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Abstract- The dorsal anterior cingulate cortex (dACC) is 
thought to be essential for normal adaptation of one's behavior 
to difficult decisions, errors, and reinforcement. Here we 
examine single neurons from the human dACC in the context 
of a statistical model, including a cognitive state that varies 
with changes in cognitive interference induced by a Stroop-like 
task. We then include this cognitive state in point process 
models of single unit activity and subject reaction time. These 
results suggest that consideration of a latent cognitive state can 
explain additional variance in neural and behavioral dynamics. 

I. INTRODUCTION 

THE dACC has been associated with myriad functions 
essential for cognition [l]. However, debate remains in 

the literature regarding its cardinal functions [2]. There is 
consensus that the dACC is somehow involved with 
behavioral adaptation, as lesioning the dACC impaired OCD 
patients ' abilities adapt behavior in response to previous 
trials ' outcomes [3]. These results suggest that the dACC 
may not be necessary for making difficult decisions in 
themselves, but is necessary for adjusting responses to the 
external world and allocating cognitive resources [ 4]. Here 
we sought to test whether single unit activity recorded from 
the human dACC tracks a latent cognitive state that could 
represent the subject's attentional or motivational levels or 
the extent to which the subject is monitoring her 
performance in order to adapt her behavior. 

II. METHODS 

A. Subjects 

Single unit recordings were examined from two epilepsy 
patients undergoing surgical evaluation for 
pharmacoresistant epilepsy. The choice of electrode location 
was based entirely on clinical considerations. All subjects 
enrolled voluntarily and provided informed consent prior to 
electrode implantation. The Columbia University Medical 
Center Institutional Review Board approved experimental 
protocols. Each subject had between one and three Behnke­
Fried style electrodes implanted orthogonally through the 
prefrontal cortex with the microwires ending in the anterior 
cingulate cortex (Figure la). 
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B. Electrophysiological Recordings 

Electrophysiological data were acquired using a neural 
signal processing system (Blackrock Microsystems, LLC, 
Salt Lake City, UT, USA) at a sampling rate of 30 KHz. 
These data were high-pass filtered at 250 Hz and thresholded 
on line at -5 times the root-mean-square of the filtered signal. 
Approximately 1.5 ms of data around each threshold 
crossing were retained for spike sorting. Sorting of single 
units was accomplished in a semi-supervised manner using 
the t-distributed E-M algorithm in a multidimensional space 
consisting of the first three principal components across all 
waveforms using Offline Sorter (Plexon, Dallas, TX, USA) 
[5]. The threshold crossing times for units that were isolated 
from the noise cluster were retained for further analysis. 

The anatomical locations of all contacts were identified 
through co-registration of the preoperative MRI and the 
post-operative CT using methods described in [5]. 

C. Behavioral Task 

Subjects performed the behavioral task in their hospital 
rooms using methods previously described in [9]. Behavioral 
data were simultaneously acquired on the same time base as 
the electrophysiology data. 

Subjects performed the Multi-Source Interference Task 
(MSIT) [5]. The MSIT is a Stroop-like task in which the 
subject is presented with three integers ranging from 0 to 3. 
Two of the three integers presented are the same integer. The 
goal of the MSIT is to indicate the identity of the different 
integer on the number pad (e.g. cue: 0 2 O; correct response: 
button 2; Figure 1 b ). Conflict is introduced in this task by 
changing the position of the target number (e.g. 0 0 1; 
correct response: button 1; Simon or spatial interference) or 
by changing the identity of the distracting integers to 
potential responses (e.g. 1 2 1; correct response: button 2; 
Eriksen or flanker interference). Additionally both types of 
interference can occur (e.g. 3 1 3; correct response: button 
1). These four groups of trials were presented randomly, 
with uniform frequency distribution. 

