

h
0

0

0 0
0

m
~ ~ ~
m

m m
m =

+ -
=

"

~

Likewise, the sensitivity of the 2r -periodic steady-state 
solution is the 2r -periodic function ( ; ): ,S S Rx n

0
1
"$ m

c

defined as

( ; ) : ( ; )
( ; ) ( ; )

.limS d
dx

h
x h xx

h
0 0

0

0 0
$ $

$ $
m

m m
m m= =

+ -

"

c c c
c

From (5) and then taking derivatives with respect to ,m

( ; ) ( ; ) ( ; ) ( ; ) ( )

( ; ) ,

d
dS A S v S

E

1 1

1 0

x
x

x

0 0 0 2 0 0

0

i
i m

~
i m i m

~
i m m

~
i m

- +

- =

~

c
c

c

�
(15a)

	 ( ; ) ( ; ) ,S S2 0 0x x
0 0r m m- =

c c

�(15b)

	 ( ( ; ); ) ( ; ) ( ( ; ); ) ,x x S x0 0 0 0x
0 0 0 0 0

2
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{
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where

( ; ) : ( ( ; ), , ),

( ; ) : ( ( ; ), , ),

( ; ) : ( ( ; ), , ) .

A x
f

x

E
f

x

v f x

0

0

0

x

0 0 0
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0 0 0

2

2

2

2

i m i m m

i m
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=

=

c

c

c

c

Remark 
The sensitivity of the period is often preferred to the sensi-
tivity of the angular frequency [46], [49]–[52]. The sensitiv-
ity of the period is the real scalar ST

( ) : ( )
( ) ( )

.limS d
dT

h
T h TT

h
0 0

0

0 0

m

m m
m m= =

+ -

"

The sensitivity measures are equivalent up to a change of 
sign and a scaling factor, that is, ( )/ ( )S TT

0 0m m =

( )/ ( ) .S 0 0m ~ m- ~

Sensitivity Analysis of a Phase-Response Curve
The input–output behavior of an oscillator model is charac-
terized by its infinitesimal phase-response curve ( ; ) .q $ m

The sensitivity of the infinitesimal phase-response 
curve at a nominal parameter value 0m  is the 2r -periodic 
function ( ; ): ,S S Rq

0
1
"$ m  defined as

( ; ) ( ; )
( ; ) ( ; )

.: limS d
d

h
hq q qq

h
0 0

0

0 0
$ $

$ $

m
m m

mm
=

+ -
=

"

From (2) and then taking derivatives with respect to ,m

( ; ) ( ; ), ( ( ; ), , )

( ; ), ( ( ; ), , ) ( ; )

( ( ; ), , ) ,

S S u
f

x

p x u
f

x S

u
f
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q p

x
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2

2 2
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+
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c

c

c

c

where the 2r -periodic function ( ; ) :S S Rp n
0

1
"$ m  is the sen-

sitivity of the gradient of the asymptotic phase map evalu-
ated along the periodic orbit ( )p $ , defined as

( ; ) : ( ; )
( ; ) ( ; )

.limS d
dp

h
p h pP

h
0 0

0

0 0
$ $

$ $

m

m m
m m= =

+ -

"

From (6) and then taking derivatives with respect to m ,
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Numerics of Sensitivity Analysis
Numerical algorithms to solve boundary value problems (15) 
and (16) are reviewed in “Numerical Tools.” Existing algo-
rithms that compute periodic orbits and infinitesimal phase-
response curves are easily adapted to compute the sensitivity 
functions of periodic orbits and infinitesimal phase-response 
curves, essentially at the same computational cost.

Applications to Biological Systems
This section illustrates the relevance of sensitivity analysis 
for three system-theoretic case studies arising from biolog-
ical systems, emphasizing the novel insight provided by 
the approach described in this article with respect to the 
existing literature. The first application analyzes the 
robustness to parameter variations of a circadian oscillator 
model based on the sensitivity of its phase-response curve. 
The second application identifies the parameter values of a 
simple circadian oscillator model to fit an experimental-
like phase-response curve. The third application classifies 
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Numerical Tools

S everal numerical algorithms are available for the numerical 

computation of periodic orbits [36], [89], [90]. Most algo-

rithms recast the periodic orbit computation as a two-point 

boundary value problem. Numerical boundary value methods 

fall into two classes:

•	 shooting methods that generate trajectory segments us-

ing a numerical time integration and match segment end 

points with each other and the boundary conditions

•	 global methods that project the differential equations onto 

a finite dimensional space of discrete closed curves that 

satisfy the boundary conditions.

Both methods yield a set of (nonlinear) equations that are 

solved with root-finding algorithms, usually Newton’s method.

