
Chapter 7
Characterizing Complex Human Behaviors and
Neural Responses Using Dynamic Models

Sridevi V. Sarma and Pierre Sacré

7.1 Introduction

Many experiments conducted in neuroscience entail applications of stimuli and
recordings of behavioral responses and neural activity. Traditional approaches to
understanding how the brain encodes stimuli often compute correlations between
stimuli and neural activity time-locked to behavioral events. For example, when
studying motor control, investigators train a participant to move the arm in
different directions while activity from premotor and primary motor regions are
measured (Carpenter et al. 1999; Schieber 2004). Then, to understand how neurons
encode movement direction, firing rates of neurons are modeled as functions of
behavior right after the onset of movement (Agarwal et al. 2015). In this example,
both direction of movement and neural activity are measured outputs, and behavior
is primarily driven by a target cue.

Now, let’s consider experiments wherein behavior is not only driven by stimuli
provided by the experimentalist, but also by internal factors within the participant
that are not easily measurable. A first example is when participants are performing
a gambling task, wherein they are betting virtual money and then perhaps get
emotional if they are winning or losing (Sacré et al. 2016a,b,c). Although objective
measures of emotion have been proposed such as skin conductance response
and heart rate variability, these measures are typically delayed or only accurate
over several minutes, while emotions can fluctuate at a faster time scale during
gambling (Mauss and Robinson 2009). A second example is when participants are
performing a Stroop-like task, wherein distractors are present to confuse participants
while they attempt to make correct associations between presented stimuli and
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appropriate responses (Shoham et al. 2003; Smith et al. 2015). During this task,
participants make errors and their motivational and attentional states vary over the
session. Motivation and attention are not directly measurable, yet they may influence
behavior in a profound way (Shoham et al. 2003).

In both of the gambling and Stroop-like tasks described above, behavioral
responses and neural activity are influenced by external stimuli and internal states
of participants. Thus, when looking for neural correlates, how behavior changes
with stimuli and underlying dynamic state variables must first be characterized. In
this chapter, we present a systematic approach based on existing methodologies to
(1) estimate internal dynamic states of participants from measured data to explain
behavior variability within and across participants, and (2) identify neural substrates
of behavior and internal states. The proposed approach is a two-step procedure
wherein one first constructs participant-specific state-space models that capture the
dynamics of internal states and how they evolve with administered stimuli, and how
measured behavior depends on these states and stimuli; and then, one relates stimuli,
responses, and states back to neural activity. We discuss the challenges that arise in
each step of the process and provide suggestions on how to successfully complete
these two steps. We present examples from two data sets involving a gambling and
Stroop-like task.

7.2 Methods

In this section, we first describe a general dynamic state-space modeling framework
and the maximum likelihood procedure used to estimate parameters of participant-
specific models of behavior. Then, we discuss how to map model variables and
estimated internal states back to neural data using nonparametric statistical tests
and point process models (PPMs).

7.2.1 Dynamic State-Space Modeling

The first step of the proposed approach is to build a mathematical model with
inputs u and outputs y that explains the variability that we observe in the data. In
this context, we can distinguish between two types of models. A model is static (or
without memory) if the value of the output signal at a particular time depends only
on the value of the input signal at the same time. Otherwise, it is dynamic (or with
memory).

The general dynamic state-space model for a discrete-time system can be written
as follows

xkC1 � f�.xkC1 j xk; uk/; (7.1a)

yk � h�.yk j xk; uk/; (7.1b)
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where xk 2 R
n is the n-dimensional state-vector, uk 2 R

m is the m-dimensional
input-vector, and yk 2 R

p is the p-dimensional output-vector. The state-transition
map f� and the measurement map h� are conditional probability distributions of
xkC1 given .xk; uk/, and of yk given .xk; uk/, respectively. The initial state vector x0

is distributed according to p�.x0/. The model parameters are denoted by � . It is
often convenient to define its equivalent static model, that is, yk � Qh�.yk j uk/ D
h�.yk j 0; uk/, where the state-vector is fixed to zero for all k.

For our neuroscience applications, the inputs uk represent stimuli (or functions of
stimuli) of the task on trial k, the outputs yk represent measured behavioral responses
(or functions of responses) in the task (e.g., reaction time, correct/incorrect answer)
on trial k, and the states xk represent internal states on trial k that influence behavior
(e.g., attentional state, motivation, emotion).

