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Abstract
Oscillators—whose steady-state behavior is periodic rather than constant—
are observed in every field of science. While they have been studied for a
long time as closed systems, they are increasingly regarded as open systems,
that is, systems that interact with their environment. Because their functions
involve interconnection, the relevance of input–output systems theory to model,
analyze, and control oscillators is obvious.

Yet, due to the nonlinear nature of oscillators, methodological tools to study
their systems properties remain scarce. In particular, few studies focus on
the interface between two fundamental descriptions of oscillators, namely the
(internal) state-space representation and the (external) circle representation.
Starting with the pioneering work of Arthur Winfree, the phase response curve
of an oscillator has emerged as the fundamental input–output characteristic
linking both descriptions.

The present dissertation aims at studying the systems properties of oscilla-
tors through the properties of their phase response curve. The main contribu-
tions of this dissertation are the following.

We distinguish between two fundamental classes of oscillators. These classes
differ in the local destabilizing mechanism that transforms the stable equilib-
rium of a globally dissipative system into a periodic orbit.

To address input–output systems questions in the space of response curves,
we equip this space with the right metrics and develop a (local) sensitivity anal-
ysis of infinitesimal phase response curves. This main contribution of the thesis
is completed by the numerical tools required to turn the abstract developments
into concrete algorithms.

We illustrate how these analysis tools allow to address pertinent systems
questions about models of circadian rhythms (robustness analysis and system
identification) and of neural oscillators (model classification). These two bi-
ological rhythms are exemplative of both main classes of oscillators. We also
design elementary control strategies to assign the phase of an oscillator.

Motivated by an inherent limitation of infinitesimal methods for relaxation
type of oscillators, we develop the novel geometric concept of “singularly per-
turbed phase response curve” which exploits the time-scale separation to predict
the phase response to finite perturbations.

In conclusion, the present dissertation investigates input–output systems
analysis of oscillators through their phase response curve at the interface be-
tween their external and internal descriptions, developing theoretical and nu-
merical tools to study models arising in the biology of cellular rhythms.
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Résumé
Les oscillateurs—dont le comportement à l’équilibre est périodique plutôt que
constant—sont présents dans tous les domaines de la science. Alors qu’ils ont
été étudiés pendant longtemps comme des systèmes fermés, ils sont de plus
en plus considérés comme des systèmes ouverts, c’est-à-dire, des systèmes qui
interagissent avec leur environnement. Comme leurs fonctions se basent sur
une interconnexion, la pertinence de la théorie entrée–sortie des systèmes pour
modéliser, analyser et contrôler les oscillateurs est dès lors évidente.

Cependant, à cause de la nature non-linéaire des oscillateurs, il existe peu
d’outils méthodologiques pour étudier leurs propriétés systémiques. En par-
ticulier, peu d’études se focalisent sur l’interface entre deux représentations
fondamentales des oscillateurs, à savoir la représentation (interne) d’état et la
représentation (externe) sur le cercle. Depuis les travaux pionniers d’Arthur
Winfree, la courbe de réponse de phase d’un oscillateur a émergé comme la
caractéristique entrée–sortie fondamentale liant ces deux représentations.

Cette thèse a pour but d’étudier les propriétés systémiques des oscillateurs
à travers les propriétés de leur courbe de réponse de phase. Les contributions
principales de cette thèse sont les suivantes.

Nous distinguons deux classes fondamentales d’oscillateurs. Ces classes dif-
fèrent par le mécanisme local qui déstabilise le point d’équilibre stable d’un
système globalement dissipatif pour le transformer en orbite périodique.

Afin d’aborder des questions systémiques entrée–sortie dans l’espace des
courbes de réponse de phase, nous équipons cet espace des métriques appro-
priées et nous développons une analyse locale de sensibilité des courbes infi-
nitésimales de réponse de phase. Cette contribution principale de la thèse est
complétée par les outils numériques nécessaires afin de convertir les développe-
ments abstraits en algorithmes concrets.

Nous illustrons la manière dont ces outils d’analyse permettent de aborder
des questions pertinentes sur des modèles de rythmes circadiens (analyse de
robustesse et identification de système) et d’oscillateurs neuronaux (classifica-
tion de modèles). Ces deux modèles sont représentatifs de chacune des deux
classes. Nous développons aussi des stratégies élémentaires pour contrôler la
phase d’un oscillateur.

Motivé par les limitations inhérentes des méthodes infinitésimales pour les
oscillateurs de relaxation, nous développons le nouveau concept géométrique de
“courbe de réponse de phase singulièrement perturbée” qui exploite la séparation
d’échelles de temps pour prédire la réponse de phase à des perturbations finies.

En résumé, cette thèse propose une analyse systémique entrée–sortie des
oscillateurs au moyen de leur courbe de réponse de phase, à l’interface entre
leur représentations externe et interne, développant ainsi des outils théoriques
et numériques pour étudier des modèles de la biologie des rythmes cellulaires.
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Chapter 1

Introduction

“This is a story about dynamics: about change, flow, and rhythm, mostly
in things that are alive. (. . . )
This is a story about dynamics, but not about all kinds of dynamics.
It is mostly about processes that repeat themselves regularly. In living
systems, as in much of mankind’s energy-handling machinery, rhythmic
return through a cycle of change is a ubiquitous principle of organization.
So this book of temporal morphology is mostly about circles, in one guise
after another. The word phase is used (. . . ) to signify position on a circle,
on a cycle of states. Phase provides us with a banner around which to
rally a welter of diverse rhythmic (temporal) or periodic (spatial) patterns
that lie close at hand all around us in the natural world.”

Arthur Winfree (1942–2002)

The first lines of the seminal book “The Geometry of Biological Time” [195]
emphasize the importance of rhythm as a universal design principle in nature
and engineering as well as its fundamental abstraction as a dynamical phe-
nomenon evolving on the circle.

Following those pioneering steps, the present dissertation studies rhythms
as open systems whose dynamics evolve on the circle. We term such systems
“oscillators”.

1
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2 Chapter 1. Introduction

1.1 Research context and need
Oscillators are observed in every field of science and engineering. Currently,
they are perhaps the most widely studied dynamical systems across systems
biology [25, 60, 65, 195], neuroscience [85, 89], chemistry [40, 101], physics [86,
139], astronomy [17], and engineering [131,133,169,170].

For a long time, oscillators have been studied as closed systems evolving
isolated from their environment (e.g. the revolution and the rotation of celestial
bodies, the swinging movement of the pendulum of a clock, the motion of the
wheel of a moving car, etc.).

More recently, and especially with recent advances in biology, oscillators
are increasingly regarded as open systems in interaction with their environ-
ment. As clocks, rhythm generators, or rhythmic relays, they play a role in
many biological functions (e.g. circadian rhythms, neural oscillators, mitotic
cycles, glycolytic oscillators, and many others, see [60,65,195]). Because those
functions involve interconnection at their core, the relevance of input–output
systems theory to model, analyze, and control oscillators is obvious. It was
recognized early (see e.g. Wiener [190]).

Historically, the theory of open systems was primarily developed for linear
time-invariant systems evolving around a stable equilibrium. It led to the de-
velopment of (frequency-domain) Laplace representation in the 1950s and then
(time-domain) state-space representation in the 1960s. Laplace representations
are compact representations most helpful to analyze or synthesize the system
behavior. State-space representations are critical to model the internal mech-
anisms of a system and understand the link between its internal circuitry and
its resulting external behavior.

Starting in the late 1960s, extensions of systems theory to nonlinear time-
invariant systems allowed to consider differential equations with periodic orbits
(i.e. oscillators), leading to the emergence of (time-domain) circle representa-
tion and (time-domain) state-space representation. Likewise, circle represen-
tations are compact representations most helpful to study entrainment and
synchronization phenomena (see e.g. Winfree [193, 195], Kuramoto [100, 101],
Glass [60,61], Strogatz [170,171], for exemplative milestones). There also, state-
space representations are essential to model and study the internal circuitry of
the system: in particular, sufficient conditions for the existence and stability
of periodic orbits (see e.g. Andronov [6], Varigonda and Georgiou [179, 180],
Stan and Sepulchre [156, 165, 166]) and synchronization in networks of oscilla-
tors (see e.g. Angeli [7], Pavlov [136, 137], Slotine [159, 189], Stan and Sepul-
chre [165,167], Sontag [147,162,163]).

There is a conceptual analogy between Laplace representation of linear time-
invariant systems and circle representations of oscillators (see Figure 1.1):
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state-space
representation

LTI systems with 
stable equilibrium

Laplace
representation

circle 
representation

state-space
representation

NL TI systems with 
stable periodic orbit

mathematical reduction
(under suitable assumptions)

mathematically equivalent

Figure 1.1 – Conceptual analogy between Laplace and circle representations. The
circle representation for nonlinear time-invariant (NL TI) systems with a stable peri-
odic orbit is analogous to the Laplace representation for linear time-invariant (LTI)
systems with a stable equilibrium.

• they are independent of the complexity of the state-space representation
and they may be computed from the state-space representation;

• they provide information suitable to be compared to experimental data
(harmonic excitation experiments and phase resetting experiments) and
are thus greatly appreciated by experimentalists.

This analogy is not complete. While the Laplace representation is mathemati-
cally equivalent to the state-space representation, the circle representation is a
mathematical reduction of the state-space representation, valid under suitable
assumptions.

If the interface between state-space and Laplace representations has been
at the core of linear systems theory, few studies focus on the interface between
circle and state-space representations of oscillators. Studies on the circle focus
on canonical circle representations disconnected from any state-space represen-
tation or valid only in a narrow neighborhood of the bifurcation giving birth to
the oscillator. Most studies in the state space focus on properties of trajectories
and disregard the peculiar circular function of oscillators owing to the periodic
nature of their behavior.

Under two distinct assumptions (weak input or impulse train), a state-
space representation can be reduced to a circle representation. In both cases,
the key player in the reduction is the so-called phase response curve which is
a fundamental input–output information of oscillators at the interface between
state-space and circle representations. The present dissertation aims at study-
ing the systems properties of oscillators through the properties of their phase
response curve.
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1.2 Contributions of the dissertation
In the above context, the present dissertation contributes at bridging the gap
between input–output systems theory in (internal) state-space and (external)
circle representations. We address systems questions for oscillators in the space
of phase response curves, at the interface between both descriptions.

In particular, this dissertation includes the following specific contributions.

As a conceptual contribution, we discriminate between two fundamental
classes of oscillators throughout this dissertation. Oscillators are viewed as
globally dissipative systems whose stable equilibrium is locally destabilized by
a local excitation. Both classes differ in the local destabilizing mechanism: a
delay in the feedback loop or a dynamical hysteresis induced by autocatalysis.

The main contribution of this dissertation is to equip the space of phase
response curves with the right metrics and to develop a (local) sensitivity anal-
ysis of infinitesimal phase response curves, offering a novel framework to input–
output systems analysis for oscillators.

The metrics allow to compare oscillators in the space of phase response
curves accounting for natural equivalence properties.

The (local) sensitivity analysis of infinitesimal phase response curves pro-
vides a systematic and computationally tractable approach to identify impor-
tant parameters of an oscillator model in the parameter space, around a nom-
inal set of parameter values. It is complementary to more global—but less
tractable—tools such as bifurcation analysis or parameter space exploration.

In addition to the abstract developments, we provide the numerical tools
required to turn those developments into concrete algorithms.

A methodological contribution is to illustrate how these analysis tools allow
to address pertinent questions about models of circadian rhythms (robustness
analysis and system identification) and neural oscillators (model classification).
Circadian rhythm models are exemplative of delayed negative-feedback oscilla-
tors; neural oscillators are exemplative of hysteresis-and-adaptation oscillators.

As a side contribution, we design elementary control strategies to assign the
phase of an oscillator.

Finally, motivated by the limitation of infinitesimal phase response curves
for relaxation oscillators, we develop the novel geometric concept of “singularly
perturbed phase response curve” which exploits the time-scale separation to
predict the phase response of the oscillator to finite perturbations.

Our contributions are highlighted more specifically at the end of each chap-
ter introduction.
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1.3 Outline of the presentation
The dissertation is organized as illustrated in Figure 1.2.

Chapter 2 gives a general overview on oscillators as open systems. In par-
ticular, it focuses on the endogenous mechanisms of oscillators, but also and
primarily, on their exogenous functions. Then, it reformulates input–output
systems questions for oscillators and stresses the importance of studying the
interface between state-space and circle representations.

Chapter 3 provides a comprehensive review on the concept of phase response
curve: from experiments, from state-space models, and in phase models of sin-
gle and coupled oscillators. It also shows how standard asymptotic methods can
be used to reduce the dynamics on the circle and how exact and approximate
phase response curves can be computed from a state-space representation.

Chapter 4 proposes metrics in the space of phase response curves to study
input–output systems questions. It identifies two natural equivalence properties
(scaling and phase shifting) in this space and defines metrics in the four spaces
resulting from various combinations of these equivalence properties

Chapter 5 introduces a local sensitivity analysis in the space of phase re-
sponse curves. In particular, it recalls the sensitivity analysis of periodic orbits
and derives the sensitivity analysis of infinitesimal phase response curves and
entrainment behavior.

Chapter 6 focuses on a geometric approach to study singularly perturbed
relaxation oscillators, for which the infinitesimal approach used in Chapter 5
fails to capture the input–output oscillator behavior. In particular, it defines
two novel concepts: singularly perturbed phase maps and singularly perturbed
phase response curves.

Chapter 7 reports the systems analysis of circadian rhythms in the space of
phase response curves. It develops scalar measures for parametric robustness
analysis and a gradient-descent algorithm for parametric identification.

Chapter 8 presents the systems analysis of neural oscillators in the space of
phase response curves. It proposes a new classification method directly based
on the shape of the phase response curves. Then it predicts the shape of finite
phase response curves for a popular neural oscillator model.

Chapter 9 motivates the interest of oscillator design and control on the
circle. Then it develops control strategies to assign the phase of an oscillator.

Chapter 10 concludes the dissertation, summarizing its outcomes, their im-
plications, and what the future holds, beyond this work.

Appendix A provides the numerical tools required to turn the abstract
developments into concrete algorithms to compute periodic orbits, infinitesimal
phase response curves, and their sensitivity. Appendix B collects derivations
omitted in the main text for presentation purpose.

The reader only interested in a particular illustration (Chapter 7, 8, or 9)
may follow the partial flow materialized by the incoming arrows in Figure 1.2.
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chapter 2
oscillators as systems

chapter 3
phase response curves

chapter 4
metrics

chapter 5
sensitivity analysis

chapter 6
singular perturbation

chapter 7
circadian rhythms

chapter 8
neural oscillators

chapter 9
phase oscillator control

chapter 1
introduction

chapter 10
conclusion

appendix B
omitted derivations

appendix A
numerical tools

Figure 1.2 – Dissertation road map. The dissertation is organized as illustrated on
this figure. The reader only interested in a particular illustration (Chapter 7, 8, or 9)
may follow the partial flow materialized by the incoming arrows.
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1.4 Publications
The main results of this dissertation are presented in the following publications:

• P. Sacré, A. Franci, and R. Sepulchre. On the phase response curve for
relaxation and bursting oscillators. In preparation

• P. Sacré and R. Sepulchre. Sensitivity analysis of oscillator models in
the space of phase response curves: oscillators as open systems. Submit-
ted to IEEE Control Syst. Mag. (preprint http://arxiv.org/abs/1206.
4144)

• P. Sacré and R. Sepulchre. Sensitivity analysis of circadian entrainment in
the space of phase response curves. In V. Kulkarni, G.-B. Stan, and K. Ra-
man, editors, Systems and Synthetic Biology: A Systematic Approach.
Springer. To appear (preprint http://arxiv.org/abs/1211.7317)

• A. Mauroy, P. Sacré, and R. Sepulchre. Kick synchronization versus
diffusive synchronization. In Proc. 51st IEEE Conf. Decision and Control,
pages 7171–7183, Maui, HI, Dec. 2013

• P. Sacré and R. Sepulchre. Matching an oscillator model to a phase
response curve. In Proc. 50th IEEE Conf. Decision and Control and
2011 European Control Conf., pages 3909–3914, Orlando, FL, Dec. 2011

• D. V. Efimov, P. Sacré, and R. Sepulchre. Controlling the phase of an
oscillator: a phase response curve approach. In Proc. 48th IEEE Conf.
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Chapter 2

Oscillators as open systems

Many oscillators are, by nature, open systems, that is, systems that interact
with their environment. As clocks, rhythm generators, or rhythmic relays,
their function often lies in their robust ability to respond to particular inputs,
to behave collectively when they are interconnected within a network, or both.

Because these functions involve interconnection at their core, the relevance
of input–output systems theory to model, analyze, and control oscillators is
obvious and was recognized early (see Wiener [190]). Yet, due to their nonlinear
nature, the input–output systems analysis of oscillators remains scarce.

Motivated by this gap in the literature, we review the endogenous mecha-
nisms giving birth to oscillatory systems, but also and primarily, focus on their
exogenous functions. We also reformulate input–output systems questions for
oscillatory systems. Although classical in their formulation, most of these ques-
tions have been addressed only for equilibrium systems, that is, systems whose
isolated steady-state behavior is a stable equilibrium.

This chapter is organized as follows. Section 2.1 introduces the endogenous
ingredients necessary to all oscillatory systems. It also distinguishes two fun-
damental classes of oscillators based on two distinct paradigms to create the
necessary local excitation destabilizing the steady state. Section 2.2 describes
the exogenous functions of oscillators, in response to particular inputs or in
networks of coupled oscillators. Section 2.3 addresses input–output systems
questions for oscillators. Section 2.4 stresses the importance of studying these
questions at the interface between circle and state-space representations.

Contributions. The main conceptual contributions of this chapter are (i) to
identify two fundamental classes of oscillators rooted in two distinct paradigms
to create oscillations, (ii) to consider oscillators as open dynamical systems,
and (iii) to reformulate input–output systems questions for oscillators.

9
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input

output

input

output

events

Figure 2.1 – Endogenous periodic steady-state behavior of oscillators. In isolation con-
dition, oscillators exhibit a periodic steady-state behavior. For illustration purpose,
it is convenient to represent this periodic oscillation by a periodic train of events.

2.1 Endogenous mechanisms of oscillators

In isolation condition, oscillators are characterized by a periodic—rather than
constant—steady-state behavior (see Figure 2.1). This periodic steady-state
behavior is represented by an output signal that returns to its starting point
after some fixed time and continues to do so in the whole future.