This sidebar summarizes popular algorithms for the com-

putation of periodic orbits. Then it emphasizes how the com-

putation of the infinitesimal phase-response curve is a cheap 

by-product of this computation. Finally, these algorithms are 

extended for the computation of oscillator sensitivities: angu-

lar frequency, steady-state periodic solution, and infinitesimal 

phase-response curve sensitivities. More sophisticated algo-

rithms can be found in the literature and adapted similarly (see 

[40], [90], [91]).

Numerical Computation of Periodic Orbits

A periodic orbit c  is characterized by the 2r -periodic steady-

state solution :x S1
" cc  describing a closed curve in the state 

space and the angular frequency 0>~  (or equivalently the 

period T ) that solve the boundary value problem (5).

Considering a (nonuniform) partition P  of the unit circle S1

	 : { },0 2< < < N0 1 gi i i rP = = = � (S2)

the 2r -periodic steady-state solution ( )x $c  is numerically 

approximated by a closed discrete curve in the state space .X  

A discrete curve is a set of points , , ,x x xN0 1 f
c c c" , associated 

with the set of phases (S2), such that xi
c  approximates ( )x ii

c  for 

all , , , .i N0 1 f=  This discrete curve is closed, that is, ,x xN 0=
c c  

which reflects the periodicity of the solution ( ) .x $c  Below, the 

circle partition P  is fixed, and the discrete curve is numerically 

represented by the vector : ( , , , ) .x x x xN0 1 f=
c c c c
P  Phase steps are 

denoted by .hi i i1i i= -+

Equations for approximate periodic orbits take then the form 

of N  n-dimensional vector equations

( , ) , , , , ,r x i N0 0 1 1i f~ = = -
c
P

where different residual maps ri  lead to 

different numerical methods (see Table 

S1 for two popular one-step schemes). 

These equations are completed by the 

periodicity condition

( , ) :r x x x 0N N 0~ = - =
c c c
P

and the phase condition

( , ) : ( ; ) .r x x 0~ { m= ={
c c
P Ptt

This set of (nonlinear) equations 

( , )r x 0~ =
c
P  is solved with the root-find-

ing Newton’s method. Starting from an 

initial guess , ,x ( ) ( )0 0
~

c
P^` h j  this method 

iteratively updates the solution

( ) ( ) ( )x x x( ) ( ) ( )k k k1 T= +
c c c
P P P

+

and

.( ) ( ) ( )k k k1~ ~ ~D= ++

Update terms are computed by solving 

the linear problem
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where A has a particular block struc-

ture for one-step schemes and , ,b cx xc c

 

and dxc  are also defined by blocks
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c
P  linear block entries ,Gi  ,Hi  and ;bi

xc  adjoint 
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Expressions for block entries , ,G Hi i  and bi
xc  depend on the 

methods used to generate residual maps ( , )r x 0i ~ =
c
P  with 

, , , ,i N0 1 1f= -  for approximate periodic orbits (see Table S1).

The main computational effort in one iteration is the evalu-

ation of the N n N n1 1#+ +^ ^h h  structured matrix A, whose 

block entries are computed through fundamental solution time 

integrations or Jacobian matrix evaluations.

Numerical Computation of  

Phase-response curves

The infinitesimal phase-response curve :q S Rn1
"  of a periodic 

orbit is calculated by applying (2) that involves computing the 

gradient of the asymptotic phase map evaluated along the peri-

odic orbit, that is, the function ( ) .p $

The gradient of the asymptotic phase map evaluated along 

the periodic orbit :q S Rn1
"  is the solution of the boundary 

value problem (6).

The gradient is numerically approximated by a closed dis-

crete curve, that is, a set of points { , , , }p p pN0 1 f  associated with 

the set of phases (S2), such that .p pN 0=  This discrete curve 

is numerically represented by the vector : ( , , , ) .p p p pN0 1 f=P

Following the same procedure as for approximate periodic 

orbits, equations for approximate gradients take the form of 

N n1+^ h  linear equations

,Ap 0=Pu

where the matrix Au  has the same structure as the matrix A

.A

G

I

H

G H
In

N N

n

0 0

1 1

j j
=

-

-

-- -

u

u u

u u

R

T

S
S
S
SS

V

X

W
W
W
WW

Block entries of Au  can be constructed based on numerical 

computations for the periodic orbit computation (see Table S1).

The matrix Au  is, by construction, singular with a simple rank 

deficiency. This rank deficiency is overcome by adding a nor-

malization condition for pP . Discretizing (6c) yields

,v PT
p ~=P P

where : ( ( , ), , ( , ))( , ), f x f xf xv 0 00 N10 f=
c cc

P  is the approximate tan-

gent vector to the periodic orbit and P  is a ponderation matrix 

that depends on the method class. A standard method to obtain 

a system of defining equations that is square and regular is to 

border the matrix Au  (see [36, Theorem 5.8] for details)

	 ,
A b

d
p

c
0

Tp

p

p p ~
=

Pu= ; ;G E E � (S4)

with , ,d c v P0 T Tp p! = P  and b Arangep g u^ h (for example 

b vp = P ).