As a first step to model behavioral data, it often is sufficient to begin with a time-
invariant state-space model with a linear state equation and a generalized linear
output equation, which reduces to

xkC1 D A xk C B uk C wk; (7.2a)

yk � h.yk j C xk C D uk; �/; (7.2b)

where wk 2 R
n is the n-dimensional zero-mean Gaussian noise-vector with

unknown covariance matrix ˙ w and h is a probability distribution from the
exponential family, that is conditioned on an affine combination of states and
inputs and the dispersion parameter �. The initial state vector x0 is assumed to
follow a Gaussian distribution with mean Nx0 and covariance matrix ˙ 0. The model
parameters are then � D fA; B; ˙w; Nx0; ˙ 0; C; D; �g.

The model estimation problem then boils down to: given N input-output mea-
surements u1WN D fu1; : : : ; uNg and y1WN D fy1; : : : ; yNg, estimate the model
parameters � and the state x1WN D fx1; : : : ; xNg. One approach is to estimate �

and p�.x1WN j u1WN ; y1WN/ from data to maximize the likelihood function (Van Trees
1968; Louis 1991; Moon 1996). The likelihood function is the family of probability
distributions considered as a function of � , for fixed y1WN and u1WN . It is often more
convenient to work with its logarithm, which is called the log-likelihood function,
and denoted as `:

`.�/ D log p�.y1WN j u1WN/: (7.3)

Now, the problem is to estimate the value of the parameters � . A widely used
method, called maximum likelihood estimation, is to estimate � as

O�ml D arg max
�2�

p�.y1WN j u1WN/ D arg max
�2�

`.�/; (7.4)

where � 2 � gives the prior information or other constraints on the parameter
vector � . In the context of the estimation of a dynamic model, the state is not
observed and we can write the likelihood as follows

p�.y1WN j u1WN/ D
Z
X

p�.x1WN ; y1WN j u1WN/ dx: (7.5)



180 S.V. Sarma and P. Sacré

One way to solve this problem is to use the expectation-maximization (EM)
algorithm. The EM algorithm is an iterative algorithm that is composed of two steps
at each iteration: an expectation step and a maximization step.

E-step The idea of the E-step is to take the expectation with respect to the
unknown underlying states, using the current estimate of the parameters �� and
conditioned upon the observation, that is,

Q.� j ��/ D E
�

log

�
p�.x1WN ; y1WN j u1WN/

p��.x1WN ; y1WN j u1WN/

�
j U1WN D u1WN ; Y1WN D y1WN ; ��

�
;

(7.6)

D
Z
X

log

�
p�.x1WN ; y1WN j u1WN/

p��.x1WN ; y1WN j u1WN/

�
p��.x1WN j u1WN ; y1WN/ dx:

(7.7)

M-step The idea of the M-step is to provide a new estimate ��� of the parameters,
that is,

��� D arg max
�2�

Q.� j ��/: (7.8)

Finally, there are several ways to establish the degree of agreement between the
model and observed data. In particular, they are mainly two families of statistics
that we can compute: the first family measures the goodness-of-fit of the model
with the data and the second family measures the improvement of goodness-of-fit
from a static model to a dynamic model. In both families, we can use different test
statistics such as log-likelihood, deviance and Pearson residuals, predictive power,
etc. The first family is interested in the absolute value of this statistic; while the
second family is interested in the relative difference between the statistics for the
dynamic and static models. The statistical significance of these test statistics can be
evaluated using a nonparametric permutation test.

7.2.2 Neural Correlates Informed by State-Space Model

The second step of the proposed approach is to relate the model variables (inputs,
outputs, and estimated states) back to the neural data. Below we describe this second
step if one has recorded continuous neural activity or spike train observations.

7.2.2.1 Continuous Neural Data

If neural activity measured is continuous (e.g., local field potential, electroen-
cephalogram, electrocorticography), then a common approach to analyzing the data
is to move to the spectral domain. In particular, select a time window of interest
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(e.g., 500-ms window time-centered to an applied stimulus). Then, compute a
spectrogram including frequencies of interest (e.g., 2–150 Hz) for that time window
for each trial. This will generate a stack of spectrograms, one for each trial in the
recorded session.