D. Cognitive State Variable 

In this task, we hypothesize the "cognitive state" of each 
subject influences behavior and modulates neuronal activity 
in the cingulate cortex. In particular, we hypothesize that 
when subjects require more cognitive control, (i) they are 
more likely to react to the stimulus slowly and (ii) their 
cingulate neurons are modulated. Since such a cognitive 
state is not directly measureable, we compute it from 
measurable data. Specifically, we construct a cognitive state 
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Figure 1. MSIT task and microwire recording locations. (A) Microwire 
recording locations in the dACC. Colors represent recording locations 
corresponding to each subject on each hemisphere (L and R). (B) MSIT 
task diagram showing an example trial structure. In each trial a fixation 
cross appears on the screen for 0.5 s prior to the stimulus presentation. 
The stimulus remains on the screen until the subject indicates her 
response on the button pad. Feedback is delivered between 0.3 and 0.8 s 
after the subject indicates her response. 

variable that updates for each trial t, denoted as x(t) and 
defined by: 

x(t + 1) = ax(t) + L{= 1 biui(t) + b5u5 (t) 
= ax(t) + br u(t) (1) 

where u(t) is an input column matrix dependent on the trial 
conditions 

{

u1 is 1 if no interference and 0 o. w. 
u 2 is 1 if both interferences and 0 o. w. 

u = u3 is 1 if spatial interference and 0 o. w. 
u4 is 1 if flanker interference and 0 o. w. 
u5 is 1 if trial type changed from previous trial and 0 o. w. 

(2) 

and the parameter a represents the decaying influence of 
previous trials on the cognitive state, and {b1 , b2 , b3 , b4 , bs} 
dictate the effects that the trial conditions have on x(t). The 
solution to the state space ofx(t) is 

t-1 

x(t) = atx(O) + L at-i-l br u(i) (3) 

i=t0 

which can be used to determine the parameters 
{a, b1, b2 , b3 , b4 , bs} by inserting x(t) as a covariate into a 
Generalized Linear Model (GLM). The output of the GLM 
is y(t), defined as the log of the reaction time modeled as 

y(t) = log(r(t)) = x(t) + Du(t) + d0 + E(t) (4) 

where r(t) is the reaction time of the trial, the E(t) are 
independent zero mean Gaussian random inputs with 
variance (if, and D is a vector of the form of b, that 
represents the direct influence of the current input on the 
reaction time of a trial. 

E. Point Process Model of dACC Dynamics 

Once the cognitive state variable is derived for each subject, 
we formulate a point process model (PPM) to relate the 
spiking of each dACC neuron to factors associated with the 
neuron's spiking history and the cognitive state variable. We 
use these model parameters to analyze temporal dynamics in 
neuronal activity due to the cognitive state variable after the 
stimulus is shown. 

To define a PPM of spiking activity, we consider an 
observation interval (0, T] and discretize the process by 

dividing the observation interval into N bins of size Ll = :!:... 
N 

Let dNt equal the number of beats in (t, t + Ll] for 
t = 0,1, ... , N. We make Ll small enough so that dNt = 
[0,1]. Then, the PPM is completely characterized by its 
conditional intensity function (CIF) defined as 

'( IH ) _ 1. Pr(dN, =1 IH,) 
1t t t - lffit.-+O t. (5) 

where Ht denotes the history of spikes up to but not 
including time t and Pr is probability . .il(t!Ht) represents a 
stochastic model for the arrival of the point process. It 
follows from (5) that the probability of a single spike in a 
small interval (t, t+.:1] is approximately 

Pr( spike in (t, t + ~] I Ht)) = A(tlHr)~ (6) 

Further details can be found in [10] and [11]. 