Numerical Computation of Oscillator Sensitivities

The angular frequency sensitivity S R l1! #~  and the sensitivity 

of the 2r -periodic steady-state solution :S S Rx n l1
"

#c

 are the 

solutions of the linear boundary value problem (15). Equations 

for approximate periodic orbit sensitivities take the form of a 

system of linear equations

	 ,
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P P
c

c

c

c

c

c

t

; ; =E E G � (S5)

where ( / )Ex 2 2{ m=-{

c

tt  and Ei
xc  depends on the numerical meth-

od used (see Table S1).

The sensitivity of the gradient of the asymptotic phase map 

evaluated along the periodic orbit :S S Rp n l1
"

#  is the solu-

tion of the linear boundary value problem (16). Equations for 

approximate infinitesimal phase-response curve sensitivities 

take the form of a system of linear equations

,
A
c

b
d

S
E
E

Tp

p

p

p p

p
p

=
~

P Pu= = =G G G                  (S6)

where E S S PpTp v= -~
~

P P  and Ei
p  depends on the numerical 

method used (see Table S1).

In (S5) and (S6), the square matrices on the left-hand sides 

are identical to the matrices used for the computation of the 

periodic orbit in (S3) and the gradient in (S4), respectively. The 

only additional computation effort arises from the evaluation of 

the right-hand sides.

neural oscillator models based on their phase-response 
curves. All numerical tests were performed with a Matlab 
numerical code available from the first author.

Robustness Analysis to Parameter Variations:  
A Case Study in a Circadian Oscillator Model
Testing the robustness of a model against parameter varia-
tions is a basic system-theoretic problem. In many situa-
tions, modeling can be used specifically for the purpose of 

identifying the parameters that influence a system prop-
erty of interest.

In the literature, the robustness analysis of circadian 
rhythms mostly studies the zero-input, steady-state 
behavior (period, amplitude of oscillations, etc.) [49], [50], 
[53] and empirical phase-based performance measures 
[42], [51], [52], [54].

This section defines scalar robustness measures to quan-
tify the sensitivity of the angular frequency (or the period) 
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and the sensitivity of the infinitesimal phase-response 
curve to parameter variations. These robustness measures 
are applied to a model of the circadian rhythm. A more 
detailed analysis of this application was presented in [22].

Scalar Robustness Measure  
in the Space of Phase-Response Curves
The angular frequency ~  is a positive scalar. The sensitiv-
ity of ~  with respect to the parameter m  is thus a real scalar 

,S~  leading to the scalar robustness measure : .R S=~ ~  In 
contrast, the infinitesimal phase-response curve (or its 
equivalence class) q  belongs to a (nonlinear) space .Q  The 
sensitivity of q  is thus a vector Sq  that belongs to the tan-
gent space T Qq  at .q  A scalar robustness measure Rq  is 
defined as

	 : , ,R S g S Sq q
q q

q q== ^ h �

where q$  denotes the norm induced by the Riemannian 
metric ,gq $ $^ h at .q  It is the natural extension of robustness 
measures to a (nonlinear) space .Q

When Q  is a quotient space, the element q  and the tan-
gent vector Sq  are abstract objects. The evaluation of the 
robustness measure relies on the sensitivity Sqr  of the signal 
qr  defining the equivalence class in the total space

	 , ,R P S g P S P Sq
q
h q

q q q
h q

q
h q= = rr

r
r r r

r
r
r^ h �

where Ph
q  is the projection operator onto the horizontal 

space .Hqr  The projection removes the component of the 
sensitivity that is tangent to the equivalence class.

When analyzing a model with several parameters 
( ),Rl! 3m K  all robustness measures Rx  (where x  stands 
for any characteristic of the oscillator) collect the scalar 
robustness measure corresponding to each parameter in an 
l-dimensional vector. This vector is often normalized as

	 ,
R

R1x
x

xt =
3

�

where $ 3  denotes the maximum norm such that compo-
nents of xt  belong to the unit interval [0, 1]. This measure 
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Figure 3  A diagram of the quantitative model for circadian oscillations in mammals involving interlocked negative and positive regula-
tions of Per, Cry, and Bmal1 genes by their protein products. (Figure is modified, with permission, from [55]. © (2003) National Academy 
of Sciences, U.S.A.)
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allows the ranking of model parameters according to their 
ability to influence the characteristic .x

Quantitative Circadian Oscillator Model
The robustness analysis to parameter variations is illustrated 
on a quantitative circadian rhythm model for mammals [55]. 
The model with 16 state variables and 52 parameters describes 
the regulatory interactions between the products of genes 
Per, Cry, and Bmal1 (see Figure 3). State-space model equa-
tions and nominal parameter values are available in [55, Sup-
porting Text]. The effect of light is incorporated through peri-
odic square-wave variations in the maximal rate of Per 
expression, that is, the value of the parameter vsP  goes from a 
constant low value during dark phase to a constant high 
value during light phase. Parameter values remain to be 
determined experimentally and have been chosen semiarbi-
trarily within physiological ranges to satisfy experimental 
observations. This model has been extensively studied 
through unidimensional bifurcation analyses and various 
numerical simulations of entrainment [55], [56].