In many situations, an experimentalist does not observe continuously the
output of an oscillatory system. Quite the opposite, he observes the regular
occurrence of a particular event. Few examples of such observed events are the
onset of daily locomotor activity of rodents [30], the eclosion of insects [142],
the initiation of an action potential in neural or cardiac cells [19, 36, 125], or
the onset of mitosis in yeast [82]. The scarcity of this experimental information
(one event every period) may come from the spiking nature of the oscillations,
from a lack of high time-resolution measurements provided by measurement re-
porter devices (like green fluorescent proteins), or even from the experimental
choice of recording specific events. (For illustration convenience, we will often
conceptualize a periodic behavior as a train of events. Unless otherwise spec-
ified, it does not imply that the illustrated concepts are not valid for smooth
oscillators.)

In this section, we identify the necessary key ingredients responsible for
stable oscillations, namely a global dissipation to create a globally attractive
equilibrium and a local excitation to locally destabilize this steady-state equilib-
rium. We illustrate those fundamental ingredients in the van der Pol oscillator
in two limits (i.e. quasi-harmonic and relaxation limits). Then, we give a motif
interpretation of those mechanisms as they often appear in biology.



2.1. Endogenous mechanisms of oscillators 11

2.1.1 Generic design principles for oscillators
Over the years, a large number of qualitative and quantitative models have been
proposed to describe oscillators. Among all those models, two fundamental
design principles have emerged as critical elements of oscillations [134,156,167].

1. The first key ingredient is a global dissipation (or inhibition) that creates
a globally attractive equilibrium.

2. The second key ingredient is a local excitation that locally destabilizes
the steady-state equilibrium.

The oscillation emerges as the bounded attractor that separates the global
dissipation from the local excitation.

In the following, we illustrate those concepts on the van der Pol oscillator.

The van der Pol oscillator: an illustrative model

The van der Pol oscillator is an oscillator with nonlinear damping governed by
the second-order differential equation

ÿ − µ (1− y2) ẏ + y = u1 + µ u̇2, u1 ∈ R, u2 ∈ R, y ∈ R. (2.1)

where u1 and u2 are inputs, y is an output, and µ > 0 is a parameter.
Historically, this equation was proposed by Balthazar van der Pol in 1920 to

study oscillations in vacuum tube circuits [178]. To be more precise, it models a
simple electrical circuit with nonlinear resistance (see Figure 2.2). The inductor
and capacitor are assumed to be linear, time-invariant and passive, that is,
L > 0 and C > 0. The resistive element is an active circuit characterized by
the v–i characteristic i = φNL(v) = v3/3− v. The output y ∈ R is the voltage
across the capacitor C. The input u1 ∈ R is the tension generated by a voltage
source in series with the inductor L. The input u2 ∈ R is the current generated
by a current source and injected in the circuit. The parameter µ is equal to
the ratio

√
L/C.

The van der Pol oscillator played a seminal role in the development of
nonlinear oscillation theory. One reason of this success is probably its ability
(with only one single parameter µ) to exhibit two very different regimes of
oscillations. For weak nonlinearities (µ � 1), the oscillator displays quasi-
harmonic oscillations. For strong nonlinearities (µ� 1), it displays relaxation
oscillations.

In the following, we identify two distinct viewpoints on the mechanisms
giving birth to oscillations, which depend on how we dissect the circuit in-
terconnection (see Figure 2.3). Each viewpoint is convenient to explain the
behavior in one regime of oscillations.
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Figure 2.2 – Electrical circuit of the van der Pol oscillator. The inductor and capacitor
are assumed to be linear, time-invariant and passive, that is, L > 0 and C > 0. The
resistive element is an active circuit characterized by the v–i characteristic i = φNL(v).

quasi-harmonic regime

relaxation regime

Figure 2.3 – Two viewpoints on the mechanisms underlying the van der Pol oscillators.
(Top) In the quasi-harmonic regime, we view the oscillator as a harmonic oscillator
(LC circuit) with a static nonlinear feedback (resistive element). (Bottom) In the
relaxation regime, we view the oscillator as a dynamical hysteresis (fast RC circuit)
with slow adaptation (inductor L).
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Quasi-harmonic regime (µ� 1). In this limit, we view the van der Pol os-
cillator as a LC circuit in parallel with a nonlinear resistive element i = φNL(v)
(see Figure 2.3, top). A systems analogy is a harmonic oscillator (H1(s) =
1/(s2 + 1) and H2(s) = µ s/(s2 + 1)) with a static nonlinear feedback.

The global dissipation is provided by the (globally negative) static nonlin-
earity and the local excitation is generated by the negative slope at the origin
(see Figure 2.2) which destabilizes the negative feedback loop, violating the
small gain theorem.

The energy interpretation is that the sustained exchange of energy between
a capacitor and an inductor is regulated by a static element (a tunnel-diode
circuit) that dissipates energy when the current is high and restores energy
when the current is low.

Relaxation regime (µ� 1). In this limit, we view the van der Pol oscillator
as a RC circuit (with the resistance) in parallel with an inductor L (see Fig-
ure 2.3, bottom). A systems analogy is a dynamical hysteresis, characterized
by an integrator (H(s) = 1/s) with a static nonlinear negative feedback. This
hysteresis is turned into a relaxation oscillation when the input slowly adapts
to follow the hysteresis loop, resulting in the closed-loop dynamics.

The global dissipation is provided by the (slow) negative feedback which
provides an adaptation mechanism and the local excitation is generated by the
(fast) autocatalysis that creates a dynamical hysteresis.

The energy interpretation is that the RC circuit exhibits a fast bistable
behavior. The energy in the capacitor is stored for a high positive or high
negative potential difference across it depending on the initial conditions. The
inductor slowly integrates and induces periodic switches between two quasi-
stable steady states.

2.1.2 Two motif interpretations for oscillators in biology
In the following, we provide a motif interpretation of the underlying mecha-
nisms responsible for oscillations. A motif is a conceptual picture of the model
architecture. Each node of the motif is assumed to exhibit a monotonic input–
output behavior (in the sense of Angeli and Sontag [8, 9]) and may be either
excitatory (E) or inhibitory (I). Excitatory nodes have an increasing mono-
tonic behavior while inhibitory nodes have a decreasing monotonic behavior.

Breaking motifs and plotting the input–output “characteristic” for each
“submotif” reveal the mechanism underlying the oscillator. The input–output
“characteristic” may be thought of as a step-input steady-state response or a
(nonlinear) static gain (see [8, 9] for details).

In biology, two main motifs have emerged as fundamental building blocks
of oscillators (see Figure 2.4). They differ in the local excitation mechanism
that destabilizes the steady-state equilibrium.
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delayed-negative-feedback motif hysteresis-and-adaptation motif

Figure 2.4 – Two motif interpretations for oscillatory systems in biology. (Left) The
delayed-negative-feedback motif is a negative feedback loop with (at least) three com-
ponents in the loop and with an odd number of inhibitory components. (Right) The
hysteresis-and-adaptation motif is a negative feedback loop between an excitatory and
an inhibitory component. In addition, there is an autocatalytic (positive) feedback
on the excitatory component.

Delayed-negative-feedback motif

The first motif is a negative feedback loop with (at least) three components
in the loop and with an odd number of inhibitory components. The global
dissipation is provided by the inhibitory (negative) feedback loop. The local
excitation is created by the time delay introduced in the feedback loop by the
chain of (at least) two excitatory intermediates.

We break the motif as illustrated in Figure 2.5. Each submotif has a mono-
tone characteristic. From a mechanistic point of view, the oscillations are in-
duced by the slow modulation of a monostable equilibrium. This motif exhibits
smooth oscillations.

An exemplative model of the delayed-negative-feedback motif was first de-
veloped by Goodwin [68,69] in the 1960s to model the periodic enzyme synthesis
in bacteria

τm ṁ = −m+Km
1

1 + [(p+ u)/κ]ν (2.2a)

τe ė = −e+Kem (2.2b)
τp ṗ = −p+Kp e (2.2c)
y = e (2.2d)

where the state variables m, e, and p indicate the concentrations of mRNA,
enzyme, and end-product protein. This model can be seen as a cascade of three
linear systems and a static nonlinearity with a feedback. Parameters Ki and τi
(with i = m, e, or p) denote the static gains and the time constants of the
linear blocks, respectively. Parameters κ and ν shape the static nonlinearity.
For simplicity, the input u enters directly in the static feedback and the output y
is the concentration of enzyme.



2.1. Endogenous mechanisms of oscillators 15

Figure 2.5 – Dissection of delayed-negative-feedback motif. (Left) This submotif
exhibits a monotone increasing characteristic. In addition to this static behavior, a
delay is introduced by the chain of excitatory component. (Center) This submotif
exhibits a monotone decreasing characteristic. (Right) Combining those submotifs
produces smooth oscillations. They result from the global dissipation produced by
the negative-feedback loop and the local excitation created by the delay in the loop.

The submotif system corresponding to the chain of excitatory nodes (Fig-
ure 2.5, left) is given by

τm ṁ = −m+Km u1, (2.3a)
τe ė = −e+Kem, (2.3b)
y1 = e. (2.3c)

The submotif system corresponding to the inhibitory node (Figure 2.5, center)
is given by

τp ṗ = −p+Kp u2, (2.4a)

y2 = 1
1 + [p/κ]ν . (2.4b)

The mechanism of this motif is conceptually similar to the mechanism iden-
tified in the quasi-harmonic regime of the van der Pol oscillator. Indeed, the lo-
cal excitation comes in the negative feedback loop: one creates a negative slope
at the origin (van der Pol) and the other induces a delay (delayed-negative-
feedback).
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Figure 2.6 – Dissection of hysteresis-and-adaptation motif. (Left) This submotif ex-
hibits a bistable characteristic (hysteresis) induced by the autocatalysis on the exci-
tatory component. (Center) This submotif exhibits a monotone decreasing charac-
teristic. (Right) Combining those submotifs produces relaxation oscillations. They
result from the global dissipation produced by the negative-feedback loop and the
local excitation created by the dynamical hysteresis.

Hysteresis-and-adaptation motif

The second motif is a negative feedback between an excitatory and an in-
hibitory component. In addition, there is an autocatalytic (positive) feedback
on the excitatory component. The global dissipation is again provided by the
inhibitory (negative) feedback loop. The local excitation is created by the dy-
namical hysteresis induced by the autocatalytic (positive) feedback loop (this
autocatalytic feedback may result from a fast E–E interaction).

Once again, we break the motif as illustrated in Figure 2.6. The submotif of
the excitatory node with the positive feedback leads to a characteristic which
exhibits bistability for some region of constant input values. From a mechanistic
point of view, the oscillations are created by the dynamical hysteresis and a
slow adaptation. This motif exhibits relaxation oscillations.

An exemplative model of the hysteresis-and-adaptation motif was developed
by FitzHugh and Nagumo [48,130] to model an excitable system as a neuron

v̇ = v − v3/3− w + u (2.5a)
τ ẇ = a− bw + v (2.5b)
y = v (2.5c)

where v is a voltage-like variable and w is a recovery variable. The input u is
the magnitude of applied current and the output is the voltage-like variable v.
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The submotif systems are given by

v̇ = v − v3/3 + u1, (2.6a)
y1 = v, (2.6b)

and

τ ẇ = a− bw + u2, (2.7a)
y2 = −w. (2.7b)

The mechanism of this motif is identical to the mechanism identified in the
relaxation regime of the van der Pol oscillator.

2.2 Exogenous functions of oscillators
In this section, we describe exogenous functions of oscillators summarized in
Figure 2.7. Those exogenous functions fall into two classes: functions in re-
sponse to particular inputs (top) or functions as part of the collective behavior
in a network (bottom). This description is not intended to be exhaustive.

Response of an oscillator to particular inputs

In a deterministic framework, the response of an oscillator to periodic inputs
leads to the concept of entrainment [74,146] (see Figure 2.7, top left). A system
is entrainable if its steady-state response to a periodic input is a periodic output
with the same period (or frequency) as the input.

The concept of entrainment is for example central to the study of circadian
rhythms. Circadian entrainment is a biological process at the core of most
living organisms which need to adapt their physiological activity to the 24
hours environmental cycle associated with earth’s rotation (e.g. variations in
light or temperature condition) [140].

In a stochastic framework, the response of an oscillatory system to fluctuat-
ing inputs leads to the concept of reliability [20,111,116]. A stochastic system
is reliable if the same (fluctuating) input elicits essentially identical responses
following a transient time interval independently on the initial condition of the
system, that is, the response to a given signal is reproducible.

The concept of reliability plays for example a central role in the context
of sensory systems. A driving spiking input containing sensory information
(e.g. from the retina) is transmitted or not depending on the intrinsic prop-
erties of the relay and on the modulating input which alters the specifics of
transmission [4, 5].
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entrainment

synchronization phase-locking

reliability

Figure 2.7 – Exogenous functions of oscillators. The function of oscillatory systems
often lies in their robust ability to respond to particular inputs (top) and to behave
collectively when coupled to each other (bottom).

Collective behavior of coupled oscillators

The behavior of an oscillatory system coupled to other oscillatory systems leads
to the concept of collective behavior: synchronization or phase-locking [100,
126]. Systems have a collective behavior if each oscillatory system may influence
some or all the others in such a way that each oscillator maintains a constant
phase difference with respect to the others.

The scientific interest in collective behaviors (and in particular in synchro-
nization) of coupled oscillators goes back to the work by Huygens (1673) on
coupled pendulum clocks [86] and, nowadays, is perhaps the most widely stud-
ied dynamical concept (see for example the inspiring books of Winfree [195] or
Strogatz [170] and recent reviews on the subject [33,34,123]).

Response and collective behavior in a network of oscillators

A network of oscillatory systems in which each oscillator influences some of the
others to achieve a collective behavior may also be subject to external inputs.
In this case, the collective behavior of the network impacts how the network is
entrained by periodic inputs or relays fluctuating inputs (see Figure 2.8).
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Figure 2.8 – Oscillators in a network. In many situations, an oscillatory system
belongs to a larger network of coupled oscillators. The network has its own input and
its own output.

2.3 Systems questions for oscillators

In this section, our objective is to address input–output systems questions for
oscillators. Although classical in their formulation, most of those questions have
been addressed only for equilibrium systems, that is, systems whose isolated
steady-state behavior is a stable equilibrium.

2.3.1 How to compare oscillators?

Given experimental observations, mathematical modelers have conjectured dif-
ferent internal mechanisms leading to different mathematical models of the
same phenomenon. For example, in the 1990s, two different models of the
mitosis (the mechanism responsible for the cell division cycle) were published
in the same issue of the same journal. Albert Goldbeter proposed a model
based on the delayed negative-feedback motif [63], while John Tyson suggested
a model based on the hysteresis-and-adaptation [177].

In this context, a first natural question is thus “How to compare oscillatory
systems?”. How to compare two mathematical models? How to compare a
mathematical model to experimental data?

Comparing systems with a proper metric has been central to systems theory
(see e.g. Zames [39, 197], Vinnicombe [183], Georgiou [57] for exemplative
milestones), offering novel frameworks for system identification and robustness
analysis.

Following those steps and motivated by the prevalence of input–output char-
acteristics in experiments, we aim at developing the right metrics (accounting
for natural invariance properties) for oscillatory systems.
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2.3.2 How to identify sensitive parameters in oscillators?

With recent experimental advances in biology, the molecular bases of biologi-
cal processes have been increasingly unfolded in various organisms. However,
even though the architecture of those biological processes is better known, the
specific design and robustness mechanisms implemented in those architectures
remain unknown [134,168]. In addition, the values of the model parameters are
often chosen empirically using trial-and-error techniques due to few quantitative
experimental data (see the quantitative model for circadian rhythms [108,109]).

In this context, a second natural question is thus “How to identify sensitive
parameters in oscillatory systems?”. How can a system characteristic change
in response to changes in the parameter values or to changes in the system
structure?

Sensitivity analysis is classical in systems theory (see e.g. [53,153,175,181]).
Sensitivity analysis for oscillators has been widely studied in terms of the sensi-
tivity of the trajectories [22,95,144] and of the zero-input steady-state behavior
(period and periodic orbit locus) [87, 168, 191, 192]. More recently, empirical
phase-based performance measures have been proposed [14, 77, 78]. However,
those sensitivity analysis tools miss the input–output nature of experiments.

We aim at developing a sensitivity analysis for oscillatory systems that can
be linked to the available input–output experimental data in the context of
biological oscillators.

2.3.3 How to exploit the geometry underlying oscillators?

Experimental data reveal that, for some oscillatory systems, the mechanism
leading to oscillations relies on the underlying geometric structure. In neuro-
dynamics, the time-scale separation plays a central role. Studying the system
at the different time scales may help to better understand the mechanisms.

In this context, a third natural question is thus “How to exploit the geom-
etry underlying oscillators?”

Singular perturbation methods are natural tools for systems with a strong
time-scale separation [45, 46]. The essence of this theory is that the discon-
tinuity of solutions caused by singular perturbation is avoided if the system
is analyzed in separated time scales. The concept of fast-threshold modula-
tion exploits the geometric structure underlying oscillatory systems to predict
synchronization properties [160]. However, this concept does not have a clear
generalization for high dimensional models and for large networks.

We aim at exploiting the geometry underlying the system in order to predict
input–output properties of the systems that can be validated experimentally,
such as entrainment or synchronization.
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2.4 Methods from the state space to the circle
In this section, we emphasize the parallel developments of state-space methods
and circle methods for oscillators.

Methods in the state space

State-space representations are essential to model and study the internal cir-
cuitry of the system.

Sufficient conditions for the existence and stability of periodic orbits have
been proposed for different classes of systems: relay relaxation oscillators [179,
180] or passive oscillators [167].

Synchronization between trajectories of state-space models is analyzed as an
incremental stability property [112] (i.e. the trajectories converge to one another
rather than being attracted toward some equilibrium position). The leading
concepts of Lyapunov analysis [7], dissipativity analysis [10, 80, 154, 163, 167],
and—to a growing extent—contraction analysis [136, 137, 147, 159, 162, 189],
provide natural system theoretic tools to study synchronization.

Methods on the circle

Circle representations focus on the analysis of entrainment and synchronization
phenomena (see e.g. Winfree [193, 195], Kuramoto [100, 101], Glass [60, 61],
Strogatz [170,171], for exemplative milestones).

At the interface between state-space and circle methods

The key ingredient connecting state-space and circle representations is the con-
cept of phase map. A phase map Θ is a mapping that associates with every
point x in the basin of attraction of the oscillator B(γ) (included in the state
space X ) a phase θ on the unit circle S1, that is,

Θ : B(γ) ⊆ X → S1 : x 7→ θ. (2.8)

Away from a finite number of isolated points, the phase map Θ is a continuous
map. In general (for nonzero input), the phase dynamics are often hard to
derive.