For the current analyses, we use the GLM to define our CIF 
models by expressing, for each neuron, the log of its CIF in 
terms of the neuron's spike history and relevant covariates 
[14]. We express the CIF for each neuron as a function of 
the neuron's spiking history, .il~, in the preceding 240ms and 
our derived cognitive state variable, .ilx. Specifically, for trial 
k and time bin t: 

(7) 

such that 
(8) 

log ..:tr (ti Ht) = Yo + LJ=1 Yjnt-sj :t-s(J-1) 

+ LJ=1 /3jnt-40-2sj:t-40-2s(J-1) (9) 

where na:b is the number of spikes observed in the time 
interval [a, b) during the epoch analyzed. The {Yj} 

coefficients capture short-term history effects going back to 
40 ms in the past in 5ms bins. The {/3j} coefficients capture 
long-term history effects going back to 240 ms in the past in 
25 ms bins, and e captures the effect of the cognitive state. 
We compute maximum-likelihood (ML) estimates for all 
coefficients and their associated 95% confidence intervals 
for each neuron model using 'glmfit' in MATLAB. 

F. Model Fitting and Assessment 

Half of the trials were used to fit the models, and the 
remaining half were used to test goodness-of-fit of the 
models. We used Kolmogorov-Smimov (KS) plots based on 
the time-rescaling theorem to assess model goodness-of-fit. 
The time-rescaling theorem states that any point process 
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with an integrable conditional intensity function may be 
transformed into a Poisson process with unit rate [16]. A KS 
plot, which plots the empirical cumulative distribution 
function of the transformed spike times versus the 
cumulative distribution function of a unit rate exponential, is 
used to visualize the goodness-of-fit for each model. The 
model is a better fit if its corresponding KS plot lies near the 
45° line. We computed 95% confidence bounds for the 
degree of agreement using the distribution of the KS statistic 
[16]. 

III. RESULTS 

A. Behavioral Data: Reaction times 

We found that subjects' reaction time (RT) varied across 
trials. But as Figure 2 demonstrates, at any given time the 
average R Ts for each trial type rise and fall together. We 
hypothesize that this covariation is driven by a latent 
cognitive process. Therefore we have overlaid the cognitive 
state variable x(t) onto Figure 2 to demonstrate the relation 
between the subjects' need for cognitive control and RT. 

B. Behavioral Model 

Table 1 shows that while the b covariates significantly 
predicted reaction times for both subjects 1 and 2, the d 
covariates were only significant in subject 2. The d 
covariates represent the direct influence that the trial type 
inputs have on the reaction times of the subject, whereas the 
b covariates represent the indirect influence of the inputs 
through their modulation of x(t). Therefore these data show 
that the cognitive state of subjects 1 and 2, as represented by 
x(t), does impact their reaction times. However as the d 
covariates are only significant in subject 2, we can determine 
that the current trial type may or may not directly impact the 
reaction time of the subject. Furthermore b5 is not significant 
for either subject so we see that while the specific trial types 
have significant impacts on the determination of x(t), 
changing the trial type from the previous trial does not. 
Finally, table one shows that b2 does not have a significant 
contribution to x(t) for subject 1. This indicates that the 
occurrence of a hard trial does not impact the subject's x(t), 
what we are considering the subjects' need for cognitive 
control. However this same covariate is the most significant 
in subject 2. 

Figure 3 and Table 2 show the correlation between x(t) and 
the observed RT, as well as the correlation between the 
predicted RT and the observed RT. The data show a positive 
correlation between x(t) and RT for both subjects. This result 
concurs with our conception of x(t) as a need for control or 
attention, which may manifest as hesitance. The data also 
demonstrate a correlation between the observed and 
predicted RTs. However this correlation is far from ideal, so 
there are certainly some factors that are not accounted for in 
the current model. We hypothesize that other cognitive 
states, such as confidence or learning-related engagement, 
may account for some of these factors. 

C. Point Process Model for dACC Neurons 

We examined the activity of 12 units (10 in patient 1 and 2 
in patient 2). Figure 4 shows the spiking frequency (Hz) in 
units from both subjects during the first second after 
stimulus presentation in each trial. These spike counts are 
overlaid with the cognitive state variables, x(t), for each 
subject. The neurons' spiking frequencies appear to have a 
negative correlation with x(t) dropping markedly when x(t) 
nses. 