Each parameter of the model describes a single regula-
tory mechanism, such as transcription and translation con-
trol of mRNAs, degradation of mRNAs or proteins, trans-
port reaction, or phosphorylation/dephosphorylation of 
proteins. The analysis of single-parameter sensitivities thus 
reveals the importance of individual regulatory processes 
on the function of the oscillator.

To enlighten the potential role of circuits rather than sin-
gle-parameter properties, model parameters were grouped 
according to the mRNA loop to which they belonged: Per 
loop, Cry loop, and Bmal1 loop. In addition, parameters asso-
ciated with interlocked loops were gathered in a last group.

The robustness analysis is developed in the space QD  
incorporating both scaling and phase-shifting equivalence 
properties. These equivalence properties are motivated by 
the uncertainty about the exact magnitude of the light input 
on the circadian oscillator and by the absence of precise 
experimental state trajectories, which prevent defining a 
precise reference position corresponding to the initial phase.

The following section considers sensitivities to relative 
variations of parameters.

Results
The period and the phase-response curve are two charac-
teristics of the circadian oscillator with physiological sig-
nificance. The sensitivity analysis measures the influence 
of regulatory processes on tuning the period and shaping 
the phase-response curve.

A two-dimensional ( , )qt t~  scatter plot, in which each 
point corresponds to a parameter of the model, reveals the 
shape and strength of the relationship between both normal-
ized robustness measures t~  (angular frequency or, equiva-
lently, period) and qt  (phase-response curve). It enables 
identifying which characteristic is primarily affected by per-
turbations in individual parameters: parameters below the 
dashed bisector mostly influence the period, whereas 
parameters above the dashed bisector mostly influence the 
phase-response curve (see Figure 4).

At a coarse level of analysis, the scatter plot reveals that 
the period and the phase-response curve exhibit a low sensi-
tivity to most parameters (most points are close to the origin); 
the period and the phase-response curve display a medium 
or high sensitivity to only few parameters, respectively.

At a finer level of analysis, the scatter plot reveals a qualita-
tive difference in sensitivity to parameters associated with each 
of the three mRNA loops. The qualitative tendency among 
parameters associated with the same mRNA loop is repre-
sented by a least-square regression line passing through the 
origin. The following observations are summarized in Table 2.

»» The Bmal1 loop parameters have a strong influence 
on the period and a medium influence of the phase-
response curve (regression line below the bisector).

»» The Per loop parameters have a medium influence on 
the period and a high influence on the phase-
response curve (regression line above the bisector).

0

1

0

KIBKAC

KAP

vsC

vmP

vmC

vsP

vmB

vsB

1t~ (= tT)

tq

Figure 4  A local robustness analysis to parameter variations in 
the space of infinitesimal phase-response curves. Normalized 
robustness measures t~  (angular frequency), and qt  (infinitesi-
mal phase-response curve) reveal the distinct sensitivity of three 
distinct genetic circuits (Cry, Per, and Bmal1). Each point is asso-
ciated with a particular parameter. The three lines are regressions 
over the parameters of the three gene loops. The dashed bisector 
indicates the positions at which the two measures of robustness 
are identical. Only parameters associated with the Cry loop exhibit 
a low influence on the period and a high influence on the infini-
tesimal phase-response curve. The color code corresponds to dif-
ferent subsets of parameters associated with different loops: Per 
loop in blue, Cry loop in red, and Bmal1 loop in green. Parameters 
associated with interlocked loops are represented in black.



APRIL 2014 «  IEEE CONTROL SYSTEMS MAGAZINE  67

»» The Cry loop parameters have a low influence on the 
period and a high influence on the phase-response 
curve (regression line above the bisector, close to the 
vertical axis).

In each feedback loop, the three most influential parame-
ters represent the three same biological functions: the max-
imum rates of mRNA synthesis ( , ,v vsB sP  and ),vsC  the 
maximum rate of mRNA degradation ( , ,v vmB mP  and ),vmC  
and the inhibition (I) or activation (A) constants for the re-
pression or enhancement of mRNA expression by BMAL1 
( , , and ) .K K KIB AP AC  These three parameters primarily 
govern the sensitivity associated with each loop.