Once the stack of spectrograms is computed, identify time-frequency clusters
within the stack that distinguish between two conditions of interest (e.g., high bet
vs low bet, or moving up vs moving down). In particular, take a model variable
of interest (e.g., player’s card) and split trials into those when the variable takes
on low values and those when the variable takes on high values. Low-value trials
may be defined, for example, as the bottom third of the variable distribution over all
trials, and high-value trials may be defined as the top third. Then apply a cluster-
based nonparametric statistical test to leverage the dependency between adjacent
time-frequency windows in order to avoid over-penalizing with multiple comparison
corrections (Maris and Oostenveld 2007).

For each window in the spectrogram, create a null distribution by shuffling the
condition labels 1000–5000 times between trials within each participant. Within
each shuffle, compute a t-statistic and a p-value for each window of the newly
labeled spectrograms (independent two-sample t-test with both tails, unequal sam-
ple sizes, and unequal variances). Clusters are formed by grouping windows with
significant p-values (e.g., p < 0:05) that are adjacent in either time or frequency.
The cluster-level test statistic is then calculated by taking the sum of absolute values
of the t-statistics for each window in the cluster. This prioritizes clusters that have
both strong differences and large sizes. A null distribution of cluster statistics is
created using the same process but with the 1000–5000 spectrograms obtained from
the originally shuffled labels. The observed cluster statistic is then compared against
this null distribution of cluster statistics in order to obtain the final p-value of the test.

Data from all patients can be pooled together but the labels are permuted within
each participant only. This process of finding time-frequency cluster correlated to
a model or task variable can be repeated for each variable and the estimated state
trajectories across participants.

7.2.2.2 Spike Train Data

If neural activity is measured as spike trains, then one can use point process models
to identify how behavior influences neuronal spiking activity. Several examples
of how PPMs are estimated used for different experimental setups are given
in Coleman and Sarma (2007), Coleman and Sarma (2010), Santaniello et al. (2010),
Santaniello et al. (2012), Sarma et al. (2010), Sarma et al. (2012).

A point process is a series of 0/1 random events that occur in continuous time.
For a neural spike train, the 1’s are individual spike times and the 0’s are the times
at which no spikes occur. To define a point process model of neural spiking activity,
in this analysis, one can consider an observation interval .0; T�, and let Nk.t/ be the
number of spikes counted in the interval .0; t� for t 2 .0; T� for a trial k.
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A point process model of a neural spike train can be completely characterized by
its conditional intensity function (CIF) �k.t j Ht/ defined as follows:

�k.tjHt; uk; xk/ D lim
�!0

Pr.Nk.t C �/ � Nk.t/ D 1 j Ht; uk; xk/

�
; (7.9)

where Ht denotes the history of spikes and covariates up to time t. It follows
from (7.9) that the probability of a single spike in a small interval .t; t C �� is
approximately

Pr.spike in .t; t C �� on trial k j Ht; uk; xk/ D �k.t j Ht; uk; xk/ �: (7.10)

Details can be found in Cox and Isham (1980), Snyder and Miller (1991).
The CIF generalizes the rate function of a Poisson process to a rate function

that is history dependent. Because the CIF completely characterizes a spike train,
defining a model for the CIF defines a model for the spike train (Brown et al. 2003).

For neural correlate analyses, use a generalized linear model (GLM) to define
CIF models by expressing for each neuron, the log of its CIF in terms of the
neurons spike history Ht, relevant model inputs uk, and the state trajectory xk. The
GLM is an extension of the multiple linear regression model, in which the variable
being predicted (e.g., in this case spike times) need not be Gaussian (McCullagh
and Nelder 1989). GLM also provides an efficient computational scheme for
model parameter estimation and a likelihood framework for conducting statistical
inferences (McCullagh and Nelder 1989).

One can express the CIF for each neuron at each time step (e.g., millisecond)
as a function of task stimuli which can turn on and/or off over time, the state
variable value which typically is constant over a trial, and the neuron’s spiking
history. Instead of estimating the CIF continuously throughout the entire trial, one
can estimate it over time windows around key epochs and at discrete time intervals
each 1 ms in duration.

In particular, one can express the CIF as follows:

�k.t j Ht; uk; xk; �/ D �S.uk j �/ �X.xk j �/ �H.t j Ht; �/ (7.11)

where �S.uk j �/ describes the effect of the stimulus on the neural response,
�X.xk j �/ describes the effect of the state variable on the neural response, and
�H.t j Ht; �/ describes the effect of spiking history on the neural response. � is
a parameter vector to be estimated from data. The units of �S.t j �/ is spikes per
second and �H.t j Ht; �/ is dimensionless. Finally, one can compute maximum-
likelihood (ML) estimates for � and 95% confidence intervals of � for each neuron
using glmfit in MATLAB.

