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Abstract—Humans often make decisions which maximize an
internal utility function. For example, humans often maximize
their expected reward when gambling and this is considered as
a “rational” decision. However, humans tend to change their
betting strategies depending on how they “feel”. If someone has
experienced a losing streak, they may “feel” that they are more
likely to win on the next hand even though the odds of the game
have not changed. That is, their decisions are driven by their
emotional state. In this paper, we investigate how the human
brain responds to wins and losses during gambling. Using a
combination of local field potential recordings in human subjects
performing a financial decision-making task, spectral analyses,
and non-parametric cluster statistics, we investigated whether
neural responses in different cognitive and limbic brain areas
differ between wins and losses after decisions are made. In eleven
subjects, the neural activity modulated significantly between win
and loss trials in one brain region: the anterior insula (p = 0.01).
In particular, gamma activity (30–70 Hz) increased in the anterior
insula when subjects just realized that they won. Modulation
of metabolic activity in the anterior insula has been observed
previously in functional magnetic resonance imaging studies
during decision making and when emotions are elicited. However,
our study is able to characterize temporal dynamics of electrical
activity in this brain region at the millisecond resolution while
decisions are made and after outcomes are revealed.

I. INTRODUCTION

Decision-making links cognition to behavior and is a key
driver of human personality, fundamental for survival, and
essential for our ability to learn and adapt. It has been well-
established that humans often make emotional-based deci-
sions [1]. Thus, psychiatric patients who have dysfunctional
cognitive circuitry, frequently have alterations in decision-
making that are poorly understood.

Understanding the neural basis of decision-making is there-
fore essential toward patient management. However, access to
the human brain has been limited to a few case studies wherein
subjects have lesions in the key decision-making structures
such as the orbital frontal cortex [2]–[4], or wherein func-
tional magnetic resonance imaging (fMRI) is used to measure
neural activity in several healthy subjects during decision-
making [5]. Both of these approaches have limitations. Lesions
don’t provide actual neural data to ascertain a specific brain
regions’s role during behavior. Rather, the region’s function
is inferred by absence of behaviors from lesioned subjects
when compared to healthy subjects. On the other hand, fMRI
provides a correlate of neural activity (metabolic activity) but
suffers from poor temporal resolution. fMRI resolution is on

the order of multiple seconds, while decisions are often made
on the order of tenths of a second.

Here, we took advantage of a technique called stereoelec-
troencephalography (SEEG) that allowed us to record high
temporal resolution electrophysiological data (electrical activ-
ity at the millisecond scale) directly from deep and peripheral
brain regions in human subjects while they performed a
gambling task. These subjects are implanted with electrodes
for clinical purposes, and each contact in the brain generates
a local field potential (LFP) signal.

For our gambling task, eleven subjects played a game of
high card where they won virtual money if their card was
higher than the computer’s card. On each trial, subjects had to
decide to bet “high” ($20) or “low” ($5) on their card being
higher than the hidden computer’s card. Eighty percent of the
trials lead to clear rational decisions where the expected reward
for one choice is higher than another. On twenty percent of
the trials, however, there is no clear rational decision since the
expected reward is equal for both choices. Here, we focused
on characterizing differences in brain activity between when
a subject realizes that he/she has won versus when he/she
has lost. Thus, the goal of this study is to assess the role of
different brain regions in responding to outcomes of gambling
decisions.

To identify neural correlates that encode a subject’s response
to a win versus a loss, we computed spectrograms for each
brain region (i.e., electrode channel) and each patient across all
trials when subjects won and compared them to spectrograms
when subjects lost. Specifically, we examined spectral content
before, during, and after the computer’s card was shown (and
hence outcome is revealed) and implemented a non-parametric
cluster statistic to test whether the spectral activity differed
between wins and losses in the given brain region. The non-
parametric cluster test generates a cluster defined by a set of
adjacent time-frequency windows that gives rise to the smallest
p-value. If this p-value is smaller than 0.05, then the brain
region (defined by location of the channel) was designated as
encoding response to gambling outcome.