Two of the three influential parameters of the Cry loop 
detected by the (local) sensitivity analysis have been identi-
fied by numerical simulations as critical for entrainment 
properties of the model without affecting the period (KAC  
in [55] and vmC  in [56]). The local approach supports the 
importance of these two parameters and identifies the 
potential importance of a third parameter ( ) .vsC

The conclusions in [55] and [56] rely on extensive simu-
lations of the model under entrainment conditions while 
varying one parameter at a time. In contrast, the local anal-
ysis in this article allows a computationally efficient screen-
ing of all parameters. The plot in Figure 4 was generated in 
under than a minute with a Matlab code.

To evaluate the relevance of the infinitesimal predictions, 
Figure 5 displays the time behavior of solutions for different 
finite parameter changes. The left column illustrates the 
autonomous solution of the isolated oscillator, and the right 
column illustrates the steady-state solution entrained by a 
periodic light input. Parameter perturbations are randomly 
taken in a range of !10% around the nominal parameter 
value. Each row corresponds to the perturbation of a differ-
ent group of parameters (the black line corresponds to the 
nominal system behaviors for nominal parameter values).

a) �Perturbations of the three most influential parameters 
of the Cry loop ( , ,v vsC mC  and )KAC  lead to small varia-
tions (mostly shortening) of the autonomous period 
and (unstructured) large variations of the phase lock-
ing. This observation is consistent with the low sensi-
tivity of the period and the high sensitivity of the 
phase-response curve.

b) �Perturbations of the three most influential parameters 
of the Bmal1 loop ( , ,v vsB mB  and )KIB  lead to medium 
variations of the autonomous period and phase lock-
ing. The variations of the phase locking exhibit the 
same structure as variations of the period, suggesting 
that the change in period is responsible for the change 
of phase locking for these parameters. This observa-
tion is consistent with the high sensitivity of the 
period and the medium sensitivity of the phase-
response curve.

c) �Perturbations of the three most influential parameters 
of the Per loop ( , ,v vsP mP  and )KAP  exhibit an interme-
diate behavior between situations (a) and (b).

d) �Perturbations of parameters of interlocked loops 
lead to small variations of the autonomous period 

(a)

(b)

(c)

(d)

Entrainment

0 24 48 72 96 0 24 48 72 96

Autonomous Oscillation

Figure 5  A validation of the local robustness analysis for finite 
(nonlocal) parameter perturbations. Steady-state behaviors for 
the nominal model and different finite (nonlocal) parameter pertur-
bations are illustrated by time plots of the state variable MP  under 
constant environmental conditions (autonomous oscillation, left 
column) and periodic environmental conditions (entrainment, right 
column). Each row corresponds to the perturbation of a different 
group of parameters, with the black time plot corresponding to the 
system behavior for nominal parameter values. Perturbations are 
randomly taken in a range of !10% around the nominal parameter 
value (for one parameter at a time). (a) Perturbations of the three 
most influential parameters of Cry loop ( , ,v vsC mC  and KAC ) lead to 
small variations of the autonomous period and (unstructured) 
large variations of the phase locking. (b) Perturbations of the three 
most influential parameters of Bmal1 loop ( , ,v vsB mB  and K IB ) lead 
to larger variations of the autonomous period and medium varia-
tions of the phase locking. (c) Perturbations of the three most influ-
ential parameters of Per loop ( , ,v vsP mP  and KAP ) exhibit an 
intermediate behavior between the situations (a) and (b). (d) Per-
turbations of parameters of interlocked loops lead to small varia-
tions of the autonomous period and the phase locking.

Table 2 The robustness analysis reveals a qualitative 
difference in sensitivity to parameters associated with 
each of the three mrna loops.

Sensitivity of the 
Period

Sensitivity of the  
Phase-Response Curve

Per loop Medium High

Cry loop Low High

Bmal1 loop High Medium
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and the phase locking, which is consistent with their 
low sensitivity.

These (nonlocal) observations are thus well predicted by 
the classification of parameters suggested by the (local) 
sensitivity analysis (see Figure 4).

System Identification in the Parameter Space:  
A Case Study in a Circadian Oscillator Model
System identification builds mathematical models of 
dynamical systems from observations. In particular, 
system identification in the parameter space finds a set of 
parameter values that best match observed data for a given 
state-space model structure.

Parameter values for circadian rhythm models are often 
determined by trial-and-error methods due to scant exper-
imental information about parameter values. 

This section provides a gradient-descent algorithm to 
identify parameter values that give a phase-response 
curve close to an experimental phase-response curve (in a 
metric described in this article). This algorithm is illus-
trated on a qualitative circadian oscillator model.