In subject 1 we found 10 units whose activity was predicted 
using the cognitive state variable (the GLM fit coefficient 
for the x(t) covariate was significantly non-zero, with p­
value < 0.05). Some units had increased activity as x(t) 
increased, while some displayed decreased activity. These 
units are listed in Table 3. For 6 of these units (marked in 
red), there was also a highly significant correlation between 
x(t) and spiking. The covariate coefficients for subject 1 's 
PPM are shown in Figure 5. The dependence on short and 
long term spiking history are displayed in the lower two 
plots, and show refractoriness in the first 15 ms after a spike, 
and an increased likelihood to fire in the 25 to 100 ms 
interval. The upper right plot displays the PPM coefficient 
for x(t) with 2 standard deviation error bars. For this unit, 

Parameter Subject 1 Pvalue Subject 2 Pvalue 
a 1 NA 1 NA 
bl -4.495E-01 9.243E-13 1.824E-01 1.345E-02 
b2 -8.002E-02 1.773E-01 5.180E-01 8.735E-13 
b3 -3.037E-01 3.491E-06 2.277E-01 2.097E-03 
b4 -2.129E-01 2.502E-04 3.867E-01 5.995E-08 
bS 4.432E-02 2.404E-01 6.169E-02 1.169E-01 
dl S.799E-03 S.564E-01 -4.139E-02 6.391E-03 
d2 S.908E-04 9.696E-01 -5.028E-02 3.816E-OS 
d3 -2.754E-02 l.114E-01 -2.135E-02 2.343E-02 
d4 2.280E-02 S.152E-02 -3.092E-02 1.206E-02 
dS -1.699E-03 8.329E-01 4.689E-02 S.652E-OS 

Table 1. Model coefficients (red are significant with p<0.05) 

. .,... . :or.• ". . ,__ 

Correlation I X-RT RT-RThat I X-RT RT-RThat I 
Pvalue I 2.16E-03 9.40E-20 I 2.38E-OS 2.99E-18 I 
Rvalue I 1.93E-01 S.33E-01 I 2.41E-01 4.75E-01 I 

Table 2. Correlation between state variable and observed reaction 
time, and correlation between modeled and observed reaction times. 

x(t) was a strong predictor of the spiking behavior, with 
spiking probability decreasing for higher x(t). The upper left 
plot in Figure 5 shows the goodness of fit of the model using 
a KS plot, with 95% confidence bars. 
In subject 2, two units' spiking could be significantly 
predicted by x(t), as shown in table 3. The PPM coefficients 
and goodness of fit for subject 2 unit 8 are also shown in 
Figure 5. This unit had significantly longer inter-spike­
intervals, so the coefficient values for the short-term history 
bins have higher uncertainty. 

IV. CONCLUSIONS 

Together, these results suggest that neurons in the dACC 
slowly track subjects' overall need for cognitive control, 
while simultaneously maintaining faster task-related 
dynamics. We show how a latent cognitive state variable 
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correlates with both reaction times and neuronal activity in 
two patients. These results provide support for an additional 
representation of task state or attentional motivation in the 
dACC. 
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Figure 2. Moving average of reaction times for each trial type for subject 
1 (left) and subject 2 (right). The estimated cognitive states are overlaid. 

Figure 3. Correlation plots between actual reaction times and x(t) and 
predicted reaction times for subject 1 (left) and subject 2 (right). 
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Figure 4. Cognitive states over sessions overlaid with spike counts for 
subject 1, unit 1 (left) and subject 2, unit8 (right). 
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Figure 5. Point process model for subject 1, unit 1 (left four plots) and 
subject 2, unit 8 (right four plots). Top left: KS plot. Top right: coefficient 
for x(t). Bottom left: long-term history coefficients with 95% confidence 
bounds. Bottom right: short-term history coefficients with 95% 
confidence bounds. 
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