It is important to establish the degree of agreement between a PPM and
observations of the spike train and associated experimental variables is a prerequisite
for using the point process analysis to make scientific inferences. One can use
Kolmogorov-Smirov (KS) plots based on the time-rescaling theorem to assess
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the model goodness-of-fit. The time-rescaling theorem is a well-known result in
probability theory, which states that any point process with an integrable CIF
may be transformed into a Poisson process with unit rate (Johnson and Kotz
1970). A KS plot, which plots the empirical cumulative distribution function of
the transformed spike times versus the cumulative distribution function of a unit
rate exponential, is used to visualize the goodness-of-fit for each model. The model
is better if its corresponding KS plot lies near the 45ı line. One can compute the
95% confidence bounds for the degree of agreement using the distribution of the
KS statistic (Johnson and Kotz 1970). If a model’s KS plot was within the 95%
confidence bounds, then it can be included it in the analyses.

7.3 Results

In this section, we present two applications where we applied our approach to reveal
new insights on the neural mechanisms involved in a Stroop-like task where spike
train observations were made and a gambling task where local field potentials were
measured.

7.3.1 Multi-Source Interference Task

This example is taken from Sklar et al. (2017). Two participants being treated at the
Columbia University Medical Center performed the behavioral task in their hospital
rooms using methods previously described in Johnson et al. (2014). Behavioral data
were simultaneously acquired on the same time base as the electrophysiology data.
Participants performed the multi-source interference task (MSIT) (Shoham et al.
2003). The MSIT is a Stroop-like task in which the participant is presented with
three integers ranging from 0 to 3. Two of the three integers presented are the same
integer. The goal of the MSIT is to indicate the identity of the different integer on
the number pad (e.g., cue: 0 2 0; correct response: button 2; Fig. 7.1b).

Conflict is introduced in this task by changing the position of the target number
(e.g., 0 0 1; correct response: button 1; Simon or spatial interference) or by
changing the identity of the distracting integers to potential responses (e.g., 1 2
1; correct response: button 2; Eriksen or flanker interference). Additionally, both
types of interference can occur (e.g., 3 1 3; correct response: button 1). These four
groups of trials were presented randomly, with a uniform frequency distribution.

7.3.1.1 Dynamic State-Space Modeling

In this study, we hypothesized that the “cognitive state” of each participant
influences behavior and modulates neuronal activity in the dorsal anterior cingulate
cortex (dACC). In particular, we hypothesized that when participants require more
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L R

3 0 0

fixation cross (t = - 0.5 s)
stimulus onset (t = 0)

response (t = r(t))

3 0 0
feedback (t = r(t) + [0.3 0.8])

(A)

(B)

Fig. 7.1 MSIT task and microwire recording locations. (a) Microwire recording locations in the
dACC. Colors represent recording locations corresponding to each participant on each hemisphere
(L and R). (b) MSIT task diagram showing an example trial structure. In each trial, a fixation cross
appears on the screen for 0.5 s prior to the stimulus presentation. The stimulus remains on the
screen until the participant indicates her response on the button pad. Feedback is delivered between
0.3 and 0.8 s after the participant indicates her response. Figure reproduced with permission
from Sklar et al. (2017)

cognitive control, (1) they are more likely to react to the stimulus slowly and (2)
their cingulate neurons are modulated. Since such a cognitive state is not directly
measurable, we compute it from measurable data.

Before constructing the state-space model of behavior, we first looked to see
whether behavior varied for different stimuli, and for the same stimuli over the
session. To examine behavioral variability, we plotted a moving average reaction
time for each stimulus type (easy, hard, Simon, Flanker). As shown in Fig. 7.2, the
reaction times for each stimulus type change over time, suggesting dynamics in the
behavior that may be explained by a latent state variable.