Due to the nonlinear nature of the system, the phase map is often not known
explicitly. However, in many situations, the global knowledge of the phase map
is not required to study oscillator dynamics. Instead, a local asymptotic phase
model may be computed from the information obtained through phase resetting
experiments.

Starting with the pioneering work of Arthur Winfree [195], the phase re-
sponse curve (PRC) of an oscillator has emerged as a fundamental input–output
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characteristic of oscillators. Analogously to the static gain of a transfer func-
tion, the phase response curve measures a steady-sate (asymptotic) property
of the system output in response to an impulsive input. For the static gain,
the measured quantity is the integral of the response; for the phase response
curve, the measured quantity is the phase shift between the perturbed and
unperturbed responses. Because of the periodic nature of the steady-state be-
havior, this phase shift depends in magnitude and in sign (advance or delay)
on the phase of the impulsive input. The phase response curve is therefore a
curve rather than a scalar. In many situations, the phase response curve can
be determined experimentally and provides unique data for the model identi-
fication of the oscillator. Likewise, numerical methods exist to compute the
phase response curve from a state-space model of the oscillator. Finally, the
phase response curve is the fundamental mathematical information required to
reduce a n-dimensional state-space model to a one-dimensional (phase) center
manifold of a hyperbolic periodic orbit.

2.5 Summary
In this chapter, we gave an overview of oscillators as open systems, starting from
the endogenous mechanisms creating the oscillation, enlightening the exogenous
character of their functions, and addressing input–output systems questions.
We briefly reviewed oscillator models in the state space and on the circle.
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Phase response curves

As a preliminary to the results developed in the sequel, we aim at giving an
overview of phase response curves, as the fundamental bridge between systems
methods in the state space (for the detailed modeling) and systems methods
on the circle (for the analysis).

This chapter is organized as follows. Section 3.1 introduces intuitively the
concept of phase response curves from the viewpoint of an experimentalist
performing phase resetting experiments. Section 3.2 provides the appropriate
mathematical framework to define the notion of phase response curves in the
context of input–output time-invariant state-space models. It emphasizes the
role of the phase map and its isochrons to study oscillators on the unit circle.
Section 3.3 reviews the use of phase response curves in phase models for single
oscillators and coupled oscillators. Section 3.4 shows how standard asymptotic
methods (averaging theory and singular perturbation theory) may be used to
derive approximate phase models. Section 3.5 discusses numerical methods
that compute (exact or approximate) phase response curves from a state-space
model.

Contributions. The main contribution of this chapter is to provide a com-
prehensive review on the concept of phase response curve: from experiments,
from state-space models, and in phase models. Two technical contributions
of this chapter are (i) to derive phase maps and dynamics on the circle for
oscillators by exploiting classical asymptotic methods and (ii) to introduce a
novel first-order approximate method for computing phase response curves.

The material of Section 3.4 is the result of a collaboration with Alexan-
dre Mauroy (postdoctoral researcher at the University of California, Santa
Barbara).

23
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3.1 Phase response curves from experiments
An experimentalist often observes an oscillatory system comes through the reg-
ular repetition of a particular event (e.g. the onset of daily locomotor activity
of rodents [30] in the original work plotting a phase response curve). One of
the simplest modeling experiments is to perturb the oscillatory behavior for a
short period of time (short with respect to the oscillation period) and to record
the altered timing of the subsequent occurrences of the observable event once
the system has recovered its prior rhythmicity. The phase of the oscillator is
said to have “reset”. In general, the phase reset does not only depend on the
perturbation itself (magnitude and shape) but also on its timing (or phase) dur-
ing the cycle. In this section, we formalize the basic experimental paradigm of
phase resetting experiments for rhythms and introduce intuitively the concept
of phase response curves following the terminology in [60,195].

In isolation condition (closed system), an oscillatory system exhibits a pre-
cise rhythm, that is, a periodic behavior, and the period T of the rhythm is
assumed constant (Figure 3.1, top). To facilitate the comparison of rhythms
with different periods (for example due to the variability in experimental prepa-
ration), it is convenient to introduce the notion of phase. In the absence of per-
turbation, the phase is a “normalized cyclic time” evolving on the unit circle.
Associating the onset of the observable event with phase 0 (or 2π), the phase
variable θ(t) at time t corresponds to the fraction of a period elapsed since the
last occurrence of the observable event. It grows linearly with time, that is,
θ(t) := ω (t − t̂i) (mod 2π) where ω := 2π/T is the angular frequency of the
oscillator and t̂i is the time of the last observable event.

Under the effect of a stimulus (phase resetting input) at time (ts− t̂0) after
one observable event, the next event times t̂i (for i = 1, 2, . . .) are altered.
For simplicity, we temporarily assume that the original rhythm is restored
immediately after the first post-stimulus event, meaning that observable events
occur at the original period T . We denote by T̂ := t̂1 − t̂0 the time interval
between two successive events that occur immediately before and after the
stimulus. It is convenient to normalize each quantity in order to facilitate
comparison between different experimental setups. Multiplying by ω = 2π/T ,
we have θ := ω (ts − t̂0) and τ̂ := ω T̂ = ω (t̂1 − t̂0).

The effect of a stimulation is to produce a phase shift ∆θ between the
perturbed and unperturbed oscillators. The phase shift ∆θ is given by

∆θ := 2π − τ̂ (wrapped in [−π, π)). (3.1)

Given a phase resetting input u(·), the dependence of the phase shift ∆θ on
the phase θ at which the stimulus was delivered is commonly called the phase
response curve (PRC). We denote it by Q(θ;u(·)), in order to stress that it is
a function of the phase which also depends on the input u(·).
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Figure 3.1 – Schematic representation of a phase resetting experiment for oscillators.
(Top) In isolation condition (closed system), the observable event (vertical arrow)
occurs every T units of time. (Bottom) Under the effect of a stimulus (phase reset-
ting input) at time (ts − t̂0) after an event, the successive observable event times t̂i
(for i = 1, 2, . . .) are altered. T̂ := t̂1 − t̂0 denotes the time interval between the
pre- and post-stimulus events. Under the simplifying assumption that the prior
rhythm is restored immediately after the first post-stimulus event and, using nor-
malized time, the perturbation in timing is modeled by the phase shift ∆θ := 2π − τ̂
(wrapped in [−π, π)) or the new phase θ+ := 2π− (τ̂ − θ) (mod 2π). The phase shift
∆θ measures the phase difference between the perturbed and unperturbed oscilla-
tors. The new phase θ+ is the phase (at time ts) from which the oscillator appears
to resume.
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An alternative representation emphasizes the new phase θ+ instead of the
phase difference. Just before the stimulus the oscillator had reached phase θ;
just after, it appears to resume from the new phase θ+. The new phase θ+ is
given by

θ+ := 2π − (τ̂ − θ) (mod 2π). (3.2)

Given a phase resetting input u(·), the dependence of the new phase θ+ on
the phase θ at which the stimulus was delivered is called the phase transition
curve (PTC). We denote it by R(θ;u(·)), mimicking the notation for the phase
response curve.

Under our approximation that the initial rhythm is recovered immediately
after the perturbation, the phase shift computed from the first post-stimulus
event is identical to the asymptotic phase shift computed long after the per-
turbation. This assumption neglects the transient change in the rhythm until
a new steady-state is reached. To model the transient, we call τ̂i := ω (t̂i − t̂0)
the normalized time from the event before the stimulus to the ith event,
which leads to the phase shift ∆θ̂i := 2π − τ̂i (wrapped in [−π, π)) and the
new phase θ̂+

i := 2π − (τ̂i − θ) (mod 2π). If the oscillating phenomenon is
time-invariant, we expect an asymptotic new steady-state behavior such that
limi→∞(τ̂i+1 − τ̂i) = 2π, limi→∞∆θ̂i =: ∆θ, and limi→∞ θ̂+

i =: θ+.

Remark. The operator wrap : R → [−π, π) : ∆θ 7→ [∆θ + π (mod 2π)] − π
wraps any phase difference ∆θ ∈ R into the principal interval [−π, π). It plays
a similar role to the modulo 2π operator that maps any real number on the
principal interval [0, 2π).

3.2 Phase response curves
from state-space models

In this section, we review the mathematical characterization of phase response
curves for oscillators described by time-invariant state-space models. We first
recall basic definitions about periodic orbits in state-space models of open dy-
namical systems. Then, we introduce the concept of phase maps and isochrons
that are key players in the study of oscillators on the unit circle and we illus-
trate them with simple examples. Finally we define phase response curves as
steady-state input–output characteristics of oscillators.
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3.2.1 State-space models
We consider open dynamical systems described by nonlinear time-invariant
state-space models (see [44,72,92,161] for details)

ẋ = f(x, u) (3.3a)
y = h(x) (3.3b)

where state variables x(t) evolve on some subset X ⊆ Rn, and input values u(t)
and output values y(t) belong to some subsets U ⊆ R and Y ⊆ R, respectively.
The states (x1, . . . , xn) typically represent internal variables involved in the
system dynamics. They may be concentrations of chemical species (e.g. mRNA
or proteins), or the membrane potential and the gating variables of a neuron.
The input variable u can be seen as an external signal that acts as a stimulus.
It may represent the action of the light or the action of the applied current.
The output variable y can be thought of as a describing response that allows
a partial read-out of the system state vector (x1, . . . , xn). For example, it may
be a measurement provided by a green fluorescent protein or by an electrode.

The vector field f : X ×U → Rn and the measurement map h : X → Y sup-
port all the usual smoothness conditions that are necessary for existence and
uniqueness of solutions. The input signal u : [0,∞) → U is locally essentially
compact (i.e. images of restrictions to finite intervals are compact). We write
φ(t, x0, u(·)) for the solution at time t to the initial value problem ẋ = f(x, u)
with the initial condition x0 ∈ X at time 0, that is, φ(0, x0, u(·)) = x0. (For pre-
sentation convenience, we consider single-input and single-output systems. All
developments can be easily generalized to multiple-input and multiple-output
systems.)

An oscillator is an open dynamical system whose zero-input steady-state
behavior is periodic rather than constant. Formally, we assume that the zero-
input system ẋ = f(x, 0) admits a locally hyperbolic stable periodic orbit γ ⊆
X . Picking an initial condition xγ0 on the periodic orbit γ, we describe the entire
invariant set by the locus of the (nonconstant) T -periodic solution φ(·, xγ0 ,0),
that is,

γ := {x ∈ X : x = φ(t, xγ0 ,0), t ∈ [0, T )} , (3.4)
where the period T > 0 is the smallest positive constant such that φ(t, xγ0 ,0) =
φ(t + T, xγ0 ,0) for all t ≥ 0 (and where 0 is the input identically equal to 0).
The corresponding angular frequency ω is given by ω = 2π/T .

The basin of attraction of γ (or oscillator stable set) is the maximal open
set from which the periodic orbit γ attracts, that is,

B(γ) :=
{
x0 ∈ X : lim

t→+∞
dist(φ(t, x0,0), γ) = 0

}
(3.5)

where dist(x, γ) := infy∈γ‖x− y‖2 is the distance from the point x ∈ X to the
set γ ⊆ X based on the Euclidean norm ‖·‖2 in Rn.
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Figure 3.2 – Phase maps and isochrons. The asymptotic phase map Θ : B(γ) → S1

associates with each point x in the basin B(γ) a scalar phase Θ(x) = θ on the unit
circle S1 such that limt→+∞‖φ(t, x,0) − φ(t + θ/ω, xγ0 ,0)‖2 = 0. The image of xγ0
through the phase map Θ is equal to 0. The set of points associated with the same
phase θ (i.e. a level set of the phase map) is called an isochron and is denoted by
I(θ).

3.2.2 Phase maps and isochrons
The concept of phase maps, as well as the notion of isochrons, are important
ingredients to study oscillator models. The brief exposition of phase maps given
below follows the terminology and definitions of [60, 195]. Some notations are
illustrated in Figure 3.2.

Since the periodic orbit γ is a one-dimensional manifold in Rn, it is home-
omorphic to the unit circle S1. It is thus naturally parametrized in terms of
a single scalar phase. The smooth bijective phase map Θ : γ → S1 associates
with each point x on the periodic orbit γ its phase Θ(x) =: ϑ on the unit
circle S1, such that,

x− φ(ϑ/ω, xγ0 ,0) = 0. (3.6)

This mapping is constructed such that the image of the reference point xγ0 is
equal to 0 (i.e. Θ(xγ0) := 0) and the progression along the periodic orbit (in
absence of perturbation) produces a constant increase in ϑ. The phase variable
ϑ : R≥0 → S1 is defined along each zero-input trajectory φ(·, x0,0) starting
from a point x0 on the periodic orbit γ, as ϑ(t) := Θ(φ(t, x0,0)) = ω t+Θ(x0)
for all times t ≥ 0. The phase dynamics are thus given by ϑ̇ = ω.

For a hyperbolic stable periodic orbit, the notion of phase can be extended
to any point x in the basin B(γ) by defining the concept of asymptotic phase.
The asymptotic phase map Θ : B(γ) → S1 associates with each point x in the
basin B(γ) its asymptotic phase Θ(x) =: θ on the unit circle S1, such that,

lim
t→+∞

‖φ(t, x,0)− φ(t, φ(θ/ω, xγ0 ,0),0)‖2 = 0. (3.7)
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Again, this mapping is constructed such that the image of xγ0 is equal to 0 and
such that the progression along any orbit in B(γ) (in absence of perturbation)
produces a constant increase in θ. The asymptotic phase variable θ : R≥0 → S1

is defined along each zero-input trajectory φ(·, x0,0) starting from a point x0
in the basin of attraction of γ, as θ(t) := Θ(φ(t, x0,0)) = ω t + Θ(x0) for all
times t ≥ 0. The asymptotic phase dynamics are thus given by θ̇ = ω.

The notion of asymptotic phase variable can be extended to any nonzero-
input trajectory φ(·, x0, u(·)) in the basin B(γ). In this case, the asymptotic
phase variable is defined as θ(t) := Θ(φ(t, x0, u(·))) for all times t ≥ 0. The
asymptotic phase dynamics in the case of a nonzero input is hard to derive in
general.
Remark. For notational convenience, we also introduce the map xγ : S1 → γ
which associates with each phase θ on the unit circle a point φ(θ/ω, xγ0 ,0) =:
xγ(θ) on the periodic orbit. By construction, this map is a re-parametrization
of the periodic trajectory staring from the initial condition xγ0 . It is equal to
the inverse of the phase map, that is, xγ(·) = Θ−1(·).

Level sets of the asymptotic phase map Θ, that is, sets of all points in the
basin of γ with the same asymptotic phase, are termed isochrons. Formally,
the isochron I(θ) associated with the asymptotic phase θ is the set

I(θ) := {x ∈ B(γ) : Θ(x) = θ} . (3.8)

Considering hyperbolic periodic orbits, isochrons are codimension-1 subman-
ifolds (diffeomorphic to Rn−1) crossing the periodic orbit transversally and
foliating the entire basin of attraction [71].

In general, the structure of the (asymptotic) phase maps and their isochrons
are very complex. This often makes their analytical computation impossible
and even their numerical computation intractable (or at least very expensive, in
particular for high-dimensional oscillator models). Most numerical techniques
relies on backward integration [75, 135, 158]. Recently, Mauroy and Mezić de-
veloped an elegant forward integration method [121] and extended this notion
to stable fixed points [122].

In the following, we illustrate the notion of phase maps on simple examples.

Example 1 (Integrate-and-fire oscillators). The integrate-and-fire dynamics
are expressed as one-dimensional state dynamics between two threshold val-
ues (see [1, 93]): a scalar state variable x monotonically increases between two
thresholds x and x, according to the dynamics

ẋ = f(x), with f(x) > 0, (3.9)
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for all x ∈ [x, x]. Upon reaching the upper threshold x, the state is instanta-
neously reset to the lower threshold x. Roughly speaking, the oscillator inte-
grates between the two thresholds and fires when reaching the upper threshold.

The asymptotic phase map Θ that corresponds to the integrate-and-fire
dynamics is the bijective change of variable given by

Θ(x) : x 7→ ω

∫ x

x

1
f(ξ) dξ , (3.10)

with the lower threshold x (resp. the upper threshold x) being mapped to θ = 0
(resp. θ = 2π).

Example 2 (Oscillators in polar coordinates). The simplest form of two-
dimensional oscillators is expressed in polar coordinates

ψ̇ = fψ(ψ, r) (3.11a)
ṙ = fr(ψ, r) (3.11b)

where ψ ∈ S1 is a geometric phase on the circle and r > 0 is a positive radius.
Assuming the existence of r̄ such that fr(ψ, r̄) = 0 and (∂fr/∂r)(ψ, r̄) < 0
guarantees the existence of a periodic orbit with r = r̄. Additional symmetry
assumptions on the vector fields yield isochrons preserving this symmetry.

Radial symmetry. We assume the radial symmetry of the geometric phase
vector field, that is, ψ̇ = fψ(ψ, r) = fψ(ψ). The isochrons must preserve this
radial symmetry. Then, we have Θ(ψ, r) = Ξ(ψ) where Ξ : S1 → S1 is a scalar
function to be determined. The function Ξ(·) is derived from the geometric
phase dynamics and we have Ξ(ψ) = ω

∫ ψ
0

1
fψ(ξ) dξ.

The asymptotic phase map Θ that corresponds to a two-dimensional dy-
namics with radial symmetry of the geometric phase vector field is the change
of variable given by

Θ(ψ, r) : (ψ, r) 7→ ω

∫ ψ

0

1
fψ(ξ) dξ. (3.12)

Points (0, r̄) with a geometric phase equal to 0 are mapped to 0, that is,
Θ(0, r) = 0 for all r > 0.

Polar symmetry. We assume the polar symmetry of the vector field, that is,
ψ̇ = fψ(ψ, r) = fψ(r) and ṙ = fr(ψ, r) = fr(r). The isochrons must preserve
this polar symmetry. Then, we have Θ(ψ, r) = ψ − Ξ(r) where Ξ : R→ R is a
scalar function to be determined. Differentiating the aforementioned expression
with regard to time, we get dΘ

dt (ψ, r) = dψ
dt −

∂Ξ
∂r (r) drdt = ω since all points on

the isochron move with the same frequency ω. Rearranging terms, we have
∂Ξ
∂r (r) = [fψ(r)− ω] /fr(r) and the scalar function Ξ(·) is given by Ξ(r) =
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Ξ(r̄) +
∫ r
r̄
{[fψ(ξ)− ω] /fr(ξ)} dξ. Due to the polar symmetry, the geometric

phase evolves at a constant speed on the periodic orbit (r = r̄). The geometric
phase is thus equal to the temporal phase on the periodic orbit (r = r̄). So we
may enforce Θ(ψ, r̄) = ψ on the periodic orbit (r = r̄) and it yields Ξ(r̄) = 0.