We found that upon examining several brain regions in
cognitive, limbic and hippocampal networks, the anterior
insula encoded information that separated wins from losses.
Specifically, when gamma activity (30–70 Hz), was prevalent
in this region, then the player was more likely to have won
after he/she sees the computer’s card. The anterior insula has
been implicated in the role of emotions in risk-related decision
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making [6] as well as being a neural basis for encoding how
someone “feels” [7]. But no study has had access to electrical
activity from these regions at a millisecond time-scale. Hence,
these findings are the first to show evidence of temporal
dynamics of rhythms in the brain at a fine resolution when
decisions are made and when subjects “feel” the consequences
of their decisions.

II. METHODS

A. Subjects

At the Cleveland Clinic, patients with medically intractable
epilepsy routinely undergo SEEG recordings in order to lo-
calize the seizure focus. See II-B for details on the SEEG
procedure. In this study, aside from the behavioral exper-
iments, no alterations were made to the patient’s clinical
care, including the placement of the electrodes [8]. Subjects
enrolled voluntarily and gave informed consent under criterion
approved by the Cleveland Clinic Institutional Review Board.
A total of eleven subjects volunteered to perform the task.
Details on these recordings and eventual annotated seizure
focus of these eleven patients are noted in Table I.

Subjects were implanted with 8 to 13 depth electrodes.
Implantation was performed using robot-assisted surgery along
with co-registered functional MRIs and angiograms to ensure
safe implantation [9]. Once inserted, SEEG electrophysiologi-
cal data were acquired using a Nihon Kohden 1200 EEG diag-
nostic and monitoring system (Nihon Kohden America, USA)
at a sampling rate of 2 kHz. Behavioral event data were si-
multaneously acquired through the MonkeyLogic MATLAB®

toolbox [10].
There are standard concerns in analyzing data from epileptic

patients. First, patients are often on medication, which might
affect the neurophysiology of the brain. For clinical purposes,
patients were kept off of their anti-seizure medication for
their entire stay at Cleveland Clinic, so these effects would
be minimized. Secondly, actual seizures might impact the
neurophysiology around the seizure focus. Human epilepsy
recordings are taken to localize the seizure focus, so overlap
is expected between seizure focus and areas recorded.

B. Stereoelectroencephalography

The Cleveland Clinic is a world-renowned center for the
evaluation and treatment of epilepsy and brain tumors, as-
sessing around 9500 patients every year from all 50 states
and more than 10 countries. More than 400 epilepsy surgeries
are performed every year, including a growing number of
stereotactically implanted depth electrodes or stereoelectroen-
cephalography (SEEG) [11]–[14]. This surgical procedure was
developed in France [15]–[27], and brought to the United
States by Dr. Jorge Gonzalez-Martinez [28]. The innovative
approach using SEEG methodology relies on its capability in
accessing large-scale networks, providing precise human brain
data, from cortical to subcortical areas, in three-dimensional
fashion. In routine placement of depth electrodes, burr-holes
that are each 15 mm in diameter are required for safe vi-
sualization of cortical vessels, and therefore only a small

TABLE I
THIS TABLE PROVIDES CLINICALLY RELEVANT INFORMATION ON EACH

SUBJECT: THE GENDER, THE AGE IN YEARS, AND THE DURATION OF
EPILEPSY (“DUR.”) IN YEARS. THIS TABLE ALSO PROVIDES THE NUMBER

OF WIN, LOSS AND DRAW TRIALS.

ID Gender Age
[yr.]

Dur.
[yr.]

Win Loss Draw

1 male 26 3 73 73 39

2 female 41 38 79 58 25

3 female 55 52 23 34 15

4 female 31 13 53 57 34

5 female 53 23 50 61 25

6 female 60 8 63 88 21

7 female 36 36 56 68 33

8 female 23 5 46 50 36

9 male 32 11 65 59 36

10 female 32 13 57 62 35

11 male 28 11 67 78 37

number of electrodes are placed. SEEG placement, however,
uses several small drill holes (1.8 mm in diameter), allowing
many electrodes to be inserted.

Since direct visualization of the cortical surface is not pos-
sible with small drills (Fig. 1A), the SEEG technique requires
detailed pre-procedural vascular mapping using pre-operative
imaging with magnetic resonance angiography (MRA) and
cerebral angiography. Angiography is an X-ray examination
of the blood vessels. The mapping procedure is performed
under fluoroscopy using general anesthesia, and an expert
neuro-anesthesiologist correctly titrates anesthesia to permit
measurement of intracranial electroencephalography (EEG).
The number and location of implanted electrodes are pre-
operatively planned based on a pre-implantation hypothesis,
which is formulated in accordance with non-invasive pre-
implantation data, such as seizure semiology, ictal and inter-
ictal scalp EEG, magnetic resonance imaging (MRI), positron
emission tomography (PET) and ictal single-photon emission
computed tomography (SPECT) scans. Thus, the implanta-
tion strategy has the goal of accepting or rejecting the pre-
implantation hypothesis of the location of the epileptogenic
zone (EZ).