Gradient-Descent Algorithm  
in the Space of Phase-Response Curves
A standard technique is to recast the system identification 
problem as an optimization problem. The parameter esti-
mate is the minimizer of an empirical cost ( ),V mu  that is,

( ),argmin Vm m=
!m K

t u

where ( ):V R 0"m K $u  penalizes the discrepancy between 
observed data and model prediction. Local minimization 

is usually achieved with a gradient-descent algorithm, 
requiring the computation of the gradient ( ) .Vd mm u

Given an experimental-like phase-response curve q0r  (or 
its equivalence class [ ]),q q0 0= r  a natural cost function ( )V mu  is

( ): ( ( )) dist ( ( ), ) ,V V q q q2
1

0
2m m m= =u

where dist ( , )$ $  is the distance in the (nonlinear) space .Q  
The gradient (in the parameter space )Rl3K  of this cost 
function with respect to the parameter jm  is

( ) ( ( )), ( ) ,V g V q Sgradq q j
q

jd m m m=m u ^ h

where grad ( ( ))V qq m  and ( )Sj
q
m  are elements in the tangent 

space .T Qq  
When Q  is a quotient space, the evaluation of the gradi-

ent ( )Vjd mm u  relies on representatives in the total space

( ) grad ( ( )), ( ) ,V g V q P Sq q q
h

j
q

jd m m m=m r ru r r r
r` j

where ( ) ([ ])V q V q=r r  for all [ ]q q!r r .

Remark 
Experimental phase-response curves are actually finite 
discrete sets of measurements. The example problem can 
be seen as the second step in a procedure in which the first 
step was fitting a continuous curve to experimental data. 
This example problem can also be seen as fitting the param-
eter of a reduced model to reproduce the phase-response 
curve of a detailed, high-dimensional model. In this latter 
case, the phase-response curve of the detailed model serves 
as the experimental phase-response curve.

Qualitative Circadian Oscillator Model
The system identification is illustrated on a qualitative 
circadian rhythm model [57]. The model with three state 
variables and eight parameters is a cyclic feedback 
system where metabolites repress the enzymes that are 
essential for their own synthesis by inhibiting the tran-
scription of the molecule DNA to messenger RNA (see 
Figure 6). The model can be described as the cyclic inter-
connection of three first-order subsystems and a mono-
tonic static nonlinearity

DNA
(m)

Enzyme 
(e)

Substrate

Product 
(p)

mRNA 

-

Figure 6  A diagram of the qualitative model for circadian oscilla-
tions [57]. The qualitative model represents the effect of products 
(p) that repress the enzymes (e) essential for their own synthesis 
by inhibiting the transcription of the molecule DNA to messenger 
RNA (m). 

Whether functioning as clocks, information transmitters, or rhythm 

generators, these oscillators have the robust ability to respond to a particular 

input and to behave collectively in a network.
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A dimensionless form of this system is equivalent to the 
constraint .K K 1e p mx l= = = =  For convenience, the 
remaining static gain is denoted .K Km =

To facilitate the interpretation of the results (but without 
loss of generality), the parameter space is reduced to two 
dimensions, by imposing equal time-constants e px x x= =  
and fixing the Hill coefficient .20o=  The parameter space 
reduces to ( , ) .K R 0

2
>!x

The reference phase-response curve is chosen in accor-
dance with experimental data and a quantitative circadian 
rhythm of Drosophila [58], [59]. The identification algorithm 
investigates whether it is possible to match this reference 
phase-response curve with the qualitative model. In this 
problem, it is of interest to perform the optimization in the 
space QD  that accounts for scaling and phase-shift invariance.

Results
The qualitative circadian rhythm model exhibits stable 
oscillations in a region of the reduced parameter space [see 
Figure 7(a)]. The border of this region corresponds to a 
supercritical Andronov-Hopf bifurcation through which 
the model single equilibrium loses its stability. The contour 
levels of the cost function, which have been computed in 
the whole region to make results interpretation easier, 
reveal two local minima.

Picking initial guess values for model parameters, the 
gradient-descent algorithm minimizes the cost function 
following a particular path in the parameter space [see 
Figure 7(a)]. The cost function value decreases at each step 
of the algorithm along this path [see Figure 7(b)]. The opti-
mal infinitesimal phase-response curve (blue or red) is a 
proper fit for the experimental-like infinitesimal phase-
response curve (gray), in contrast to the initial infinitesimal 
phase-response curve.

Due to the nonconvexity of the cost function, paths 
starting from different initial points may evolve toward 
different local minima (blue and red paths). In this applica-
tion, the cost function happens to be (nearly) symmetric 
with respect to a unitary time-constant x  and both local 
minima correspond to similar infinitesimal phase-response 
curves (up to a scaling factor and a phase shift).

The identification is achieved in the space of infinitesi-
mal phase-response curves. It is of interest to investigate 
whether the optimal model still compares well to the 
quantitative model [58] for noninfinitesimal inputs. 
Figure 8 shows that the finite phase-response curves of 
the two models still match. The finite phase-response 
curves were computed through a direct numerical method 
for the scaling factor, and the phase shift was computed in 
the optimization procedure. The shapes of finite phase-

response curves match, which suggests that finite phase-
response curves are well captured by the (local) infini-
tesimal phase-response curves.