The asymptotic phase map Θ that corresponds to a two-dimensional dy-
namics with polar symmetry is the change of variable given by

Θ(ψ, r) : (ψ, r) 7→ ψ −
∫ r

r̄

fψ(ξ)− ω
fr(ξ)

dξ. (3.13)

3.2.3 Response to phase resetting inputs
In many situations, the global knowledge of the asymptotic phase map is not
required to study oscillator dynamics. Instead, a local asymptotic phase model
may be computed from the information obtained through phase resetting ex-
periments.

A phase resetting input u(·) is such that, for an initial condition x0, the
perturbed solution starting from x0 asymptotically converges to a phase shifted
periodic solution with initial condition xγ0 and zero input, that is,

lim
t→∞

∥∥φ(t, x0, u(·))− φ(t+ θ+/ω, xγ0 ,0)
∥∥

2 = 0 (3.14)

where θ+ ∈ S1.
We define the basin of attraction of γ under a phase resetting input u(·) as

the maximal open set from which the periodic orbit γ asymptotically attracts,
that is,

B(γ;u(·)) :=
{
x0 ∈ X : lim

t→+∞
dist(φ(t, x0, u(·)), γ) = 0

}
. (3.15)

Given a phase resetting input u(·), the asymptotic reset phase map Θ+ :
B(γ;u(·))→ S1 associates with each point x in the set B(γ;u(·)) its asymptotic
reset phase Θ+(x;u(·)) =: θ+ on the unit circle S1, see (3.14). The notation
stresses that this map is a function of the initial condition which also depends
on the input u(·).
Remark. Any input signal converging asymptotically to zero and such that the
trajectory stays in the basin B(γ) is a phase resetting input.
Remark. The asymptotic reset phase Θ+(x;u(·)) may also be thought of as the
initial phase of an unperturbed system from which the reset trajectory appears
to resume. It is trivial that

Θ+(x;u(·)) = lim
t→+∞

Θ(φ(−t, φ(t, x, u(·)),0)) (3.16)

= lim
t→+∞

[Θ(φ(t, x, u(·)))− ω t] (mod 2π). (3.17)



32 Chapter 3. Phase response curves

For an impulse (u(·) = α δ(·)), we have

Θ+(x;α δ(·)) = lim
t→0+

Θ(φ(t, x, α δ(·))). (3.18)

For a pulse of finite duration (u(·) = α(·) [1+(·)− 1+(· −∆)]), we have

Θ+(x;u(·)) = Θ(φ(∆, x, α(·)))− ω∆ (mod 2π). (3.19)

Definition 1. Given a phase resetting input u(·), the (finite) phase response
curve (PRC) is the map Q(·;u(·)) : S1 → [−π, π) which associates with each
phase θ a phase shift ∆θ = Q(θ;u(·)) defined as

Q(θ;u(·)) := Θ+(xγ(θ);u(·))− θ (wrapped in [−π, π)) (3.20)

Similarly, the phase transition curve (PTC) is the map R(·;u(·)) : S1 → S1

which associates with each phase θ the new phase θ+ = R(θ;u(·)) defined as

R(θ;u(·)) := Θ+(xγ(θ);u(·)) (3.21)

A mathematically more abstract—yet very useful—tool is the infinitesimal
phase response curve. It captures the same information in the limit of Dirac
delta input with infinitesimally small amplitude (i.e. u(·) = α δ(·) with α→ 0).

Definition 2. The (input) infinitesimal phase response curve (iPRC) is the
map q : S1 → R defined as the directional derivative

q(θ) := DΘ(xγ(θ))[∂f
∂u

(xγ(θ), 0)] (3.22)

where
DΘ(x)[η] := lim

h→0

Θ(x+ h η)−Θ(x)
h

. (3.23)

The directional derivative can be computed as the inner product in Rn

q(θ) = DΘ(xγ(θ))[∂f
∂u

(xγ(θ), 0)] =
〈
∇xΘ(xγ(θ)), ∂f

∂u
(xγ(θ), 0)

〉
(3.24)

where ∇xΘ(xγ(θ)) is the gradient of the asymptotic phase map Θ at the
point xγ(θ). The map p : S1 → Rn which associates with each phase θ the
gradient of the asymptotic map Θ at the point xγ(θ), that is,

p(θ) := ∇xΘ(xγ(θ)), (3.25)

is the state infinitesimal phase response curve.

Remark. The phase response curve Q(·;α δ(·)) for impulse of small amplitude
(i.e. α � 1) is, by definition, well approximated by the infinitesimal phase
response curve, that is, Q(·;α δ(·)) = α q(·) +O(α2).
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continuous-time phase model

state-space model

hybrid phase model

weak input impulse train

Figure 3.3 – Phase models for single oscillators. For weak inputs, phase reduction
methods lead to continuous-time phase models characterized by

{
ω, q(·), h̃(·)

}
. For

impulse trains, phase reduction methods lead to hybrid phase models characterized
by
{
ω,Q(·;α δ(·)), h̃(·)

}
(where (1) stands for t 6= tk and (2) stands for t = tk)

3.3 Phase response curves in phase models
In this section, we show the utility of the phase response curves in canonical
phase models for single oscillators and then for coupled oscillators. Our pre-
sentation is informal and we refer to the pioneering papers [43, 100, 126, 193]
and the books [60,85,89,155,195] for further details.

3.3.1 Phase models for single oscillators
We review two popular phase models, which are obtained through phase reduc-
tion methods in the case of weak inputs and impulse trains, respectively (see
Figure 3.3).

Weak input

A popular simplification arises when the input signal is weak, that is,

|u(t)| � 1 , for all t ≥ 0. (3.26)

Any solution φ(t, x0, u(·)) of the oscillator model which starts in a small neigh-
borhood of the hyperbolic stable periodic orbit γ stays in its neighborhood.
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The n-dimensional state-space model can thus be approximated by a one-
dimensional continuous-time phase model (see [43, 85, 89, 100, 155, 193, 195])

θ̇ = ω + q(θ)u (3.27a)
y = h̃(θ) (3.27b)

where the phase variable θ evolves on the unit circle S1. This continuous-
time phase model is fully characterized by the angular frequency ω > 0, the
infinitesimal phase response curve q : S1 → R and the measurement map
h̃ : S1 → Y defined as h̃(θ) = (h ◦ xγ)(θ).

Impulse train

Another simplification arises when the input signal is an impulse train, that is,

u(t) = α

∞∑
k=0

δ(t− tk) , with tk > 0. (3.28)

Any solution φ(t, x0, u(·)) of the oscillator model which starts from the periodic
orbit γ leaves the periodic orbit under the effect of an impulse and converges
back to the periodic orbit. If the steady-state of the periodic orbit is recovered
between any two successive impulses, the n-dimensional state-space model can
be approximated by a one-dimensional hybrid phase model (see [60, 89, 123]),
with

1. the (constant-time) flow rule

θ̇ = ω, for all t 6= tk, (3.29a)

2. the (discrete-time) jump rule (i.e. the kick)

θ+ = θ +Q(θ;α δ(·)), for all t = tk, (3.29b)

3. the measurement map

y = h̃(θ), for all t, (3.29c)

where the phase variable θ evolves on the unit circle S1. This hybrid phase
model is fully characterized by the angular frequency ω > 0, the phase response
curve Q(·;α δ(·)) : S1 → [−π, π) and the measurement map h̃ : S1 → Y.
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3.3.2 Phase models for coupled oscillators
Most collective phenomena among oscillators in nature arise in large networks
of oscillators. Each oscillator dynamics is written, for i = 1, . . . , N , as

ẋi = fi(xi, ui), (3.30a)
yi = hi(xi). (3.30b)

and the general interconnection is given by

ui = Ki(y1, . . . , yN ), i = 1, . . . , N, (3.31)

where Ki(·) : Y1 × . . . × YN → Ui are coupling functions. For presentation
convenience, we define the re-parametrized coupling functions K̃i(·) such that

ui = K̃i(θ1, . . . , θN ), i = 1, . . . , N, (3.32)

where K̃i(·) : TN → Ui is given by K̃i(θ1, . . . , θN ) = Ki(h̃1(θ1), . . . , h̃N (θN )).
Popular coupling models are particular cases of this general formulation.

The diffusive coupling model is such that

ui =
∑
j∈Ni

αij (yj − yi) =
∑
j∈Ni

αij (h̃j(θj)− h̃i(θi)), i = 1, . . . , N, (3.33)

where αij are positive constant and Ni ⊆ N is the subset of oscillators trans-
mitting their outputs to the ith oscillator. (The set N = {1, . . . , N} denotes
all oscillators in the network.)

The impulsive coupling model is such that

ui =
∑
j∈Ni

αij

∞∑
k=0

δ(t− tjk), with θj(tjk) = 0 for j ∈ Ni, (3.34)

where αij is a positive constant for excitatory impulses or a negative constant
for inhibitory impulses and Ni ⊆ N\{i} is the subset of oscillators transmitting
a kick to the ith oscillator.

In the following, we illustrate how the phase response curve is involved in
the phase description of those networks. For simplicity, we consider the case of
two coupled oscillators. (The general case can be found in [85,101,123] for the
weak coupling and in [123,124,126] for the impulsive coupling.)

Weak coupling

We follow similar lines as in [101] (see also in [85]).
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Under weak coupling, it follows from (3.27) and (3.32) that the oscilla-
tors are characterized by the continuous-time phase dynamics (note that the
coupling does not need to be diffusive)

θ̇1 = ω1 + q1(θ1) K̃1(θ1, θ2), (3.35a)
θ̇2 = ω2 + q2(θ2) K̃2(θ1, θ2). (3.35b)

The angular frequencies can be decomposed as ωi = Ωi + ∆i, such that Ω1 =
Ω2 = Ω and the phases can be decomposed as θi = Ωi t+ϕi, where ϕi are slow
phase deviations from the uniform natural oscillation Ωi t. Then, the phase
dynamics are rewritten as

ϕ̇1 = ∆1 + q1(Ω1 t+ ϕ1) K̃1(Ω1 t+ ϕ1,Ω2 t+ ϕ2), (3.36a)
ϕ̇2 = ∆2 + q2(Ω2 t+ ϕ2) K̃2(Ω1 t+ ϕ1,Ω2 t+ ϕ2). (3.36b)

Note that qi(·) and K̃i(·) are considered here as the 2π-periodic extension of
the infinitesimal phase response curves and of the coupling functions on the
real line, i.e. qi(x) ≡ qi(x mod 2π) and K̃i(x, y) ≡ K̃i(x mod 2π, y mod 2π).
Next, averaging the above dynamics over the period T = 2π/Ω and under fixed
ϕ1 and ϕ2, we obtain

ϕ̇1 = ∆1 + L1(ϕ1, ϕ2), (3.37a)
ϕ̇2 = ∆2 + L2(ϕ1, ϕ2), (3.37b)

where the averaged functions L1(ϕ1, ϕ2) and L2(ϕ1, ϕ2) are given by

L1(ϕ1, ϕ2) = 1
T

∫ T

0
q1(Ω1 t+ ϕ1) K̃1(Ω1 t+ ϕ1,Ω2 t+ ϕ2) dt, (3.38a)

L2(ϕ1, ϕ2) = 1
T

∫ T

0
q2(Ω2 t+ ϕ2) K̃2(Ω1 t+ ϕ1,Ω2 t+ ϕ2) dt. (3.38b)

Using simple changes of variable, we have

Γ1(ϕ1 − ϕ2) := L1(ϕ1, ϕ2) = 1
2π

∫ 2π

0
q1(s) K̃1(s, s− (ϕ1 − ϕ2)) ds, (3.39a)

Γ2(ϕ2 − ϕ1) := L2(ϕ1, ϕ2) = 1
2π

∫ 2π

0
q2(s) K̃2(s− (ϕ2 − ϕ1), s) ds. (3.39b)

Finally, it is convenient to define the phase difference χ = ϕ2 − ϕ1. The phase
difference dynamics is given by

χ̇ = ∆ + Γ(χ) (3.40)

with ∆ := ∆2 −∆1 and Γ(χ) := Γ2(ϕ2 − ϕ1)− Γ1(ϕ1 − ϕ2).
The shape of the phase response curves q1(·) and q2(·) will affect the shape

of the coupling function Γ(·). They are thus critical to the phase difference
dynamics.
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Remark. The case of entrainment by a periodic signal u(·) can be seen as a
particular case of coupled oscillators. The oscillator 1 plays the role of a periodic
signal generator, such that u(t) = h̃u(θ1(t)) = h̃1(θ1(t)) with θ̇1 = ωu, and the
oscillator 2 is the entrained system. The coupling function are K1(θ1, θ2) = 0
and K2(θ1, θ2) = h̃1(θ1). The coupling function Γ is thus given by

Γ(χ) = 1
2π

∫ 2π

0
q2(s+ χ) h̃1(s) ds. (3.41)

Remark. Note that, in general, the case of resonant frequencies m1 Ω1 = m2 Ω2
may also be considered (see [85] for details).

Impulsive coupling

We follow similar lines as in [126].
Under impulsive coupling, the oscillators are characterized by the hybrid

phase dynamics

θ̇1 = ω1, if θ1 6= 0 and θ2 6= 0, (3.42a)
θ̇2 = ω2, if θ1 6= 0 and θ2 6= 0, (3.42b)
θ+

1 = θ1 +Q1(θ1;α δ(·)), if θ2 = 0, (3.42c)
θ+

2 = θ2 +Q2(θ2;α δ(·)), if θ1 = 0. (3.42d)

Since the oscillators are uncoupled between two kicks, all the information is
retained by considering the oscillator states at the discrete kick times only.

For instance, if the configuration of two coupled oscillators right after a kick
of oscillator 2 is (θ, 0), then the oscillators flow until the oscillator 1 reaches 0,
that is, for a duration 1

ω1
(2π − θ). After this flowing period, the phase of

oscillator 2 is equal to ω2
ω1

(2π − θ). Then, oscillator 1 sends a kick and the
configuration right after the kick is given by (0, H2(θ)), with

H2(θ) = ω2

ω1
(2π − θ) +Q2

(
ω2

ω1
(2π − θ);α δ(·)

)
(mod 2π). (3.43)

And, proceeding similarly for a second flowing period until the phase of oscil-
lator 2 reaches 0, we have that the configuration right after the second next
kick (that is, the next kick of oscillator 2) is given by (H1(H2(θ)), 0), with

H1(θ) = ω1

ω2
(2π − θ) +Q1

(
ω1

ω2
(2π − θ);α δ(·)

)
(mod 2π). (3.44)

The discrete map θ+ = R(θ) := (H1 ◦ H2)(θ) expresses the phase differences
between the two oscillators right after the successive kick times of oscillator 2.
Maps H1(·) and H2(·) are known as the firing maps and the map R(·) is called
the return map.
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quasi-harmonic limit relaxation limit

Figure 3.4 – The van der Pol oscillator exhibits two different oscillation regimes:
the quasi-harmonic (µ � 1) and the relaxation (µ � 1) oscillation regimes. Quasi-
harmonic and relaxation regimes are displayed in (x, v) and (x, z) state-spaces, re-
spectively.

3.4 Phase response curves
and asymptotic methods

In the following, we derive the phase map and the oscillator dynamics on the cir-
cle by exploiting classical asymptotic methods. For presentation convenience,
we illustrate the application of the asymptotic methods on the van der Pol
oscillator in the quasi-harmonic and relaxation limits (see Figure 3.4). (The
general case follows the same steps.)

We consider the van der Pol oscillator forced by an input u

ÿ − µ (1− y2) ẏ + y = u, u ∈ R, y ∈ R. (3.45)

In both cases, we emphasize the appearance of the infinitesimal phase response
curve q(·) in the phase model.

3.4.1 Averaging theory

To study the van der Pol oscillator in the quasi-harmonic limit, it is convenient
to express (2.1) in the state space (x, v) = (y, ẏ)

ẋ = v, (3.46a)
v̇ = −x+ µ (1− x2) v + u. (3.46b)
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quasi-harmonic limit relaxation limit

Figure 3.5 – The shape of the infinitesimal phase response curve (for the van der Pol
oscillator) is very different in both regimes. Typically, it is harmonic in the weakly
nonlinear oscillation regime and monotone (and hence discontinuous) in the relaxation
regime.

In polar coordinates (x, v) = (r sin(ψ), r cos(ψ)), dynamics (3.46) read

ψ̇ = 1− µ

r
g(r sin(ψ), r cos(ψ)) sin(ψ)− 1

r
sin(ψ)u (3.47a)

ṙ = µ g(r sin(ψ), r cos(ψ)) cos(ψ) + cos(ψ)u (3.47b)

where we denote g(y, ẏ) = (1− y2) ẏ to simplify notations.
For small values of µ� 1 and for weak inputs |u(t)| � 1 for all t ≥ 0, stan-

dard averaging theory guarantees that r stays in a O(µ, |u(t)|)-neighborhood of
r∗ = 2 (see [92] for details). Substituting r by r̃ = 2 +O(µ, |u(t)|) into (3.47a)
and keeping first-order terms in the equation yield

ψ̇ ≈ 1− µ

2 g(r̃ sin(ψ), r̃ cos(ψ)) sin(ψ)− 1
2 sin(ψ)u. (3.48)

The approximately equal sign (≈) means that (3.48) neglects higher order terms
in (µ, |u(t)|). This one-dimensional equation describes the dynamics of the
angular coordinate ψ ∈ S1. Note that this (geometric) angular coordinate is
different from the (temporal) asymptotic phase defined in (2.8).

Since the angular state dynamics (3.48) are one-dimensional, the asymptotic
phase map appears as a bijective change of variable θ = Θ(ψ) given by

Θ(ψ) : ψ 7→ ω

∫ ψ

0

1
1− µ

2 g(r̃ sin(ξ), r̃ cos(ξ)) sin(ξ) dξ. (3.49)

This change of variable rescales the state-space and the (temporal) phase dy-
namics are given by

θ̇ ≈ ∂Θ
∂ψ

dψ

dt
= ω + −ω sin(ψ)

r̃ − µ g(r̃ sin(ψ), r̃ cos(ψ)) sin(ψ)︸ ︷︷ ︸
=:qQH(θ)

u (3.50)
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where ψ = Θ−1(θ). The phase dynamics (3.50) are the addition of two terms:
the first term represents the autonomous angular frequency and the second term
represents the influence of the input on the dynamics. The function qQH(·) is
the (input) infinitesimal phase response curve. For values of µ tending to 0,
the asymptotic phase map Θ tends to the identity, the angular frequency ω
tends to 1, and the (input) infinitesimal phase response curve qQH(θ) tends to
− 1

2 sin(θ) (see Figure 3.5, left).