SEEG provides a more complete coverage of the brain,
from lateral, intermediate and/or deep structures in a three-
dimensional arrangement recorded over hundreds of channels.
Using strict techniques, this procedure is safe and minimally
invasive: only 1/1176 implantations last year resulted in an
asymptomatic intracranial hemorrhage. The rate of complica-
tions in SEEG implantations is less than 1 % [13], [29].

C. Gambling task

Subjects performed the gambling task in their Epilepsy
Monitoring Unit room. The task was displayed via a computer
screen and the subject interacted with the task using an InMo-
tion2 robotic manipulandum (Interactive Motion Technologies,
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A B

Fig. 1. Imaging fusion and placement of multiple electrodes using the SEEG
method. Fig. A is a photograph showing 14 electrodes at the skin surface.
Fig. B is a fluoroscopy image of an SEEG-implanted subject (coronal view
with eye forward). Note the precise parallel placement, with tips terminating
at the midline or dural surface.

USA). The manipulandum is controlled by the subject’s hand
and allows for 2D planar motion, which translated directly to
the position of a cursor on screen.

The gambling task (Fig. 2A) is based on a simple game
of high card where subjects would win virtual money if their
card beat the computer’s card. Specifically, in the beginning
of each trial, the subject controlled a cursor via a planar
manipulandum to a fixation target. Afterwards, the subject is
shown his card (2, 4, 6, 8, or 10) that is randomly chosen with
equal distribution. The computer’s card is initially hidden. The
screen then shows their two choices: a high bet ($20) or a
low bet ($5). The subject has 6 seconds to select one with
his cursor. Following selection, the computer’s card, which
follows the same distribution, is revealed. The final screen
depicts the amount won or lost.

D. Data analysis

All electrophysiological and behavioral analyses were con-
ducted offline using custom MATLAB® scripts.

Data for 16 anatomical regions in cognitive, limbic and hip-
pocampal networks were separated into win and loss trials. For
each brain region, differences in the neural responses between
the task conditions during the 250 ms before and 1000 ms
after the computer card were examined by means of a non-
parametric cluster statistic. Specifically, spectrograms were
constructed for each trial time-locked to when the computer’s
card is shown. Then the spectrograms for win trials were
compared to those for loss trials. To see if spectrograms for
each group were statistically significantly different, we used
a nonparametric cluster-based test [30]. Clusters are defined
as a set of adjacent time-frequency windows whose activity is
statistically significant between trials where the subject ends
up winning versus losing.

1) Spectral analysis: We calculated the oscillatory power
using multitapers from the Chronux toolbox [31]. We used
three orthogonal tapers with a 300 ms window sliding at 50 ms
steps. We dropped frequencies under 10 Hz because of the
Nyquist criterion and analyzed upwards to 100 Hz. Afterwards,

$5 $20

Fixation Show Card Go-Cue Delay Show Deck Feedback

<8s 2s <6s 0.35-0.6s 1.3-1.55s 1.3s
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Fig. 2. Gambling task and behavioral results. (A) Timeline of the behavioral
task. After fixation, subjects were shown their card. Once the bets were shown,
subjects selected one of the choices and then were shown the computer’s card
following a delay. Feedback was provided afterwards by displaying the amount
won or lost. (B) Average bet decisions across cards. Subjects predominantly
bet low for 2 and 4 cards and bet high for 8 and 10 cards. There was no
predominant strategy for 6 cards, which had bout 33 % chance of eliciting a
high bet. (C) Reaction times across cards. Subjects reacted faster for cards
whose rewards had lower variability.

we normalize each frequency bin’s power by first taking the
natural log of the power in each frequency bin, and then
performing a Gaussian normalization based on the power in
each frequency bin over the entire recording session.

2) Non-parametric cluster statistical test: Significant dif-
ferences between the neural response data in each anatomical
region are defined by a non-parametric cluster statistic run on
data aggregated from trials by all relevant subjects [30].