Model Classification in the Parameter Space:  
A Case Study on a Neural Oscillator Model
Model classification separates models into groups that share 
common qualitative and/or quantitative characteristics.

Iteration Number

3log10(K)

(a)

(b)

Cost

log10(x)

B0

B0

A0

B10

B10

A13

0

-1.5

1.5

0

1

0

0 15

A0 A13

Figure 7  System identification in the parameter space from 
phase-response curve data. (a) The cost function (gray contours) 
between an experimental infinitesimal phase-response curve and 
the infinitesimal phase-response curves exhibits a nonconvex 
behavior in the reduced parameter space. The gradient-descent 
algorithm follows the path indicated by dots (two random trials 
from different initial parameter values are shown in blue and red, 
respectively). (b) The cost along the path followed by the gradient-
descent algorithm decreases with the iteration number. The shape 
of the optimal infinitesimal phase-response curve (blue or red) is 
closer to the reference infinitesimal phase-response curve (gray) 
than the initial infinitesimal phase-response curve (blue or red).
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Models of neurons are often grouped into two classes 
based on the bifurcation at the onset of periodic firing [60]. 
Class I excitable neuron models exhibit saddle-node-on-
invariant-circle bifurcations and can theoretically fire at 
arbitrarily low finite frequencies. Class II excitable neuron 
models exhibit subcritical or supercritical Andronov-Hopf 
bifurcations and possess a nonzero minimum frequency of 
firing. Several articles have suggested that class II neurons 
display a higher degree of stochastic synchronization than 
class I neurons [61]–[66]. All these studies analyze phase 

models using canonical phase-response curves associated 
with each class (see below) and stress the role played by the 
shape of the infinitesimal phase-response curves for this 
property. However, the shape of the infinitesimal phase-
response curve can change quickly once the oscillator 
model is away from the bifurcation, and thus the qualita-
tive synchronization behavior may also change.

This section compares the usual model classification 
(class I versus class II) to a classification directly based on 
the distance to canonical infinitesimal phase-response 
curves in the space of phase-response curves (class qI  
versus class qII ).

Model Classification Scheme  
in the Space of Phase-Response Curves
A strong relationship between the bifurcation type and the 
shape of the infinitesimal phase-response curve has been 
demonstrated [34], [60], [67]. Near the bifurcation, the infin-
itesimal phase-response curve of class I excitable neurons 
is nonnegative or nonpositive and approximated by

( ) ( ),cosq 1I i i= -

whereas the infinitesimal phase-response curve of class II 
excitable neurons has both positive and negative parts and 
is approximated by

( ) ( ) .sinqII i i r= +

A model classification based on the distance between 
the model infinitesimal phase-response curve q  and 
canonical infinitesimal phase-response curves qI  and qII  is 
defined as

class
class-

if dist ( , ) dist ( , ),
if dist ( , ) dist ( , ),q

q
q

q q q q
q q q q

- <

>

I

II

I II

I II
! )

where dist ( , )$ $  is the distance in the space .Q

Remark 
It has been shown that, arbitrarily close to a saddle-node-on-
invariant-circle bifurcation, the phase-response curve con-
tinuously depends on model parameters, and its shape can 
be not only primarily positive or primarily negative but also 
nearly sinusoidal [68]. However, it remains true that many 
neural oscillators undergoing a saddle-node-on-invariant-
circle bifurcation are such that they exhibit a primarily posi-
tive (or primarily negative) phase-response curve.

Neuron Oscillator Model
The model classification is illustrated on a simple two-
dimensional reduced model of excitable neurons [69]. 
The model with two state variables and 13 parameters is 
composed of a membrane capacitance in parallel with 
conductances that depend on both voltage and time (see 
Figure 9),

Phase
(b)

0

2r0

Phase
(a)

2r0

-r

r

0

-r

r

Figure 8  Validation of the system identification for finite phase-
response curves. The finite phase-response curves computed at 
optimally identified parameters (blue or red) in the parameter 
space match well with the finite phase-response curve of the 
quantitative circadian rhythm model (gray). The magnitude of the 
input and the reference point have been chosen based on the 
results of the optimization procedure in the space of infinitesimal 
phase-response curves. Plots (a) and (b) correspond to the result 
of the two random trials, respectively: (a) optimal phase-response 
curve for path A and (b) optimal phase-response curve for path B.
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Figure 9  An equivalent circuit diagram of the model for excitable 
neurons [69]. The model is composed of one compartment con-
taining the conductances shown, in parallel with a membrane 
capacitance.
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and the applied current Iapp  is the input.
This model exhibits both classes of excitability for dif-

ferent parameter values [70], [71]. For large values of the 
calcium conductance ,gCar  the model exhibits a class I excit-
ability (saddle-node-on-invariant-circle bifurcation). For 
smaller values of ,gCar  the model exhibits a class II excitabil-
ity (Andronov-Hopf bifurcation).