3.4.2 Singular perturbation theory
To study the van der Pol oscillator in the relaxation limit, it is convenient to
express (2.1) in Liénard’s coordinates (x, z) = (y, y − y3/3− ẏ/µ) as

1
µ2x

′ = x− x3/3− z (3.51a)

z′ = x− u (3.51b)

where the symbol ′ denotes the derivative with respect to s = t/µ.
For large values of µ (1/µ2 � 1), standard singular perturbation theory

reduces the dynamics (3.51) to (see [92] for details)

x′ = x

1− x2 −
1

1− x2 u (3.52)

on the critical manifold defined by z = x−x3/3 and to instantaneous “jumps” at
the folds in the critical manifold. Exploiting the central symmetry of the drift
vector field (invariance under point reflection through the origin), we reduce
the dynamics to the one-dimensional dynamics on the left branch of the critical
manifold: the state x monotonically increases on [−2,−1] according to (3.52)
and is reset to the lower threshold x = −2 when reaching the upper threshold
x = −1.

Again, since the state dynamics are one-dimensional, there is a bijective
change of variable θ = Θ(x) given by

Θ(x) : x 7→ ω

∫ x

x

1− ξ2

ξ
dξ . (3.53)

This change of variable rescales in such a way that the lower threshold x = −2
is mapped to θ = 0 and the upper threshold x = −1 to θ = 2π. The (temporal)
phase dynamics are then given by

θ′ = ∂Θ
∂x

dx

ds
= ω +

(
−ω
x

)
︸ ︷︷ ︸
=:qR(θ)

u (3.54)
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quasi-harmonic limit relaxation limit

Figure 3.6 – Isochrons of the van der Pol oscillator. (Left) In the quasi-harmonic limit
(µ = 0.01), isochrons are radial. (Right) In the relaxation limit (µ = 100), isochrons
are parallel to the x-axis. (The numerical computations have been performed by
Alexandre Mauroy [121,122].)

where x = Θ−1(θ). Here again, the phase dynamics (3.54) are given by the
addition of two terms: the autonomous angular frequency and the coupling
term. In this case, the phase sensitivity function (or infinitesimal phase re-
sponse curve) qR(·) is monotone on [0, 2π) (see Figure 3.5, right).

3.4.3 Numerical validations

In the following, we validate with numerical computations the geometric intu-
ition of both asymptotic methods.

In the quasi-harmonic limit, the vector field of the geometric phase has a
radial symmetry. As a consequence, the isochrons in the state-space (x, v) must
preserve this radial symmetry (see Figure 3.6, left).

In the relaxation limit, the van der Pol oscillator has an instantaneous
dynamics in the fast direction (parallel to x-axis). All trajectories starting
with the same initial value x0 and converging towards the same branch are
associated with the same phase. As a consequence, the isochrons in the state-
space (x, z) are parallel to the x-axis (see Figure 3.6, right). These intuitive
arguments are formally stated in Chapter 6.
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3.5 Computations of phase response curves
For a given state-space model, periodic orbits and phase response curves must
be computed numerically. In this section, we review the computation of the pe-
riodic orbit and the infinitesimal phase response curve as solutions to boundary
value problems. We also provide different methods to compute or approximate
the phase response curve associated with a particular phase resetting input.

3.5.1 Periodic orbits
The 2π-periodic steady-state solution xγ(·) and the angular frequency ω are
calculated by solving the boundary value problem (see [11,157])

dxγ

dθ
(θ)− 1

ω
f(xγ(θ), 0) = 0 (3.55a)

xγ(2π)− xγ(0) = 0 (3.55b)
ϕ̂(xγ(0)) = 0 (3.55c)

The boundary conditions are given by the periodicity condition (3.55b) which
ensures the periodicity of the map xγ(·) and the phase condition (3.55c) which
anchors a reference position xγ(0) = xγ0 along the periodic orbit. The phase
condition ϕ̂ : X → R is chosen such that it vanishes at an isolated point xγ0 on
the periodic orbit γ (see [157] for details).

Numerical algorithms to solve this boundary value problem are reviewed in
Appendix A.

3.5.2 Infinitesimal phase response curves
The (state) infinitesimal phase response curve p(·) is calculated by solving the
boundary value problem (see [43,70,101,117,118,132])

dp

dθ
(θ) + 1

ω

∂f

∂x
(xγ(θ), 0)> p(θ) = 0 (3.56a)

p(2π)− p(0) = 0 (3.56b)
〈p(θ), f(xγ(θ), 0)〉 = ω (3.56c)

(where the notation A> stands for the transpose of the matrix A). The bound-
ary condition (3.56b) imposes the periodicity of p(·) and the normalization con-
dition (3.56c) ensures a linear increase at rate ω of the phase variable θ along
zero-input trajectories. The (input) infinitesimal phase response curve q(·) is
then computed by applying (3.24). This method is often called the “adjoint
method”.

Numerical methods to solve this boundary value problem as a by-product
of the periodic orbit computation are presented in Appendix A.
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3.5.3 Phase response curves
In the following, we provide an “exact” method (up to numerical errors) to
compute the phase response curve Q(·;u(·)) of an oscillator state-space model
given a phase resetting input u(·). We also give several approximation methods
relying on the continuous phase model and its linearization.

“Exact” method on the state-space model

The simplest method to compute exactly (up to numerically errors) the phase
response curve of an oscillator state-space model is the direct application of
Definition 1. It is called the “direct method” (see [18,60,102,173,194,195]).

For each point of Q(θ;u(·)) (that is for θ = θi), the perturbed trajectory
φ(t, xγ(θi), u(·)) is computed by solving the initial value problem (3.3a) from
xγ(θi) up to its convergence back in a neighborhood of the periodic orbit, that
is, up to time t∗ such that dist(φ(t∗, xγ(θi), u(·)), γ) < ε (where ε is a chosen
error tolerance). The phase θ∗ = Θ(φ(t∗, xγ(θi), u(·))) is estimated using the
algorithm

θ∗ = arg min
θ∈S1

‖φ(t∗, xγ(θi), u(·))− xγ(θ)‖2 . (3.57)

Then, the asymptotic phase shift is measured by direct comparison with the
phase of an unperturbed trajectory at time t∗, that is,

Q(θi;u(·)) = θ∗ − (ω t∗ + θi). (3.58)

This method can be used for arbitrary phase resetting inputs and only
requires a good time integrator. However, it is highly expensive from a com-
putational point of view: each point of the phase response curve requires the
time simulation of the n-dimensional state-space model, up to the asymptotic
convergence of the perturbed trajectory towards the periodic orbit.

Approximate method based on the phase model

A second method to compute the phase response curve of an oscillator relies
on the application of the direct method to the continuous-time phase equa-
tion (3.27). The approximation is valid if the input is weak.

Decomposing the phase variable as θ(t) = ω t+ϕ(t) where ϕ(t) is the phase
deviation from the uniform natural oscillation ω t, we may rewrite the phase
equation (3.27) as follows

ϕ̇ = q(ω t+ ϕ)u(t), ϕ0 = θ0 (3.59)

where θ0 is the initial phase condition.
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The phase response curve associated with phase θ0 may be approximated by
the difference between the asymptotic value of the phase deviation variable ϕ(t)
(starting from the initial condition ϕ0 = θ0) and the initial phase θ0, that is,

Q(θ0;u(·)) ≈ lim
t→+∞

ϕ(t)− θ0 (3.60)

which tends to a constant value for phase resetting inputs. For phase resetting
inputs of finite duration ∆, we have Q(θ0;u(·)) ≈ ϕ(∆)− θ0.

Approximation method based on the linearized phase model

A third method to compute the phase response curve of an oscillator consists in
approximating the solution to (3.59) based on the linearization of this equation.
Considering the linearization up to the first or zeroth order yields two different
approximations.

First-order approximation. Linearizing (3.59) around the unperturbed tra-
jectory (ϕ∗(t), u∗(t)) = (ϕ0,0) starting from the initial phase deviation ϕ0, and
defining the perturbations δϕ(t) := ϕ(t) − ϕ∗(t) and δu(t) := u(t) − u∗(t), we
have

δϕ̇(t) ≈ dq

dθ
(ω t+ ϕ∗(t)) δu(t)︸ ︷︷ ︸

:=Aϕ(t)

δϕ(t) + q(ω t+ ϕ∗(t)) δu(t)︸ ︷︷ ︸
:=bϕ(t)

(3.61)

(where the approximately equal sign (≈) means that (3.61) neglects higher
order terms in ‖δϕ(t)‖22). The solution of the linearized equation is given by

δϕ(t) = Φϕ(t, 0) δϕ0 +
∫ t

0
Φϕ(t, s) bϕ(s) ds (3.62)

where the fundamental solution Φϕ(τ, σ) associated with Aϕ(t) is the solution
of the following equation

∂Φϕ(τ, σ)
∂τ

= Aϕ(τ) Φϕ(τ, σ), Φϕ(σ, σ) = I. (3.63)

As a consequence of uniqueness of solutions of ordinary differential equations,
the fundamental solution has the following property [161, Lemma C.4.1(f)]

det Φϕ(τ, σ) = exp
(∫ τ

σ

traceAϕ(ρ) dρ
)
, (3.64)

and, because the linearized phase equation is one-dimensional, this property
reduces to Φϕ(τ, σ) = exp

(∫ τ
σ
Aϕ(ρ) dρ

)
. The phase deviation perturbation is
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thus given by

δϕ(t) = exp
(∫ t

0
Aϕ(ρ) dρ

)
δϕ0 +

∫ t

0
exp

(∫ t

s

Aϕ(ρ) dρ
)
bϕ(s) ds , (3.65)

=
∫ t

0
exp

(∫ t

s

dq

dθ
(ω ρ+ ϕ0)u(ρ) dρ

)
q(ω s+ ϕ0)u(s) ds. (3.66)

Zeroth-order approximation. Truncating (3.61) after the independent term
(zeroth-order term), we have

δϕ̇(t) ≈ q(ω t+ ϕ∗(t)) δu(t)︸ ︷︷ ︸
:=bϕ(t)

(3.67)

(where the approximately equal sign (≈) means that (3.67) neglects all terms
in ‖δϕ(t)‖2) and the solution is given by

δϕ(t) = δϕ0 +
∫ t

0
bϕ(s) ds =

∫ t

0
q(ω s+ ϕ0)u(s) ds. (3.68)

In both zero- and first-order approximations, the phase response curve as-
sociated with the phase θ0 may be approximated by the asymptotic value of
the phase deviation perturbation, that is,

Q(θ0;u(·)) = lim
t→+∞

[ϕ∗(t) + δϕ(t)]− θ0 = lim
t→+∞

δϕ(t). (3.69)

The dependence in θ0 is hidden behind the fact that δϕ(t) is computed for
the system linearized around the trajectory starting from θ0. The first-order
approximation yields

Q(θ0;u(·)) ≈ lim
t→+∞

∫ t

0
exp

(∫ t

s

dq

dθ
(ω ρ+ θ0)u(ρ) dρ

)
q(ω s+ θ0)u(s) ds

(3.70)
and the zero-order approximation yields

Q(θ0;u(·)) ≈ lim
t→+∞

∫ t

0
q(ω s+ θ0)u(s) ds. (3.71)

3.6 Summary
In this chapter, we reviewed the concept of phase response curves, from ex-
periments, from state-space models, and in two popular phase models. We
also showed how classical asymptotic methods can be used to reveal the phase
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dynamics and thus the phase response curve. We also provided the tools to
compute or approximate phase response curves from a state-space model.

Both reduced representations {ω, q(·), h̃(·)} and {ω,Q(·;α δ(·)), h̃(·)} of os-
cillators share similar characteristics with the static gain of transfer function
representation of linear time-invariant systems. Both representations capture
asymptotic properties of the impulse response. They are independent of the
complexity of the internal state-space representation of the oscillators. More-
over, information on such characteristics is available experimentally.

As a consequence, the space of phase response curves is the appropriate
space to address input–output systems questions for oscillators.



Chapter 4

Metrics in the space of
phase response curves

Comparing systems with a proper metric has been central to systems theory
(see e.g. Zames [39,197], Georgiou [57,58], Vinnicombe [182,183], Martin [120],
or De Cock [29] for exemplative milestones), offering novel frameworks for
system identification and robustness analysis.

However, such systems questions have been mainly addressed for linear
time-invariant systems or for discrete-time random processes, and surprisingly
not for oscillators.

Motivated by the prevalence of input–output descriptions in previous work,
we develop a metric in the space of phase response curves for oscillators. We
equip the space of phase response curves with the differential structure of a
Riemannian manifold. The Riemannian structure is convenient to recast anal-
ysis problems in an optimization framework, providing for instance a notion of
steepest descent. It also provides a norm in the tangent space and a (geodesic)
distance between phase response curves.

This chapter is organized as follows. Section 4.1 presents basic features of
differential geometry used in this chapter. Section 4.2 describes two natural
equivalence properties in the space of phase response curves. Section 4.3 defines
the right metrics in the four spaces resulting from various combinations of these
equivalence properties. It also provides the numerics necessary to turn the
formal definitions into computable quantities.

Contributions. The main contributions of this chapter are (i) the identification
of natural equivalence properties and (ii) the definition of the right metrics in
the space of phase response curves.

47
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4.1 Basics of differential geometry on manifolds
In this section, we briefly recall basic concepts of differential geometry on man-
ifolds. This brief exposition follows the terminology and definitions of [3].

A manifoldM is endowed with a Riemannian metric gx(ξx, ζx) which is an
inner product of two elements ξx and ζx of the tangent space TxM at x. The
metric induces a norm on TxM at x:

‖ξx‖x :=
√
gx(ξx, ξx). (4.1)

The length of a curve γ : (a, b) ⊂ R→M is defined as

L(γ) :=
∫ b

a

‖γ̇(t)‖γ(t)dt. (4.2)

The geodesic distance between two points x and y onM is defined as

dist(x, y) = inf
Γ
L(γ) (4.3)

where Γ is the set of all curves inM joining points x and y

Γ = {γ : [0, 1]→M : γ(0) = x, γ(1) = y}. (4.4)

The curve(s) γ achieving this infimum is called the shortest geodesic between
x and y. The geodesic distance between two points defines a natural metric.
However, the notion of geodesic distance between two points is not obvious.
One may define the distance between two points onM differently.

The gradient of a smooth scalar function F : M → R at x ∈ M is the
unique element gradx F (x) ∈ TxM that satisfies

DF (x)[ξ] = gx(gradx F (x), ξ), ∀ξ ∈ TxM (4.5)

where
DF (x)[η] = lim

t→0

F (x+ tη)− F (x)
t

(4.6)

is the standard directional derivative of F at x in the direction η.
For quotient manifolds M = M/ ∼, where M is the total space and ∼ is

the equivalence relation that defines the quotient, the tangent space Tx̄M at x̄
admits a decomposition into its vertical and horizontal subspaces

Tx̄M = Hx̄ ⊕ Vx̄. (4.7)

A tangent vector ξx at x ∈ M has a unique representation ξ̄x̄ ∈ Hx̄ at x̄.
Provided that the metric ḡx̄ in the total space is invariant along the equivalence
classes, it defines a metric on the quotient space

gx(ξx, ζx) := ḡx̄(ξ̄x̄, ζ̄x̄). (4.8)
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If F̄ is a function onM that induces a function F onM, then one has

gradx F (x) = gradx̄ F̄ (x̄) (4.9)

in which gradx̄ F̄ (x̄) belongs to the horizontal subspace Hx̄.

4.2 Natural equivalence properties
Because (infinitesimal and finite) phase response curves are signals defined on
the unit circle and taking values on the real line, the most obvious Rieman-
nian structure is provided by the infinite-dimensional Hilbert space of square-
integrable signals

H0 := {q : q(·) ∈ L2(S1,R)} (4.10)

(where L2(S1,R) = {q : S1 → R : (
∫ 2π

0 |q(θ)|
2 dθ) 1

2 < ∞}) equipped with the
standard inner product

〈ξ(·), ζ(·)〉 :=
∫ 2π

0
ξ(θ) ζ(θ)∗ dθ (4.11)

and the associated norm

‖ξ(·)‖2 :=
√
〈ξ(·), ξ(·)〉. (4.12)

For technical reasons detailed later, we further assume that the first deriva-
tive of considered signals is also square-integrable and thus restrict the signal
space to

H1 :=
{
q : q(·) ∈ L2(S1,R), q′(·) ∈ L2(S1,R)

}
. (4.13)

The space H1 is a linear subspace of H0 and it inherits its inner product (4.11)
and its norm (4.12).

The linear space structure H1 is convenient for calculations but it fails to
capture important equivalence properties between phase response curves. In
many applications, it is not meaningful to distinguish among phase response
curves that are related by a scaling factor and/or a phase shift (see Figure 4.1).

Scaling equivalence The actual magnitude of the input signal acting on
the system is not always well-known. This uncertainty about the input magni-
tude induces an (inversely proportional) uncertainty about the phase response
magnitude. Indeed, the phase model (3.27) is equivalent to

θ̇ = ω + (q(θ)α)
(

1
α
u

)
(4.14a)

y = h̃(θ) (4.14b)
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scaling equivalence phase shifting equivalence

phase phase

Figure 4.1 – Natural equivalence properties in the space of phase response curves.
(Left) The scaling equivalence comes from an uncertainty about the input magnitude
that can be compensated by an inversely proportional uncertainty about the phase
response magnitude. (Right) The phase shifting equivalence comes from the arbitrary
choice of the reference position (associated with the initial phase) along the periodic
orbit.

for any scaling factor α. A scaling of the input magnitude can be counter-
balanced by an inverse scaling of the phase response curve. In those cases,
we consider a phase response curve q as the representation of an equivalence
class ∼ characterized by (see Figure 4.1, left)

q1 ∼ q2 ⇔ ∃α > 0 : q2(·) = q1(·)α. (4.15)

For example, in circadian rhythms, stimuli are pulses of light. They are
modeled by scaling the intensity of a parameter but absolute variation this
parameter is not known and empirically fitted to experimental data. On the
contrary, in neurodynamics, the stimulus is an applied current of controlled
magnitude. In this latter case, the scaling equivalence is less appropriate.