Therefore, we constructed a cognitive state variable xk that updates for each trial k
as follows:

xkC1 D a xk C
5X

iD1

bi ui;k D a xk C B uk (7.12)

where uk D Œu1;k; u2;k; u3;k; u4;k; u5;k�
> is an input column vector dependent on the

trial conditions:

• u1;k D 1 if no interference on trial k, and 0 otherwise;
• u2;k D 1 if both interferences on trial k, and 0 otherwise;
• u3;k D 1 if spatial interference on trial k, and 0 otherwise;
• u4;k D 1 if flanker interference on trial k, and 0 otherwise;
• u5;k D 1 if trial type on trial k changed from previous trial, and 0 otherwise.
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Fig. 7.2 Relationship between reaction time variability and cognitive state. (Top) Moving average
of reaction times for each trial type for participant 1 (left) and participant 2 (right). The estimated
cognitive states are overlaid in black. (Bottom) Correlation plots between actual reaction times and
xk and predicted reaction times for participant 1 (left) and participant 2 (right). Figure reproduced
with permission from Sklar et al. (2017)

The parameter a represents the decaying influence of previous trials on the cognitive
state, and B D Œb1; b2; b3; b4; b5� dictate the effects that the trial conditions have on
the state xkC1. The solution to the state-space equation is

xk D ak x1 C
5X

iD1

k�1X
sD1

a.k�s�1/ bi ui;s; (7.13)

which can be used to determine the parameters fa; Bg by inserting the solution xk

as a covariate into a GLM. The output of the GLM is yk, defined as the log of the
reaction time modeled as

yk D log.rk/ D xk C D uk C d0 C �k; (7.14)
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where rk is the reaction time of the trial, the �k are independent zero-mean Gaussian
random inputs with variance �2

� , and D is a vector of the form of B, that represents
the direct influence of the current input on the reaction time of a trial.

The state-space model above includes a state that is completely deterministic,
and the output is stochastic. If the state is deterministic, then the EM algorithm is
unnecessary. It is worth beginning with a deterministic state variable to help identify
model structure (what inputs to include into the state-space model) that best explains
the observed data.

To estimate the parameters a, B, D, and d0 of the state-space model, we gridded
the parameter space a and for each parameter value, (1) we computed each term
of the sum of the state trajectory (7.13) for bi D 1 over the session, then (2) we
substituted xk by each term of the sum in a GLM and estimated B and D that
maximize the data likelihood function. We then selected � D fa; B; D; d0g that
produce the maximum of all likelihoods over the entire grid.

Figure 7.2 overlays the estimate state variables (black trajectories) for the two
participants. The state trajectories follow the dynamics of mean reaction times over
the session for one or more stimuli. For participant 1 (left panel), the estimated xk

attempts to capture the variability of reaction times over the session for all four
task types, but is not able to characterize behavior for all stimuli. In this case,
a second state variable may better explain the behavior. On the other hand, the
reaction time dynamics for participant 2 (right panel) are very similar across all
stimuli suggesting that a scalar state variable is sufficient to explain participant 2’s
variability in behavior.

The bottom panels in Fig. 7.2 show the correlation plots between actual reaction
times and rk and predicted reaction times, Ork for participant 1 (left) and participant 2
(right), where log.Ork/ D xk C OD uk C Od0. The state-space models for both participants
suggest that the inclusion of the state helps explain the variability in reaction times
over the session that cannot be entirely explained with task stimuli that changes over
the session.

7.3.1.2 Neural Correlates Informed by Dynamic State-Space Model

Now that behavior is sufficiently explained by the state-space model described
above, we search to explain neuronal responses to both task stimuli and cognitive
state estimates. We thus formulated a PPM to relate the spiking of each dACC
neuron for each participant to factors associated with the neuron’s spiking history
and the cognitive state variable. We use these model parameters to analyze temporal
dynamics in neuronal activity due to the cognitive state variable after the stimulus
is shown.

As described in Sect. 7.2.2.2, we use the GLM framework to define the CIFs of
our PPMs by expressing, for each neuron, the log of its CIF in terms of the neuron’s
spike history and relevant covariates (Truccolo et al. 2005). We express the CIF
for each neuron as a function of the neuron’s spiking history, �H

k , in the preceding
240 ms and our derived cognitive state variable, �X . Specifically, for trial k and time
bin t:

�k.t j Ht; �/ D �X.xk j �/ �H.t j Ht; �/; (7.15)
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such that

�X.xk j �/ D ˛ xk (7.16)

and

log.�H.t j Ht; �// D �0 C
8X

jD1

�j nt�5jWt�5.j�1/ C
8X

jD1

ˇj nt�40�25jWt�40�25.j�1/;

(7.17)
where nAWB is the number of spikes observed in the time interval ŒA; B/ during
the epoch analyzed. The f�jg coefficients capture short-term history effects going
back to 40 ms in the past in 5-ms bins. The fˇjg coefficients capture long-term
history effects going back to 240 ms in the past in 25-ms bins, and ˛ captures the
effect of the cognitive state. We computed ML estimates for all coefficients and
their associated 95% confidence intervals for each neuron model using glmfit in
MATLAB.