In this context, it is meaningful to classify models based 
on a distance in the space ,QD  incorporating both scaling 
and phase-shifting equivalence properties to compare the 
qualitative shape of infinitesimal phase-response curves.

Results 
The bifurcation-based classification scheme is unidimen-
sional and defines a horizontal separation in the two-
dimensional parameter space ,I gapp Car^ h [see Figure 10(a)]. 
Indeed, a model is classified based on the bifurcation at the 
onset of periodic firing while varying the applied current 

.Iapp  However, the shape of the infinitesimal phase-
response curve close to the bifurcation can be different 
from the canonical shape predicted at the bifurcation 
boundary [see Figure 10(b)].

The classification scheme based on the infinitesimal 
phase-response curve shape provides a different separa-
tion in the parameter space [see Figure 10(b)]. The new 
classification scheme allows one neuron (for one value of 
gCar ) to pass from one class to another (crossing the sepa-
ration) for different values of applied current .Iapp  Infini-
tesimal phase-response curves computed for several 
points close to the bifurcation boundary confirm the clas-
sification based on the qualitative shape of infinitesimal 
phase-response curves. In particular, parameter set B 
belongs to the new class I.

For class II oscillators, the correspondence between the 
bifurcation-based classification and the phase-response 
curve-based classification is limited to a narrow region in 
the neighborhood of the bifurcation.

To assess the predictive value of the classification, 
Figure 11 displays the time evolution of an uncoupled 
neuron network in which all neurons are entrained by the 
same stochastic input (that is, stochastic synchronization). 
For each neuron (one horizontal line), a point is plotted 
when the neuron fires (raster plot). Each row [see Figure 
11(a), from A to C] corresponds to a different set in the 
parameter space. The synchronization level is quantified 
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Figure 10  A model classification in the parameter space based on a 
distance in the space of infinitesimal phase-response curves. (a) Stan-
dard classification relies on the bifurcation at the onset of the periodic 
orbit while varying the applied current Iapp  (class I in blue and class II in 
green). This unidimensional classification defines a horizontal separa-
tion in the parameter space. Ideal phase-response curves at the bifur-
cation are shown. (b) The classification relies on the distance to the 
nearest ideal phase-response curves (class I in blue and class II in 
green). This classification in the two-dimensional parameter space 
determines different subsets. Parameter set A (respectively, C) belongs 
to class I (respectively, class II) and its phase-response curve is closest 
to the canonical phase-response curve qI  (respectively, canonical 
phase-response curve qII ). However, parameter set B (in red) belongs 
to class II and its phase-response curve is closest to the canonical 
phase-response curve .qI  (Parameter values: F cm ,C 20 2n=  gK =r

mS cm ,8 2  mS cm ,g 2 2
L =r  mV,V 120Ca =  mV,V 80K =-  VL =

mV,60-  . mV,V 1 21 =-  mV,V 182 =  mV,V 123 =  . mV,V 17 44 =  
s .)1 15 1z = -
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by the time evolution of the spike distance in Figure 11(b). 
This distance is equal to zero for perfect synchronization 
and to one for perfect desynchronization [72].

The stronger synchronization observed for parameter set 
C supports the better prediction given by a classification 
scheme based on the shape of the phase-response curve rather 
than on the bifurcation at the onset of the periodic firing.

Conclusion
The article described a framework for the analysis of oscil-
lator models in the space of phase-response curves and to 
answer systems questions about oscillator models. Under 
some perturbation assumptions, state-space models can be 
reduced to phase models characterized by their angular 
frequencies and their phase-response curves.

The article based metrics in the space of dynamical sys-
tems on metrics in the space of phase-response curves. 
Quotient Riemannian structures are proposed to handle 
scaling and/or phase invariance properties. The Rieman-
nian framework was used to develop a sensitivity analysis 
and optimization-based analysis algorithms.

Three system-theoretic questions arising for biological 
systems were considered: robustness analysis to parameter 
variations, system identification in the parameter space 
from phase-response curve data, and model classification 
in the parameter space based on distances in the space of 
phase-response curves. While preliminary, these applica-

tions suggest that the approach described in this article is 
numerically efficient and may provide insight in several 
questions of interest for oscillator modeling.

An inherent limitation of sensitivity analysis is its local 
nature in the parameter space, in contrast to the global 
robustness questions encountered in biological applica-
tions. The illustrations in the section “Robustness Analysis 
to Parameter Variations: A Case Study in a Circadian Oscil-
lator Model” and elsewhere [73] suggest that local analyses 
performed at well-chosen operating conditions are good 
predictors of global trends.
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