Phase shifting equivalence The choice of a reference position (associated
with the initial phase) along the periodic orbit is often arbitrary. In those
cases, we may wish to consider a phase response curve q as representative of
an equivalence class ∼ characterized by (see Figure 4.1, right)

q1 ∼ q2 ⇔ ∃σ ∈ S1 : q2(·) = q1(·+ σ) (4.16)

where σ denotes any phase shift.
For example, in circadian rhythms, experimental data are often collected by

observing the locomotor activity of the animal. The timing of this locomotor
activity is not easily linked to the time-evolution of molecular concentrations.
On the contrary, in neurons, the observable events are the action potentials gen-
erated in the membrane potential. If the membrane potential is a state variable
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q(·) 6∼ q(·)α q(·) ∼ q(·)α

q(·) 6∼ q(·+ σ) QA := H1 QB := H1/R>0

q(·) ∼ q(·+ σ) QC := H1/Shift(S1) QD := H1/(Shift(S1)× R>0)

Table 4.1 – Four spaces of phase response curves. Combining or not equivalence prop-
erties defines four infinite-dimensional spaces: one Hilbert space and three quotient
spaces of phase response curves.

of the model, there is no timing ambiguity and the phase shift equivalence is
not meaningful.

Those equivalence relations lead to the abstract—yet useful—concept of
quotient space. Each point of a quotient space is defined as an equivalence class
of signals. Since these equivalence classes are abstract objects, they cannot be
explicitly used in numerical computations. Algorithms on quotient space work
instead with representatives (in the total space) of these equivalence classes.

4.3 Metrics
Combining or not equivalence properties (4.15) and (4.16), we end up with
four infinite-dimensional spaces: one Hilbert space and three quotient spaces,
respectively, denoted by QA, QB, QC, or QD (see Table 4.1). In the next four
subsections, we will equip each space with an appropriate Riemannian metric
and provide an expression of tangent vectors, needed for the sensitivity analysis
in the subsequent sections

In the following, we denote by q an element of the considered space. It can
be a signal (infinitesimal or finite phase response curve) or an equivalence class
of those signals.

4.3.1 Metric on Hilbert space H1

The simplest space structure is Hilbert spaceQA := H1. The (flat) Riemannian
metric on QA is given by the inner product

gq(ξq, ζq) := 〈ξq, ζq〉 (4.17)

with (Euclidean) induced norm

‖ξq‖q :=
√
gq(ξq, ξq) =

√
〈ξq, ξq〉 = ‖ξq‖2. (4.18)
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Because the space QA is a linear space structure, the shortest path between
two elements q1 and q2 on QA is the straight line joining those elements. The
natural (geodesic) distance between two points q1 and q2 on QA is then given
by

dist(q1, q2) := ‖q1 − q2‖2. (4.19)

4.3.2 Metric on the quotient space H1/R>0

The space capturing the scaling equivalence (4.15) is the quotient space QB :=
H1/R>0. Each element q in QB represents an equivalence class

q = [q] := {q α : α > 0}. (4.20)

Those equivalence classes are rays (starting at 0) in the total space QB := H1.
The normalized metric on QB

gq(ξq, ζq) :=
〈ξq, ζq〉
〈q, q〉

, (4.21)

is invariant by scaling. As a consequence, it induces a Riemannian metric
gq(ξq, ζq) := gq(ξq, ζq) on QB. The norm in the tangent space TqQB at q is
given by

‖ξq‖q :=
√
gq(ξq, ξq) =

‖ξq‖2
‖q‖2

. (4.22)

A signal representation of a tangent vector at q ∈ QB relies on the decompo-
sition of the tangent space TqQB into its vertical and horizontal subspaces. The
vertical subspace Vq is the subspace of TqQB that is tangent to the equivalence
class [q], that is,

Vq = {q β : β ∈ R}. (4.23)
The horizontal space Hq is chosen as the orthogonal complement of Vq for the
metric gq(·, ·), that is,

Hq = {η ∈ TqQB : gq(η, q β) = 0}. (4.24)

The orthogonal projection Phq η of a vector η ∈ TqQB onto the horizontal space
Hq is given by

Phq η := η −
gq(η, q β)
gq(q β, q β) q β = η − 〈η, q〉

〈q, q〉
q. (4.25)

The distance between two points q1 and q2 on QB is defined as

dist(q1, q2) := cos−1
(
〈q1, q2〉
‖q1‖2 ‖q2‖2

)
(4.26)

(see [62] for metric on the unit sphere).
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4.3.3 Metric on the quotient space H1/ Shift(S1)
The space capturing the phase shifting equivalence (4.16) is the quotient space
QC := H1/Shift(S1). Each element q in QC represents an equivalence class

q = [q] = {q(·+ σ) : σ ∈ S1}. (4.27)

Those equivalence classes are closed one-dimensional curves (due to the peri-
odicity of the shift) on the infinite-dimensional hypersphere of radius ‖q‖2 in
the total space QC := H1.

The (flat) metric on QC

gq(ξq, ζq) := 〈ξq, ζq〉, (4.28)

is invariant by phase shifting along the equivalence classes. As a consequence,
it induces a Riemannian metric gq(ξq, ζq) := gq(ξq, ζq) on QC. The norm in
the tangent space TqQC at q is given by

‖ξq‖q :=
√
gq(ξq, ξq) = ‖ξq‖2. (4.29)

The vertical space Vq is the subspace of TqQC that is tangent to the equiv-
alence class [q]

Vq = {q′ β : β ∈ R} (4.30)

(where q′ has to belong to L2(S1,R) to ensure the regularity of Vq). We choose
the horizontal space Hq as the orthogonal complement of Vq for the metric
gq(·, ·), that is,

Hq = {η ∈ TqQC : gq(η, q′ β) = 0}. (4.31)

The orthogonal projection Phq η of a vector η ∈ TqQC onto the horizontal space
Hq is given by

Phq η := η −
gq(η, q′ β)
gq(q′ β, q′ β) q

′ β = η − 〈η, q
′〉

〈q′, q′〉
q′. (4.32)

The distance between two points q1 and q2 on QC is defined as

dist(q1, q2) := min
σ∈S1
‖q1(·)− q2(·+ σ)‖2 = ‖q1(·)− q2(·+ σ∗)‖2 (4.33)

where σ∗ denotes the phase shift achieving this minimization. It corresponds
to the phase shift maximizing the circular cross-correlation

σ∗ = arg max
σ∈S1

〈q1(·), q2(·+ σ)〉. (4.34)
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This global optimization problem is solved in two steps. Firstly we compute
the circular cross-correlation c : S1 → R between the two periodic signals q1
and q2

c(σ) = 〈q1(·), q2(·+ σ)〉. (4.35)

The circular cross-correlation c(·) is, by definition, also a periodic signal. An ef-
ficient computation of this circular cross-correlation is performed in the Fourier
domain. We note that the circular cross-correlation can be expressed as the
circular convolution c(σ) = (q1(−·)∗ � q2(·))(σ). Exploiting the properties
of Fourier coefficients and the convolution-multiplication duality property, we
have

ĉ[k] = q̂1[k]∗ q̂2[k] (4.36)

where x̂[·] denotes the discrete signal of Fourier coefficients for the periodic
signal x(·) and where x∗ denotes the complex conjugate of x. Secondly we
identify the optimal phase shift value σ∗ ∈ S1 achieving the maximal value of
the circular cross-correlation. This maximum is global and generically unique
(multiplicity of the optimum would mean that one of the signal has a period
which is actually equal to 2π/k with k ∈ N>0).

4.3.4 Metric on the quotient space H1/(R>0 × Shift(S1))
The space capturing both scaling and phase shifting equivalences (4.15)–(4.16)
is the quotient space QD := H1/(R>0 × Shift(S1)). Each element q in QD
represents an equivalence class

q = [q] = {q(·+ σ)α : α > 0, σ ∈ S1}. (4.37)

Based on the individual geometric interpretation of both equivalence properties,
those equivalence classes are infinite cones in the total space QD := H1, that
is, the union of rays that start at 0 and go through the closed one-dimensional
curve of phase shifted signals.

Because the metric (4.21) on QD is invariant by scaling and phase shifting
along the equivalence classes, it induces a Riemannian metric gq(ξq, ζq) :=
gq(ξq, ζq) on QD. The norm in the tangent space TqQD at q is given by (4.22).

The vertical space Vq is the subspace of TqQD that is tangent to the equiv-
alence class [q]

Vq = {q β1 + q′ β2 : β1, β2 ∈ R}. (4.38)

It is the direct sum of vertical spaces for equivalence properties individually.
We choose the horizontal space Hq as the orthogonal complement of Vq for the
metric gq(·, ·), that is,

Hq = {η ∈ TqQD : gq(η, q β1 + q′ β2) = 0}. (4.39)
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The orthogonal projection Phq η of a vector η ∈ TqQD onto the horizontal space
Hq is given by

Phq η := η −
gq(η, q β1)
gq(q β1, q β1) q β1 −

gq(η, q′ β2)
gq(q′ β2, q

′ β2) q
′ β2 (4.40)

= η − 〈η, q〉
〈q, q〉

q − 〈η, q
′〉

〈q′, q′〉
q′. (4.41)

The distance between two points q1 and q2 on QD is defined as

dist(q1, q2) := min
σ∈S1

cos−1
(
〈q1(·), q2(·+ σ)〉
‖q1‖2 ‖q2‖2

)
(4.42)

= cos−1
(
〈q1(·), q2(·+ σ∗)〉
‖q1‖2 ‖q2‖2

)
(4.43)

where σ∗ denotes the phase shift achieving this minimization. It corresponds
to the phase shift operator maximizing the circular cross-correlation in (4.34).

4.4 Summary
In this chapter, we equipped the space of phase response curves with the suit-
able metrics. In particular, we identified two natural equivalence properties
among phase response curves. In many applications, it is not meaningful to
distinguish among phase response curves that are related by a scaling factor
and/or a phase shift. These equivalences properties lead to four spaces (includ-
ing or not the equivalences) for which we defined a metric. We also provided
the guidelines to turn those abstract definitions into numerically computable
quantities.



56 Chapter 4. Metrics in the space of phase response curves



Chapter 5

Sensitivity analysis
in the space of
phase response curves

Analyzing the sensitivity of a system behavior to changes in the system param-
eters or in the system architecture has been central to systems theory. It often
provides an insight into the nature and function of the system and identifies
the important parameters in the system. Sensitivity analyses fall into two main
categories: global and local analyses.

Global analysis explores system behaviors in broad regions of the param-
eter space. It includes methods such as bifurcation analysis [103, 157] or pa-
rameter space exploration with a sampling process often guided by statistical
methods [152, 153]. This approach provides a description of the effect on the
behavior of large deviations in parameter values. The limitation of those ap-
proaches is either that they are univariate (only one direction of the parameter
space is explored in a particular bifurcation diagram) or that the exploration of
the parameter space rapidly becomes formidable as the number of parameters
grows.

Local analysis concentrates attention near one particular point in the pa-
rameter space and assumes linear dependence on the parameter values around
this nominal point (see [32, 53, 141, 174, 175, 181] for details). This assumption
simplifies the analysis and provides a complete and elegant description of the
effect on the behavior of small perturbations near the operating point.

Both methods are complementary. The local sensitivity analysis may serve
as a pre-screening process to guide more efficiently the global parameter space
exploration. In the following, we will mainly focus on local sensitivity analysis.

Initially developed for (linear and nonlinear) systems that evolve around a
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stable equilibrium, the sensitivity of steady-state state-space features for oscil-
latory systems (e.g. period and amplitude of oscillations) was early estimated
through simulation [22, 95, 104]. More recently, a general theory to treat the
sensitivity of oscillatory systems in the state space has emerged [87, 144, 192].
In parallel, the sensitivity of trajectories for oscillatory systems has been de-
composed into a contribution due to the “phase-dependent sensitivity” and a
contribution due to the “phase-independent sensitivity” [76, 77, 192, 196]. In
addition, empirical phase-based performance measures have been proposed in
order to quantify the sensitivity of the phase in oscillatory systems [14,173].

However, those approaches lack the conceptual input–output perspective
that we want to pursue in this dissertation. It is thus necessary to develop a
sensitivity analysis for oscillators, viewed as open dynamical systems evolving
on the circle (i.e. their external representation).

We develop a sensitivity analysis of both essential characteristics of oscilla-
tory systems on the circle, that is, the sensitivity of the period (or equivalently
the sensitivity of the angular frequency) and the sensitivity of the infinitesimal
phase response curves. We stress that our sensitivity analysis focuses on the
sensitivity of the infinitesimal phase response curve appearing in continuous-
time phase models for weak inputs. Indeed, only the computation of infinites-
imal phase response curves admits an analytical formulation, and the same is
true for their sensitivity.

This chapter is organized as follows. Section 5.1 introduces the basic con-
cepts of sensitivity analysis used in this chapter. Section 5.2 derives the sen-
sitivity analysis for periodic orbits, phase response curves, and entrainment
behavior. Section 5.3 briefly summarize numerics of sensitivity analysis and
Appendix A provides the detailed numerical tools to turn the abstract devel-
opments into concrete algorithms.

Contributions. The main contribution of this chapter is to introduce the use
of sensitivity analysis of infinitesimal phase response curves in the context of
biological applications. Although developed independently, the sensitivity for-
mula and the developments in this section are closely related to those in [187]
which studies the sensitivity analysis of infinitesimal phase response curves
(called perturbation projection vectors) in the context of electronic circuits.



5.1. Basics of local sensitivity analysis 59

5.1 Basics of local sensitivity analysis
In this section, we briefly recall basic concepts of local sensitivity analysis. The
brief exposition follows the terminology of [92].

We consider systems described by state-space models

ẋ = f(x, u, λ) (5.1a)
y = h(x, λ) (5.1b)

where the constant parameter λ belongs to some subset Λ ⊆ R. (For presenta-
tion convenience, we consider systems with a one-dimensional parameter space.
All developments can easily be generalized to systems with a l-dimensional pa-
rameter space.) Most characteristics of this system (defined in the previous
sections) depend on the value of this parameter λ. It means that, for each
characteristic of the system, there exists a function c : Λ → C that associates
with each value of the parameter λ an element c(λ) in the space C to which
belongs the characteristic.

Under appropriate assumptions, the sensitivity function Sc : Λ → Tc(λ)C
of the characteristic c(λ) associates with each value of the parameter λ the
element Sc(λ) in the tangent space Tc(λ)C at c(λ), defined as

Sc(λ) := ∂c

∂λ
(λ) = lim

h→0

c(λ+ h)− c(λ)
h

. (5.2)

The sensitivity Sc(λ) provides a first-order estimate of the effect of parameter
variations on the characteristic. It can also be used to approximate the charac-
teristic when λ is sufficiently close to its nominal value λ0. For small ‖λ−λ0‖2,
the characteristic c(λ) can be expanded in a Taylor series about the nominal
solution c(λ0) to obtain

c(λ) = c(λ0) + Sc(λ0) ‖λ− λ0‖2 +O
(
‖λ− λ0‖22

)
. (5.3)

This means that the knowledge of the nominal characteristic c(λ0) and the
sensitivity function suffices to approximate the characteristic for all values of λ
in a small ball centered at λ0.

The main difficulty of sensitivity analysis is to formulate the appropriate
(analytical) equation to be solved in order to find the characteristic c(λ). Then,
differentiating this (analytical) problem, we obtain the sensitivity equation to
be solved in order to find the sensitivity function Sc(λ0). It can be an algebraic
problem, an initial value problem, a boundary value problem, etc.
Remark. If, for a given value of the parameter λ, the characteristic c(λ) is itself
a function c(λ) : A → B in the space of functions C, the sensitivity Sc(λ) is
also a function Sc(λ) : Ã → B̃ in the tangent space Tc(λ)C, where Ã and B̃
are the domain and the image of the sensitivity function. For presentation
convenience, we write c : A× Λ→ B and Sc : Ã× Λ→ B̃.
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5.2 Sensitivity analysis for oscillators
In this section, we develop the sensitivity analysis of the periodic orbit, the
(infinitesimal) phase response curve, and the (steady-state) phase difference
under entrainment.

5.2.1 Sensitivity analysis of a periodic orbit
The periodic orbit γ of an oscillator model is characterized by an angular
frequency ω(λ) which measures the “speed” of a solution along the orbit and
by a 2π-periodic steady-state solution xγ(·;λ) = φ(·/ω(λ), xγ0(λ),0, λ) which
describes the locus of this orbit in the state space.

Given a nominal parameter value λ0, the sensitivity of the angular frequency
is the scalar Sω(λ0) ∈ R defined as

Sω(λ0) := ∂ω

∂λ
(λ0) = lim

h→0

ω(λ0 + h)− ω(λ0)
h

. (5.4)

Likewise, the sensitivity of the 2π-periodic steady-state solution is the 2π-
periodic function Sxγ (·;λ0) : S1 → Rn defined as

Sx
γ

(·;λ0) := ∂xγ

∂λ
(·;λ0) = lim

h→0

xγ(·;λ0 + h)− xγ(·;λ0)
h

. (5.5)

From (3.55), we have, taking derivatives with respect to λ (see Appendix B.1),

dSx
γ

dθ
(θ;λ0)− 1

ω
A(θ;λ0)Sx

γ

(θ;λ0) + 1
ω2 v(θ;λ0)Sω(λ0) = 1

ω
E(θ;λ0)

(5.6a)
Sx

γ

(2π;λ0)− Sx
γ

(0;λ0) = 0 (5.6b)
∂ϕ̂

∂x
(xγ(0;λ0);λ0)Sx

γ

(0;λ0) + ∂ϕ̂

∂λ
(xγ(0;λ0);λ0) = 0 (5.6c)

where we use the following short notations

A(θ;λ0) := ∂f

∂x
(xγ(θ;λ0), 0, λ0), (5.7)

E(θ;λ0) := ∂f

∂λ
(xγ(θ;λ0), 0, λ0), (5.8)

v(θ;λ0) := f(xγ(θ;λ0), 0, λ0). (5.9)

Remark. In the literature, the sensitivity of the period is often preferred to the
sensitivity of the angular frequency. It is the scalar ST ∈ R defined as

ST (λ0) := ∂T

∂λ
(λ0) = lim

h→0

T (λ0 + h)− T (λ0)
h

. (5.10)
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Both sensitivity measures are equivalent up to a change of sign and a scaling
factor, that is, ST (λ0)/T (λ0) = −Sω(λ0)/ω(λ0).

5.2.2 Sensitivity analysis of a phase response curve
The (input) infinitesimal phase response curve q(·;λ) is an intrinsic character-
istic of an oscillator model.