We examined the activity of 12 units (10 in patient 1 and 2 in patient 2).
Figure 7.3a shows the spiking frequency in two units from both participants during
the first second after stimulus presentation in each trial. These spike counts are
overlaid with the cognitive state variables xk for each participant. The neurons’
spiking frequencies appear to have a negative correlation with xk dropping markedly
when xk rises.

In participant 1, we found 10 units whose activity was predicted using the
cognitive state variable (the GLM fit coefficient for the xk covariate was significantly
non-zero, with p < 0:05). Some units had increased activity as xk increased, while
some displayed decreased activity. The covariate coefficients for participant 1’s
PPM are shown in Fig. 7.3b. The dependence on short- and long-term spiking
history is displayed in the lower two plots and shows refractoriness in the first
15 ms after a spike, and an increased likelihood to fire in the 25–100 ms interval.
The upper right plot displays the PPM coefficient for xk with 2 standard deviation
error bars. For this unit, xk was a strong predictor of the spiking behavior, with
spiking probability decreasing for higher xk. The upper left plot shows the goodness
of fit of the model using a KS plot, with 95% confidence bars. In participant 2,
two units’ spiking could be significantly predicted by xk (see Sklar et al. (2017) for
details). The PPM coefficients and goodness of fit for participant 2 for one neuron
are also shown in Fig. 7.3b. This unit had significantly longer inter-spike-intervals,
so the coefficient values for the short-term history bins have higher uncertainty.

These preliminary results suggest that neurons in the dACC slowly track
subjects’ overall need for cognitive control, while simultaneously maintaining faster
task-related dynamics. A latent cognitive state variable correlates with both reaction
times and neuronal activity in two patients. These results provide support for an
additional representation of task state or attentional motivation in the dACC.
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Fig. 7.3 Neural correlates of cognitive states. (a) Cognitive states over sessions overlaid with
spike counts for one unit for participant 1 (left), and one unit for participant 2 ( right). (b) Point
process model for same unit as above from participant 1 (the 1st and 2nd columns) for first second
after stimulus onset, and same unit as above from participant 2 (the 3rd and 4th columns). Top
left: KS plot. Top right: coefficient for xk. Bottom left: long-term history coefficients with 95%
confidence bounds. Bottom right: short-term history coefficients with 95% confidence bounds.
Figure reproduced with permission from Sklar et al. (2017)

7.3.2 Gambling Task

This example is taken from Sacré et al. (2016a). Five participants being treated at
the Cleveland Clinic Epilepsy Center performed the behavioral task in their hospital
rooms using methods previously described in Johnson et al. (2014). The gambling
task (Fig. 7.4 top left) is based on a simple game of high card where participants
would win virtual money if their card beat the computer’s card. Specifically, in the
beginning of each trial, the participant controls a cursor via a planar manipulandum
to a fixation target. During fixation, participants must center the cursor in less than
8 s. Once centered, the participant is shown his card (only 2, 4, 6, 8, or 10 are in
the deck) for a duration of 2 s. The card is randomly chosen with equal distribution.
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Fixation Show Card Go-Cue Delay Show Deck Feedback
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Fig. 7.4 Timeline of the gambling task. After fixation, subjects were shown their card. Once the
bets were shown, subjects selected one of the choices and then were shown the computer’s card
following a delay. Feedback was provided afterwards by displaying the amount won or lost

The computer’s card is initially hidden. The screen then shows the two possible
choices: a high bet ($20) or a low bet ($5). The participant has 6 s to select one
with his cursor. Following selection, the computer’s card, which follows the same
distribution, is revealed. If the computer’s card is larger than the player’s card, then
the participant loses the amount he bets. If the computer’s card is smaller than the
player’s card, then the participant wins the amount he bet.

For this task, the expected reward and variance of the reward are functions of
the player’s card and bet. For example, on 10-card trials, the expected reward is
higher for a high bet than for a low bet and the variance of reward is small for both
decisions. On 6-card trials, the expected reward is zero for both betting decisions;
but the variance of reward is higher for a high bet than for a low bet.