This test leverages the dependency between adjacent time-
frequency windows in order to avoid over-penalizing with
multiple comparison corrections. For each time-frequency
window in the spectrogram, a null distribution was created by
shuffling these wins and loss labels 1000 times between trials
within each subject. Within each shuffle, the average difference
between the newly labeled win and loss trial spectrograms
was calculated. A p-value was assigned for each window by
comparing the difference acquired from the true labels with the
distribution of differences acquired from the shuffled labels.
Clusters were formed by grouping windows with significant
p-values (p < 0.05) that were adjacent in either time or
frequency. The test statistic for each cluster was calculated
by taking the sum of the log of the p-values for each window
in the cluster. This prioritizes clusters that both have strong
differences as well as large sizes. A null distribution of cluster
statistics was created using the same process but with the 1000
spectrograms obtained from the originally shuffled labels. The
observed cluster statistic was then compared against this null
distribution of cluster statistics in order to obtain the final
p-value of the test.
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amygdala 2 124 140

angular gyrus 8 444 495

anterior cingulate 3 173 207

anterior insula 2 103 118

cuneus 10 582 627

hippocampus 10 576 620

hippocampus (posterior) 4 225 226 

inferior frontal gyrus 6 362 384

inferior temporal gyrus 10 576 620

insula 7 423 420

intraparietal sulcus 6 374 399

middle frontal gyrus 5 270 308

orbitofrontal cortex 4 249 254

parieto-occipital sulcus 7 397 433

posterior cingulate 9 552 592

precuneus 9 517 568 

0 1
0.05

Brain region Subj. Win Loss p-value

Fig. 3. Non-parametric cluster statistic for different brain regions. For each
brain region, differences in the neural responses between the task conditions
during the 250 ms before and 1000 ms after the show computer card epoch
were summarized by means of a non-parametric cluster statistic (p-value). In
addition, we provide the number of subjects with recording in this area (Subj.),
and the number of win and loss trials.

III. RESULTS

This section summarizes the main findings of our analysis.
First, we show the p-value associated with 16 brain regions.
Then, we focus on the brain region identified in our ex-
ploratory analysis and show time-frequency differences of the
neural responses around the show computer card epoch.

While multiple brain regions appear to show some response
(data not shown), the two task conditions only significantly
differ after the computer card is shown in one brain region:
anterior insula (p = 0.01) (see Fig. 3). All p-values are
computed from a non-parametric cluster statistic described in
Section II.

Differences in the neural responses around the show com-
puter card epoch was examined for the anterior insula (Fig. 4).
Spectrograms of the neural responses between win and loss
conditions show large differences in the gamma band (30–
70 Hz) after the computer card is shown and the gambling
outcome is revealed.

We summarize the neural activity in the time-frequency
domain by averaging the responses over 70–100 Hz. Gamma
activity increases in anterior insula quickly around 250 ms
after the computer card epoch and then decreases slowly until
1000 ms after the computer card epoch (Fig. 5). The gamma
activity for win trials decreases more slowly than gamma
activity for loss trials.
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Fig. 4. Differences in the neural responses during the 250 ms before and
1000 ms after the show computer card epoch for anterior insula. (First and
second rows) Spectrograms of the neural responses show differences in the
time-frequency domain between win and loss conditions. (Third row) The
cluster emphasizes the region of the time-frequency domain where the neural
responses show significant differences between win and loss conditions (p <
0.05).
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Fig. 5. Gamma activity (30–70 Hz) increases in anterior insula quickly around
250 ms after the computer card epoch and then decreases slowly until 1000 ms
after the computer card epoch. The gamma activity for win trials decreases
more slowly than gamma activity for loss trials.
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IV. CONCLUSION

In our subject population, the neural activity modulated
significantly between win and loss trials in the anterior in-
sula (p = 0.01). In particular, gamma-band activity increased
around 500 ms after the show computer card for win trials.
The anterior insula has been implicated in the role of emotions
in risk-related decision making [6] as well as being a neural
basis for encoding how someone “feels” [7], but no study
has had access to electrical activity from these regions at a
millisecond time-scale. Hence, these findings are the first to
show evidence of temporal dynamics of rhythms in the brain at
a fine resolution when decisions are made and when subjects
“feel” the consequences of their decisions. Still, the exact
mechanisms by which this region in involved in risk-based
decision making are not known and will therefore remain the
focus of future work.
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