Given a nominal parameter value λ0, the sensitivity of (input) infinitesimal
phase response curve is the 2π-periodic function Sq(·;λ0) : S1 → R defined as

Sq(·;λ0) := ∂q

∂λ
(·;λ0) = lim

h→0

q(·;λ0 + h)− q(·;λ0)
h

. (5.11)

From (3.24), we have, taking derivatives with respect to λ,

Sq(θ;λ0) =
〈
Sp(θ;λ0), ∂f

∂u
(xγ(θ;λ0), 0, λ0)

〉
+
〈
p(θ;λ0), ∂

2f

∂x∂u
(xγ(θ;λ0), 0, λ0)Sx

γ

(θ;λ0)

+ ∂2f

∂λ∂u
(xγ(θ;λ0), 0, λ0)

〉
(5.12)

where the 2π-periodic function Sp(·;λ0) : S1 → Rn is the sensitivity of the
(state) infinitesimal phase response curve defined as

Sp(·;λ0) := ∂p

∂λ
(·;λ0) = lim

h→0

p(·;λ0 + h)− p(·;λ0)
h

. (5.13)

From (3.56), we have, taking derivatives with respect to λ (see Appendix B.2),

∂Sp

∂θ
(θ;λ0) + 1

ω
A(θ;λ0)> Sp(θ;λ0) = − 1

ω
Ep(θ;λ0)> p(θ;λ0) (5.14a)

Sp(2π;λ0)− Sp(0;λ0) = 0 (5.14b)
〈Sp(θ;λ0), v(θ;λ0)〉+ 〈p(θ;λ0), Sv(θ;λ0)〉 = Sω(λ0) (5.14c)

where we use the following short notation

Epij(θ;λ0) :=
n∑
k=1

∂2fi
∂xj∂xk

(xγ(θ;λ0), 0, λ0)Sx
γ

k (θ;λ0)

+ ∂2fi
∂xj∂λ

(xγ(θ;λ0), 0, λ0)− 1
ω

∂fi
∂xj

(xγ(θ;λ0), 0, λ0)Sω(λ0),

(5.15)

Sv(θ;λ0) := ∂f

∂x
(xγ(θ;λ0), 0, λ0)Sx

γ

(θ;λ0) + ∂f

∂λ
(xγ(θ;λ0), 0, λ0). (5.16)
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5.2.3 Sensitivity analysis of entrainment
Given a nominal parameter value λ0, the sensitivity of the steady-state phase
difference χ∗(λ0) ∈ [−π, π) is the scalar Sχ∗(λ0) ∈ R defined as

Sχ
∗
(λ0) := ∂χ∗

∂λ
(λ0) = lim

h→0

χ∗(λ0 + h)− χ∗(λ0)
h

. (5.17)

From ∆(λ0) + Γ(χ∗(λ0);λ0) = 0, we have, taking derivatives of with respect to
λ and rearranging terms,

Sχ
∗
(λ0) = −S

∆(λ0) + SΓ(χ∗(λ0);λ0)
Γ′(χ∗(λ0);λ0) (5.18)

where

S∆(λ0) := ∂∆
∂λ

(λ0) = lim
h→0

[∆(λ0 + h)−∆(λ0)]/h, (5.19)

SΓ(·;λ0) := ∂Γ
∂λ

(·;λ0) = lim
h→0

[Γ(·;λ0 + h)− Γ(·;λ0)]/h. (5.20)

Considering that ω(λ) = Ω + ∆(λ) is the sum of a parameter independent
term Ω and a parameter dependent term ∆(λ), we have that Sω = S∆. In
addition, from (3.41), we have, taking derivatives with respect to λ,

SΓ(·;λ0) = 1
2π

∫ 2π

0
Sq(s+ ·;λ0) h̃u(s) ds (5.21)

(where h̃u(Ωu t) = u(t) with Ωu = Ω). The sensitivity of the phase difference
has thus two distinct contributions:

Sχ
∗
(λ0) = (−Sω(λ0)/Γ′(χ∗(λ0);λ0))︸ ︷︷ ︸

:=Sχ
∗

ω (λ0)

+
(
−SΓ(χ∗(λ0);λ0)/Γ′(χ∗(λ0);λ0)

)︸ ︷︷ ︸
:=Sχ

∗
Γ (λ0)

(5.22)
where Sχ

∗

ω (λ0) denotes the contribution of the angular frequency sensitiv-
ity and Sχ

∗

Γ (λ0) denotes the contribution of the coupling function sensitivity
at χ∗(λ0), the latter being closely related to the infinitesimal phase response
curve through (5.21).

5.3 Numerics of sensitivity analysis
Numerical algorithms to solve boundary value problems (5.6) and (5.14) are
reviewed in Appendix A. We stress that existing algorithms that compute pe-
riodic orbits and infinitesimal phase response curves are easily adapted to com-
pute their sensitivity curves, essentially at the same numerical cost.
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5.4 Summary
In this chapter, we presented a sensitivity analysis for oscillators viewed as
input–output systems evolving on the circle. Starting from a state-space model,
we provided accurate derivations of the sensitivity of the period and the sen-
sitivity of the infinitesimal phase response curve, that is, the two fundamental
characteristics of the circle representation of an oscillator under weak inputs.

The proposed approach is systematic and computationally tractable but it
only provides a local sensitivity analysis in the parameter space, around a nom-
inal set of parameter values. It complements more global—but less tractable—
tools such as bifurcation analysis or parameter space exploration. Local and
global sensitivity analysis techniques provide an valuable tool for probing the
behavior of oscillators, leading to insight into their internal nature and predic-
tions of the effect of external perturbations.

Under the assumption of an impulse train, the circle representation (hybrid
phase model) is characterized by the period and the finite phase response curve.
As the finite phase response curve cannot be expressed as the solution of an
analytic problem, it is not possible to find a analytic problem to be solved
in order to obtain its sensitivity. Finding efficient ways to characterize the
sensitivity of finite phase response curves is still an open problem. A first step
towards a sensitivity analysis for finite phase response curves could rely on the
approximation given in Section 3.5.3.
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Chapter 6

Singularly perturbed
phase response curves

Many oscillators involve dynamics on multiple time scales. They appear in
important biological phenomena such as spiking neurons [47,48,84,130], heart-
beats [36], mitotic cycles [23], glycolytic oscillations [24, 35, 59], population
cycles of predator-prey type [113, 114, 184], but also in many other fields of
application. In addition, in most of these oscillators, the input acts on the
fast dynamics. Neural action potentials are exemplative of such systems. They
exhibit two time-scale dynamics: a fast time scale for the spike generation and
a slow time scale for the interspike frequency. The applied current acts directly
on the membrane potential fast dynamics [47,48,84,130].

Due to the time-scale separation and to the input acting on the fast dy-
namics, the reduction of such oscillators to one-dimensional continuous phase
models is only valid in a small neighborhood of the periodic orbit. As a con-
sequence, such a phase reduction is informative only for inputs that are much
smaller than the singular perturbation parameter [88], therefore, vanishing in
the singular limit. For this reason, only the finite phase response curve is a
meaningful input–output characteristic for oscillator models.

Using geometric methods of singular perturbation theory, we develop the
concept of singularly perturbed phase response curves to predict the phase
response to finite perturbations from the description of the geometric structure
underlying the oscillator dynamics in the singular limit.

This chapter is organized as follows. Section 6.1 summarizes basics con-
cepts of singular perturbation theory used in this chapter and describes the
geometry underlying relaxation oscillator dynamics. Section 6.2 stresses the
limitations of standard infinitesimal phase response curves in the context of
fast-slow oscillators with inputs on the fast variable. Section 6.3 introduces the
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novel concepts of singularly perturbed (asymptotic) phase maps and singularly
perturbed phase response curves.

Contributions. The main contributions of this chapter are to introduce two
novel concepts: (i) “singularly perturbed phase maps” and (ii) “singularly
perturbed phase response curves” for impulses and pulses of finite duration.

The material of this chapter is the result of a collaboration with Alessio
Franci (postdoctoral researcher at the University of Liège). It has not yet
been published and should be considered as “work-in-progress”.

6.1 Basics of singular perturbation theory
In this section, we briefly recall some classical results of singular perturba-
tion theory and geometric assumptions for relaxation oscillators. This brief
exposition follows the terminology and definitions of [91,99].

6.1.1 Classical results of singular perturbation theory
The canonical form of two-dimensional fast-slow systems is

ẋ = f(x, z, ε), (6.1a)
ż = ε g(x, z, ε), (6.1b)

where x ∈ X ⊆ R, z ∈ Z ⊆ R, and 0 < ε � 1 is a small positive parameter
explicitly denoting the separation of time scales between the fast variable x
and the slow variable z. In the slow time scale τ := ε t, dynamics (6.1) read

ε x′ = f(x, z, ε), (6.2a)
z′ = g(x, z, ε), (6.2b)

(where the symbol ′ denotes differentiation with respect to the rescaled time τ).
For ε 6= 0, the two systems are equivalent and we call (6.1) the fast system and
(6.2) the slow system. However, we have to distinguish between the limits for
those systems as ε→ 0, commonly referred as the singular limit.

Letting ε→ 0 in the fast system, we obtain the layer dynamics

ẋ = f(x, z, 0), (6.3a)
ż = 0, (6.3b)

whereas letting ε→ 0 in the slow system, we obtain the reduced dynamics

0 = f(x, z, 0), (6.4a)
z′ = g(x, z, 0). (6.4b)

http://www.montefiore.ulg.ac.be/~afranci/
http://www.montefiore.ulg.ac.be/~afranci/
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The essence of the geometric singular perturbation is to study qualitative prop-
erties of the original dynamics (6.1) by a combined analysis of the layer dy-
namics (6.3) and the reduced dynamics (6.4).

The reduced dynamics (6.4) is a dynamical system on the set

S0 := {(x, z) ∈ X × Z : f(x, z, 0) = 0} , (6.5)

usually called the critical manifold. For the layer dynamics, the critical man-
ifold S0 corresponds indeed to critical points: pieces of S0 on which ∂f

∂x is
nonvanishing are normally hyperbolic invariant manifolds of equilibria (whose
stability is determined by the sign of ∂f

∂x ), and points in S0 for which ∂f
∂x is

equal to zero constitute degenerate equilibria.
From Fenichel theory [46], nondegenerate pieces of critical manifolds S0

perturb smoothly to normally hyperbolic locally invariant manifolds Sε of (6.1)
for ε sufficiently small.

The analysis near degenerate points is more complex and has been treated
in full generality in [97–99]. Here, we focus on phenomena that take place when
the critical manifold S0 has fold points, which are singularities of the reduced
system (6.4). Under certain assumptions (see bellow), such folded structures
of the critical manifold give rise to jumping behavior for solutions.

6.1.2 Geometry of relaxation oscillators
Following [97, 99], we impose a few geometric assumptions on the class of sys-
tems (6.1) to ensure the existence of a relaxation oscillator in isolation condi-
tion. The resulting geometry is illustrated in Figure 6.1 (left).

(A1) The critical manifold S0 is a “cubic” shaped curve. For the layer dynam-
ics, it corresponds to a set of equilibria with a pair of folds, F− := (x−, z−)
and F+ := (x+, z+) and can be broken into pieces as follows

S0 := Sa− ∪ F− ∪ Sr ∪ F+ ∪ Sa+ (6.6)

where

Sa− :=
{

(bSa−(z), z) ∈ S0 : z− < z
}
, (6.7a)

Sr :=
{

(bSr (z), z) ∈ S0 : z− < z < z+
}
, (6.7b)

Sa+ :=
{

(bSa+(z), z) ∈ S0 : z < z+

}
. (6.7c)

(A2) For the layer dynamics, the lower branch Sa− and the upper branch Sa+
are attracting, and the branch Sr is repelling, that is,

∂f

∂x
(x, z, 0) < 0 on Sa− ∪ Sa+, and ∂f

∂x
(x, z, 0) > 0 on Sr. (6.8)
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Figure 6.1 – Geometry of relaxation oscillators. (Left) The critical manifold S0 is
a “cubic” shaped curve and can be broken into pieces as follows S0 := Sa− ∪ F− ∪
Sr ∪ F+ ∪ Sa+. (Right) Under assumptions A1–A4, the singular system (6.1) admits
a singular periodic orbit γ0 defined as the union of two pieces of the critical manifold
associated with a slow evolution (green solid lines) and two critical fibers associated
with jumps (green dashed lines).

(A3) Both folds are generic, that is, satisfy the following conditions on F−∪F+

∂2f

∂x2 (x, z, 0) 6= 0, ∂f

∂z
(x, z, 0) 6= 0, and, g(x, z, 0) 6= 0. (6.9)

(A4) The set {(x, z) ∈ X × Z : g(x, z, 0) = 0} intersects S0 in only one point
located on the repelling branch Sr. In addition, the slow flow on Sa−
satisfies z′ < 0 and the slow flow on Sa+ satisfies z′ > 0.

Under the previous assumptions, the singular system (6.1) admits a singular
periodic orbit γ0 illustrated in Figure 6.1 (right) and defined as the union of

• the two pieces of the critical manifold joining (bSa−(z+), z+) to (x−, z−)
and (bSa+(z−), z−) to (x+, z+) (in solid lines); and,

• the two (weakly) unstable critical fibers joining (x−, z−) to (bSa+(z−), z−)
and (x+, z+) to (bSa−(z+), z+) (in dashed lines).

Following standard results [99], for all ε > 0 and sufficiently small, there exists
a periodic orbit γε near the singular periodic orbit γ0.
Remark. In the slow time scale, the jumps corresponding to critical fibers are in-
stantaneous while the portions of critical manifolds are traveled in finite (slow)
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time. The singular period T 0
slow (in the slow time scale) of the singular peri-

odic orbit γ0 is thus equal to the sum of finite time intervals required to travel
both portions of the critical manifold. The singularly perturbed period T εslow
converges towards the singular period T 0

slow, that is, limε→0 T
ε
slow = T 0

slow. (The
associated angular frequency is denoted ω0

slow := 2π/T 0
slow.)

In the fast time scale, the singular period T 0
fast of the singular periodic

orbit γ0 blows up to infinity (T 0
fast = limε→0 T

ε
fast = T εslow/ε = +∞).

6.2 Limitations of infinitesimal phase response
curves

In this section, we emphasize the limitations of the infinitesimal phase response
curves for relaxation oscillators with with input acting on the fast dynamics.

Many relaxation oscillators communicate with the environment through
their fast variable. Those systems are thus modeled through relaxation os-
cillators with an input acting on the fast dynamics

ẋ = f(x, z, u, ε), (6.10a)
ż = ε g(x, z, ε), (6.10b)
y = h(x, z, ε). (6.10c)

Neural cells are exemplative of such systems: they receive external information
through an external current which acts only on the dynamics of the membrane
potential (the fast variable for neural cells).

Limitations of infinitesimal phase response curves

For this class of systems, the classical approximation of phase response curves
by a scaling of the infinitesimal phase response curve is only valid for inputs
that are much smaller than the singular perturbation parameter [88], that is,

Qε(·;α δ(·)) = α qε(·) +O(α2), with 0 < |α| � ε� 1, (6.11)

where the singularly perturbed infinitesimal phase response curve qε(·) can be
approximated by the singular infinitesimal phase response curve q0(·).

Therefore, the domain of validity of the approximation (6.11) vanishes in the
singular limit (ε→ 0). Intuitively, this limitation comes from the fact that, after
an impulse of finite magnitude, the singular orbit might jump instantaneously
to one branch of the critical manifold or the other, depending on the reset
initial condition. This behavior involves a global phenomenon that cannot be
captured by a local approximation.
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Singularly perturbed finite phase response curves

The main idea underlying our approach is to take advantage of time-scale
separation to study the finite phase response curve in the singular limit. For
a sufficiently small singular parameter ε > 0, the “singularly perturbed phase
response curve” Qε(·;u(·)) can be approximated by a “singular phase response
curve” Q0(·;u(·)), that is,

Qε(·;u(·)) = Q0(·;u(·)) +O
(
εβ
)
, with 0 < ε� 1, (6.12)

for any phase resetting input u(·) and with 0 < β ≤ 1 (note that β is usually
around 1/2 [97]).

In the following, we show how to exploit the geometry of fast-slow oscillators
to predict the singular phase response curve Q0(·;u(·)) for impulses (u(·) =
α δ(·)) and for pulses of finite duration (u(·) = ū [1+(·)− 1+(· −∆)]).

6.3 Singularly perturbed phase response curves
In this section, we introduce two novel concepts: singularly perturbed (asymp-
totic) phase maps and singularly perturbed phase response curves.

Motivated by applications in neurodynamics, we consider open relaxation
oscillators for two-dimensional fast-slow dynamical systems of the form

ẋ = f(x)− z + u (6.13a)
ż = ε g(x, z) (6.13b)
y = x (6.13c)

where the fast variable x ∈ X ⊆ R is a voltage-like variable, the slow variable
z ∈ Z ⊆ R is a recovery variable, and 0 < ε� 1. The slow variable z provides
a slow negative feedback that modulates the total quantity of applied current.
The input u represents the applied current.

To simplify (6.10) to (6.13), we made the following assumptions.

(A1) The input u enters the fast dynamics similarly to the slow variable z,
such that its value is subtracted from the value of the slow variable z,
that is, “z − u”.

(A2) The input u enters the fast dynamics in an affine way such that an impulse
will reset the fast variable x without affecting the slow variable z.

Those technical assumptions simplify the presentation and are often (if not
always) satisfied in models of neural oscillators.
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6.3.1 Singularly perturbed phase maps and isochrons
A first step towards the prediction of phase response curves is the introduction
of (asymptotic) phase maps and isochrons for singularly perturbed systems.
The main idea is to define those objects in the singular limit (i.e. ε → 0) and
to rely on standard results to guarantee their persistence for sufficiently small
values of ε.

Singularly perturbed phase map

Since the singular periodic orbit γ0 is a one-dimensional manifold in X×Z, it is
naturally parameterized in terms of a single scalar phase on the unit circle S1.
As in the nonsingular case (see Section 3.2.2), the phase map will be chosen
such that the phase variable linearly increases with time. The construction of
the singular phase map is illustrated in Figure 6.2 (left).

We choose to associate with the lower fold (x−, z−) the zero-phase reference
position on the singular periodic orbit, that is Θ0(x−, z−) =: ϑ− = 0. As jumps
are instantaneous in the singular limit, all points of the (weakly) unstable
critical fiber joining (x−, z−) to (bSa+(z−), z−) are also associated with a phase
equal to zero.

Then, the phase θ associated with a point (x, z) is the “normalized” fraction
of (slow) time ω0

slow ∆τ needed to reach this point along the periodic orbit
starting from the reference initial condition. For a point (x1, z1) on the upper
branch, the phase will be given by

Θ0(x1, z1) := ω0
slow ∆τ1. (6.14)

For a point (x2, z2) on the lower branch, the phase will be given by

Θ0(x2, z2) := ω0
slow ∆τ+ + ω0

slow ∆τ2 (6.15)

where the first term corresponds to the flowing time on the upper branch (up
to the upper fold) and the second term corresponds to the remaining flowing
time on the lower branch. To simplify notation, it is convenient to denote by
Θ0(x+, z+) =: ϑ+ = ω0

slow ∆τ+ the phase associated with the upper fold (and all
points of the (weakly) unstable critical fiber joining (x+, z+) to (bSa−(z+), z+)).