In this task, bets and reaction times for each trial, k, were the behavior variables
measured. Neural activity was measured with stereotactic EEG depth electrodes.
Participants were implanted with 10–14 depth electrodes, each having 10–16
contacts. See Sacré et al. (2016a) for details.

To explore behavioral variability in the data, one can plot behavioral responses
to each stimulus type over trials. In our gambling task, we plot the fraction of high
bets (smoothed by taking a moving average) on each card-type trials for each patient
over his/her session. This is shown in Fig. 7.5a.
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Fig. 7.5 Relationship between betting variability and internal state. (a) Moving average of the
proportion of high bets over session for different card-type trials (overlapping windows of length
2 wC1, with w D 10). (b) Estimated state trajectory overlaid with bets on 6-card trials over session
for one patient. (c) Estimated probability of betting high as a function of estimated state trajectory
overlaid with bets (red for a high bet, blue for a low bet) for each 6-card trial

7.3.2.1 Dynamic State-Space Modeling

As seen in Fig. 7.5a, most of the within-participant variability is observed on 6-card
trials across all participants. We hypothesized that participants bets on 6-card trials
were influenced by past outcomes or a latent state variable that accumulated past
outcomes. Specifically, we constructed a fading memory state model of cumulative
mismatched expectations that we referred to as “luck” xk on trial k. The luck variable
is the scalar state variable that updates as follows:

xkC1 D a xk C ek x0 D 0; (7.18)

where a is a decay factor (0 � a � 1) and ek is the mismatched expectations on
trial k, that is, the difference between the actual outcome (loss D �1, draw D 0, or
win D 1) and expected outcome given the player card pck (computed as 1

5.pck�6/
).

Note that ek enters the state evolution equation only during trials where expectations
are mismatched.

Next, we estimated a in Eq. (7.18) by varying it between 0 and 1 in 0:01

increments and computed the Pearson’s correlation coefficient between luck and
gamma band power in the orbitofrontal cortex (OFC) at the beginning of each trial
before the player sees his/her card (see Fig. 7.6). Thus, in this case, the OFC gamma
power at the beginning of a trial was first found to be correlated to whether or not the
player bets high if he/she receives a 6 card on that trial, and then the state-evolution
model was constructed though a grid search.
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Fig. 7.6 Oscillatory power before the Show Card. (a) The average spectrograms show differences
between high-bet and low-bet conditions on 6-card trials. One significant cluster (p D 0:042)
resulted from the cluster-based nonparametric statistical test. The cluster contained frequencies
between 36 and 50 Hz at a timing between 1000 and 800 ms before the Show Card. This frequency
range matches the traditional lower gamma band. Plots of average oscillatory power (36–50 Hz)
over time for 6-card trials resulting in high and low bets show the modulation of the power in the
gamma band preceding the Show Card. Time bins with significant differences are marked by the
grey bar. Error bars represent one standard error of the mean. The number n denotes the number
of trials pooled across patients. (b) The average spectrograms show differences between high-luck
and low-luck conditions on all trials. One significant cluster (p D 0:040) resulted from the cluster-
based nonparametric statistical test. The cluster is located in the similar time-frequency region as
the cluster emerging from the high-bet and low-bet conditions on 6-card trials. Figure reproduced
with permission from Sacré et al. (2016a)

To see whether xk explains the variability of behavior on 6-card trials, one can
overlay the state xk with bets on all trials across the session as shown in Fig. 7.5b.

To complete the state-space model, the output equation model is then a standard
GLM for Bernoulli betting observations:

pk D 1

1 C e�.d0Cc xk/
; for k such that pck D 6: (7.19)

Equation (7.19) is a standard GLM when xk is known or estimated a priori. If xk

is not estimated ahead of time, then the EM algorithm can be used. One can also
overlay the behavioral data with the output models for Opk. An example of this is
shown in Fig. 7.5c.
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In this example, since the output equation is constructed using a standard GLM,
the fitted model can be evaluated by checking the significance of the parameter c in
front of the state variable. The model showed that the state of “luck” significantly
influenced betting decisions (c D 0:20, p D 0:028). This indicates positive luck
biases participants to bet high on 6 cards.

7.3.2.2 Neural Correlates Informed by Dynamic State-Space Model

In this example, we obtained continuous local field potential recordings from the
OFC and thus analyzed data in the spectral domain. To compute spectrograms, three
orthogonal tapers were used with a 300-ms window sliding at 50-ms steps. Fre-
quencies under 10 Hz were dropped because of the Rayleigh criterion and analyzed
upwards to 100 Hz. Afterwards, each frequency bin’s power was normalized based
on the power across the entire recording session by fitting the log of the power
in each frequency bin to a standard normal distribution. The mean and standard
deviation used for the normalization were computed from the power between the
5th and 95th percentiles of the data set. This calculation was performed for every
electrode’s recording with the final normalized power being averaged across all
electrodes in the brain region of interest (OFC in our example). In addition, we
removed artifacts by identifying time points in the spectrograms for which the
median of the absolute value of the power across all frequencies is larger than 2.5.
Finally, in order to remove the effect of 60 Hz power-line noise, we ignored the
frequency bins between 56.66 and 63.33 Hz in all analyses.

OFC oscillatory power was compared between the set of trials where subjects
end up betting high on a 6 card and the set where they end up betting low. The
average normalized spectrograms for both high and low bet trials showed that high
bet trials have higher 40–50 Hz oscillatory power about 1000 ms preceding the
show card epoch (Fig. 7.6a). To determine statistical significance of this effect, we
used a cluster-based nonparametric statistical test described above. Clusters here
are defined as a set of adjacent time-frequency windows whose activity is different
between trials where the subjects end up betting high versus low.

To examine the correlation between OFC activity and the state variable, we
separated the trials between high-luck and low-luck conditions (defined as the
bottom third and top third of the values taken by luck variable for all patients)
and computed the average normalized spectrograms for both conditions. High-luck
trials showed higher OFC oscillatory power than low-luck trials (Fig. 7.6b, first
and second panels). Interestingly, the cluster-based nonparametric statistical test
identified a significant cluster (p D 0:040) in the time-frequency vicinity of the
cluster identified when separating trials based on high-bet and low-bet conditions
on 6-card trials (Fig. 7.6b, third panel).

These findings suggest OFC may play a pivotal role in processing a subject’s
internal (emotional) state during financial decision-making.
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7.4 Discussion

In this discussion, we highlight four important lessons to use a two-step state-space
modeling approach described in this chapter to explore links between behavior and
neural activity in humans.

Lesson 1: Investigating Variability in Behavioral Data The first lesson is to
always start data analyses by exploring the variability in the behavioral data prior to
building a model. A good understanding of the variability existing in the behavioral
data is the key to a useful model. There are essentially two sources of variability in
a participant’s behavior. The first source is that the behavior changes as the stimulus
changes, which is expected. The second source is that the participant’s behavior
changes in a “smooth” way over trials during which the same stimulus is applied.
This can happen when internal states, such as motivation and attention, vary over
trials. If the latter variability is observed in the data, then a state-space modeling
framework is appropriate. In the two examples described above, we plot behavior
and see both sources of variability and thus move forward with model development.
If the second source of variability is not present, then a simple GLM of the behavior
may suffice in explaining the first source of behavioral variability, which is how a
stimulus impacts behavior.

Lesson 2: Identifying Model Structure The second lesson is to identify a
model structure that explains the variability that we observed. The design of the
measurement map h� is the easiest part at most of the time: it involves a combination
of states xk and inputs uk. The design of the state-transition map f� is usually more
complex. A useful analysis to guide the design of the state-transition map is to
investigate the influence of candidate inputs by quantifying the influence of the value
of candidate inputs at the previous trial k � 1 on the behavior at trial k.

Lesson 3: Estimating State-Space Model Step by Step The third lesson is to
estimate the model parameters and the state for each trial step by step. A good
approach is to start by estimating the parameters of the static model, that is, the
model where the state is fixed to 0. Then, it is also sometimes useful to estimate the
parameters of the dynamic model where we fix the noise in the state evolution to
zero. Finally, we can estimate the parameters of the whole dynamic model by using
the previous estimates as a first guess for this more complex estimation problem.
The decomposition into these different steps helps to interpret the meaning of each
parameter and its influence on the state.

Lesson 4: Dealing with Multiple Comparisons in Neural Data Analysis The
fourth lesson is to deal with multiple comparisons in neural data analysis. Indeed,
we are often interested in looking at the neural activity from multiple brain regions
(when available) and at different epochs during the task. A standard approach to
tackle this multiple comparisons problem is to correct the significance threshold by
controlling the false discovery rate (e.g., q D 0:05).
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