An elegant way to summarize the phase map definition is

Θ0(x, z) :=
{
θ− + ω0

slow ψ+(z−, z,0) if (x, z) ∈ (γ0 ∩ Sa+) ∪ F+

θ+ + ω0
slow ψ−(z+, z,0) if (x, z) ∈ (γ0 ∩ Sa−) ∪ F−

(6.16)

where ψ•(z0, zτ ,0) (with • standing for + or −) are functions that measure the
time needed to travel along the critical manifold from the initial condition z0
to finial condition zτ .
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Figure 6.2 – Geometric construction of singular phase and asymptotic phase maps.
(Left) The phase map associates with each point on the periodic orbit a phase which
corresponds to the normalized time ω0

slow ∆τ required to reach this point from the ref-
erence position (x−, z−). For points on the lower branch, it is convenient to measure
the normalized time from (x+, z+) and to add the phase θ+ := ω0

slow ∆τ+. (Right) Be-
cause all points on a same vertical ray (in the bistable region) and converging to the
same branch instantaneously jump on the branch in the singular limit, the asymp-
totic phase map associates them with the same asymptotic phase. In addition, other
vertical lines (outside the bistable region) are associated with the same phase because
these points converge in the same ∆τ (mod T 0

slow) to (x+, z+).
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For constant inputs u(·) ≡ ū, the function ψ•(z0, zτ , ū) can easily be com-
puted by integrating the reduced dynamics of the system (6.13) on the stable
branches of the critical manifold and they read

ψ•(z0, zτ , ū) =
∫ zτ

z0

1
g(bSa• (ξ − ū), ξ)dξ. (6.17)

Remark. For constant inputs u(·) ≡ ū, the critical manifold is shifted along z-
axis because of Assumption 1 and each branch of the “shifted critical manifold”
are described by x = bSa• (z − u).

Singularly perturbed asymptotic phase map and isochrons

The notion of singular phase map can be extended to any point (x, z) in the
basin of attraction of the singular periodic orbit by defining the singular asymp-
totic phase map Θ0 : B(γ0)→ S1. Because, in the singular limit, any singular
trajectory starting from (x, z) instantaneously jumps from its initial condition
(in the basin of attraction) to a branch of the critical manifold, all points on
the same vertical line (with the same value of slow variable z) and jumping to
the same branch will be associated with the same phase. The construction of
the singular asymptotic phase map is illustrated in Figure 6.2 (right).

• All points on the line z = z− (resp. z = z+) are associated with the
phase θ− (resp. θ+).

• For points with a slow variable in the bistable range, the asymptotic phase
θ1 of a point (x1, z1) belonging to the basin of attraction of the upper
(resp. lower) branch is thus given by the phase ϑ1 of the point at the
intersection between the line z = z1 and the upper (resp. lower) branch
of the singular periodic orbit γ0.

• In addition, all points outside the bistable range that converge to the
upper fold in the same time interval ∆τ (mod T 0

slow) as (x1, z1) are also
associated with the asymptotic phase θ1.

An elegant way to summarize the (asymptotic) phase map definition is

Θ0(x, z) =
{
θ− + ω0

slow ψ+(z−, z, 0) (mod 2π), if (x, z) ∈ B(Sa+) ∪ F+,

θ+ + ω0
slow ψ−(z−, z, 0) (mod 2π), if (x, z) ∈ B(Sa−) ∪ F−,

(6.18)
where B(Sa• ) is the set of points that jumps to the stable branch Sa• of the
critical manifold.
Remark. For presentation convenience, we intentionally do not consider the un-
stable branch of the critical manifold Sr as being part of the basin of attraction
of the singular periodic orbit. For small ε, this repulsive branch is perturbed
into a repulsive set which has zero measure.
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Isochrons are thus vertical lines for values of z outside the bistable range
and vertical rays for values of z inside the bistable range. In the bistable region,
vertical rays are separated by the repulsive branch Sr of the critical manifold.
The vertical ray and the vertical lines associated with the same phase join at
infinity (see Figure 6.2, right).

This result formalizes the intuitive argument developed in Section 3.4.3 to
justify the shape of isochrons for the van der Pol oscillator in the relaxation
limit (Figure 3.6).

6.3.2 Singularly perturbed phase response curves
We consider the phase response curve for two particular inputs: impulses
(u(·) = α δ(·)) and pulses of finite duration (u(·) = α [1+(·)− 1+(· −∆)]).
We treat those two cases separately in the following.

Impulse

The effect of an impulse (u(·) = α δ(·)) on the system (6.13) is to reset the
initial state of the fast variable x without affecting the slow variable z. An
initial condition (x0, z0) is reset to the new initial condition (x0 + α, z0). In
the singular limit, the singular asymptotic reset phase map is thus given by the
singular asymptotic phase associated with the reset state, that is,

Θ+,0(x0, z0;α δ(·)) = Θ0(x0 + α, z0). (6.19)

The value of the asymptotic reset phase map Θ+,0(x0, z0;α δ(·)) is thus different
from the value of the asymptotic phase map Θ0(x0, z0) only if the impulse resets
an initial condition to a point on the other side of the curve C that separates
the basin of attraction of each branch (see Figure 6.3).

From this, the reset phase of a point on the upper (resp. lower) branch
subjected to a positive (resp. negative) impulse is equal to the phase of the
initial point. The phase shift induced by the impulse is thus equal to zero
(see Figure 6.3, left).

However, on the lower (resp. upper) branch, there exists a set of points that
are reset to the other side of the separatrix C by a positive (resp. negative). For
simplicity, we assume monotonicity of the separatrix in the bistable region (that
is, (∂bSr/∂z)(z) > 0). Given a positive (resp. negative) impulse of amplitude α,
there exists a critical value zc(α) of the slow variable such that a trajectory
starting on the lower (resp. upper) branch crosses the separatrix under the
effect of the impulse for all z, such that z− ≤ z < zc(α) (resp. zc(α) < z ≤ z+).
The critical value zc(α) is given by

zc(α) = {z ∈ Z : bSa−(z) + α = bSr (z)} (6.20)

(resp. zc(α) = {z ∈ Z : bSa+(z) + α = bSr (z)}). (6.21)
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no phase shift phase advance

Figure 6.3 – Effect on positive impulses (the case of negative impulses can be treated
in a similar way). (Left) Far from the lower fold (on the lower branch) or on the
upper branch, the reset state converges back to the initial state instantaneously. As a
consequence, no phase shift is produced. (Right) Close enough to the lower fold (on
the lower branch), the reset state crosses the separatrix (red curve) and converges
toward the upper branch instantaneously. The phase shift corresponds to the phase
difference corresponding to the skipped portions of the singular periodic orbit (green).
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The asymptotic phase associated with this critical point (bSa(zc(α)), zc(α)) on
the stable branch is denoted Θ(bSa(zc(α)), zc(α)) =: θc(α). The phase shift ∆θ
induced by an impulse corresponds to the portion of singular periodic orbit
skipped due to the impulse.

For positive impulse (α > 0), the phase response curve is given by

Q0(θ;α δ(·)) =
{
θ− + ω0

slow ψ+(z−, zγ
0(θ),0)− θ, if θc(α) < θ ≤ θ−,

0, otherwise.
(6.22)

For negative impulse (α < 0), the phase response curve is given by

Q0(θ;α δ(·)) =
{
θ+ + ω0

slow ψ−(z+, z
γ0(θ),0)− θ, if θc(α) < θ < θ+,

0, otherwise.
(6.23)

Pulse of finite duration

The effect of a pulse of finite duration (that is, u(·) = ū [1+(·)− 1+(· −∆)])
on the system (6.13) is less trivial.

Following the definition of the reset phase and (3.19), the asymptotic reset
phase map for a pulse of finite duration is given by

Θ+,0(x0, z0;u(·)) = Θ0(x∆, z∆)− ω0
slow ∆0

slow (6.24)

where (x∆, z∆) is the state at time ∆0
slow for the reduced dynamics starting

from (x0, z0) (where ∆0
slow is the pulse duration in the slow time scale and in

the singular limit). It is thus necessary to compute the state (x∆, z∆) of the
trajectory at the end of the pulse in order to compute the reset phase associated
with its initial condition.

In the following, we describe how we can compute the state (x∆, z∆) using
only the information contained in the functions ψ−(z+ + ū, z, ū) and ψ+(z− +
ū, z, ū) (see Figure 6.4).

Starting from the initial condition (x0, z0) on the critical manifold, the
trajectory evolves as follows (see Figure 6.4).

(1) Under a constant input ū, the critical manifold of the system is shifted
along the z-axis (because of Assumption 1). The singular trajectory
jumps thus instantaneously to the branch of the “shifted critical man-
ifold” corresponding to the basin of attraction to which the initial state
belongs.

(2) Then, the trajectory evolves on the “shifted critical manifold”, sliding
slowly on branches and jumping instantaneously when it reaches “shifted
folds”.
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case 1 case 2

Figure 6.4 – Effect on positive pulses of finite duration (the case of negative pulses
can be treated in a similar way). The state (x∆, z∆) of the trajectory starting from
initial condition (x0, z0) (under a pulse of duration ∆) is graphically determined using
functions ψ• in order to predict the phase response associated with this pulse. The
effect of a positive pulse is to shift temporally the critical manifold along the z-axis to
the right. The singular trajectory starting from (x0, z0) evolves as follows: (1) jumps
instantaneously on the shifted critical manifold, then (2) evolves around the shifted
hysteresis (for a duration ∆ = ∆a + ∆c), and finally (3) jumps back to the initial
critical manifold. The main difference between case 1 and case 2 is that during step
(1) the trajectory converges to the opposite branch (with respect to the initial point)
of the shifted critical manifold (in case 1) or to the same branch (with respect to the
initial point) of the shifted critical manifold (in case 2).
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(3) Finally, the trajectory jumps instantaneously back to the critical manifold
at the end of the pulse.

Because the slow variable z is one-dimensional, the evolution of a trajectory
under constant input ū on an attractive branches is fully characterized by the
functions ψ−(z+ + ū, z, ū) and ψ+(z− + ū, z, ū) during the flowing time. The
total flowing time has to be equal to the duration ∆slow.

In Figure 6.4, we differentiate between two cases.

1. In case 1, the initial condition on the lower branch of the critical manifold
jumps directly to the upper branch of the shifted critical manifold.

2. In case 2, the initial condition on the lower branch of the critical manifold
jumps on the lower branch of the “shifted critical manifold”.

Case 1 produces larger phase shift than case 2.
The phase response curve is thus given by

Q0(θ;u(·)) = Θ0(x∆(θ), z∆(θ))− ω0
slow ∆slow − θ (6.25)

where points (x∆(θ), z∆(θ)) have to be computed as described previously for
each point (xγ0(θ), zγ0(θ)) on the singular periodic orbit γ0.
Remark. The duration ∆ is expressed in the fast time scale, that is, ∆ε

fast = ∆.
In the slow time scale, the duration is given by ∆ε

slow = ε∆ε
fast. We assume

the duration of the pulse ∆ε
slow (in the slow time scale) do not tend to zero

in the singular limit and thus that the duration ∆ε
fast tends to infinity. This

assumption is motivated by the fact that the duration of the pulse is often a
fraction of the period. So we may have limε→0 ∆ε

fast = +∞ and limε→0 T
ε
fast =

+∞, and a finite ratio limε→0 ∆ε
fast/T

ε
fast = C (with C 6= 0 and C 6=∞).

An example is treated in Section 8.2.

6.4 Summary
In this chapter, we showed the limitation of infinitesimal phase response curves
in the context of fast-slow oscillators. Then we developed semi-analytical meth-
ods to predict (i) the asymptotic phase map (and its isochrons) and (ii) the
shape of finite phase response curves for impulses and pulses of finite duration
in the singular limit.

As a consequence, it shows that geometric methods for systems with strong
time-scale separation are powerful and can be exploited to better understand
the effect of inputs on the system.

Another class of multiple time-scale systems are bursting oscillators. Those
oscillators are characterized by three distinct time scales: a fast time scale
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for the spike generation, a slow time scale for the intraburst spike frequency,
and an ultra slow time scale for the interburst frequency [51]. In this case,
for the two-dimensional layer dynamics, the singular manifold corresponds to
a lower branch of equilibria (resting state) and an upper cylinder of stable
periodic orbits (bursting state). Using averaging technique, we may “smooth”
the dynamics on the cylinder of stable periodic orbits and apply a similar
approach to predict the shape of the singular phase response curve for this
kind of systems. We may investigate the dependence of this shape on the type
of singularities that induce the jumps between resting and bursting states,
leading to a classification of bursters.
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Chapter 7

Systems analysis of
circadian rhythm models
in the space of
phase response curves

Circadian rhythm is a biological process at the core of most living organisms
which need to adapt their physiological activity to the 24 hours environmental
cycle associated with earth’s rotation (e.g. variations in light or temperature
condition) [140]. Circadian entrainment is thus by nature an exogenous phe-
nomenon because it involves the periodic forcing by the external environment.

Historically, the core mechanism responsible for circadian rhythms was
based on the delayed negative feedback motif [64,106,110,145]. More recently,
detailed models with additional positive and negative loops have been proposed
to describe circadian rhythms in Drosophila [49,108]. In these systems, the in-
put corresponds to the effect of light that increases or decreases the rate of
transformation of some biochemical species.

In circadian rhythms, the phase response curve is used to study the effect
of light (and sometimes the effect of drugs as melatonin) on the rhythm. A
vast quantity of experimental phase response curves for circadian rhythms has
been compiled in an atlas by Johnson [90]. Most of these phase response curves
have a typical shape: it contains a so-called dead-zone, which is an interval of
zero sensitivity during the subjective day of the studied organism.

From a systems analysis perspective, phase response curves are mainly used
a posteriori in order to validate state-space models by comparing finite phase
response curves from simulations and from experimental data [107]. Surpris-

81
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ingly, only few studies really exploit the predictive nature of phase response
curves to study the robustness of these rhythms and their entrainment [138].
Because of the smooth nature of circadian oscillations (relying on the delayed
negative feedback motif), the infinitesimal phase response curve offers partic-
ularly valuable information that needs to be exploited in systems analysis. In
addition, in most of these studies [109], the values of the parameters are often
chosen empirically using trial-and-error or parameter exploration techniques
due to few quantitative experimental data. Yet, with the increasing dimen-
sionality of models in biology, these methods become quickly computationally
intractable.

We apply the metric and sensitivity tools developed in Chapters 4 and 5
to analysis the parametric robustness of the rhythms through the robustness
of the infinitesimal phase response curve and to guide the parametric system
identification in the space of phase response curves.

This chapter is organized as follows. Section 7.1 proposes a parametric
robustness analysis in the space of phase response curves. We develop scalar
robustness measures to quantify the sensitivity of the angular frequency and the
sensitivity of the infinitesimal phase response curves. We apply those measures
to a detailed model. Section 7.2 provides a parametric system identification in
the space of phase response curves. We introduce a gradient-descent algorithm
to identify a set of parameter values which gives a phase response curve close
to an experimental phase response curve (in our metric).

Contributions. The main contributions of this chapter are (i) to develop and
apply scalar robustness measures for oscillators in the space of phase response
curve and (ii) to propose a gradient-descent algorithm to perform parametric
system identification in the space of phase response curves.

7.1 Parametric robustness analysis

Testing the robustness of a model against parameter variations is a basic sys-
tems question. In a number of situations, the very purpose of modeling is to
identify those parameters that influence a given system property.

In the literature, robustness analysis of circadian rhythms mostly studies
the zero-input steady-state behavior (period, amplitude of oscillations, etc.) [66,
168,191] and (empirical) phase-based performance measures [14,77,78,173].

In this section, we propose scalar robustness measures to quantify the sen-
sitivity of the angular frequency (or the period) and the sensitivity of the
infinitesimal phase response curve to parameters. We apply those measures to
a model of the circadian rhythm.
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Scalar robustness measures

The angular frequency ω is a positive scalar number. The sensitivity of ω with
respect to the parameter λ is thus also a scalar number Sω, leading to the
scalar robustness measure Rω := |Sω|.

In contrast, the infinitesimal phase response curve (or its equivalence class) q
belongs to a (nonlinear) space Q. The sensitivity of q is thus a vector Sq which
belongs to the tangent space TqQ at q. A scalar robustness measure Rq is
defined as

Rq := ‖Sq‖q =
√
gq (Sq, Sq) (7.1)

where ‖ · ‖q denotes the norm induced by the Riemannian metric gq (·, ·) at q.
It is the natural extension of robustness measures to a (nonlinear) space Q.

When Q is a quotient space, the element q and the tangent vector Sq
are abstract objects. The evaluation of the robustness measure relies on the
sensitivity Sq of the signal q defining the equivalence class in the total space

Rq =
∥∥Phq Sq∥∥q =

√
gq

(
Phq S

q, Phq S
q
)

(7.2)

where Phq is the projection operator onto the horizontal space Hq̄. The projec-
tion removes the component of the sensitivity which is tangent to the equiva-
lence class.

The stable phase difference χ∗ is a scalar phase on the unit circle S1. The
sensitivity of χ∗ with respect to the parameter λ is a scalar number Sχ∗ , leading
to a scalar robustness measure Rχ∗ :=

∣∣Sχ∗ ∣∣.
When analyzing a model with several parameters (λ ∈ Λ ⊆ Rl), all ro-

bustness measures Rx (where x stands for any characteristic of the oscillator)
collect in a l-dimensional vector the scalar robustness measure corresponding
to each parameter. This vector is often normalized as follows

ρx = Rx

‖Rx‖∞
(7.3)

where ‖·‖∞ denotes the maximum norm such that elements of ρx belongs to the
unit interval [0, 1]. This measure allows to rank model parameters according
to their ability to influence the characteristic x.

In addition, it is often meaningful to compute relative sensitivity measures,
that is, relative changes in the model characteristic to relative changes in pa-
rameter values.

Quantitative circadian oscillator model

We illustrate our parametric robustness analysis on a quantitative circadian
rhythm model for mammals developed by Leloup and Goldbeter [108] (see Fig-
ure 7.1). The model describes the regulatory interactions between the products
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of several genes (Per, Cry, and Bmal1 ). A negative autoregulatory feedback
loop established by the per (period) and cry (cryptochrome) genes is at the
heart of the circadian oscillator. The PER and CRY proteins form a complex
PER–CRY that indirectly represses the activation of the Per and Cry genes.
The PER–CRY complexes exert their repressive effect by binding to a com-
plex of two proteins CLOCK–BMAL1. This latter, formed by the products
of Clock and Bmal1 genes, activates Per and Cry transcription. In addition
to this negative autoregulation, an (indirect) positive regulatory feedback loop
is also involved. Indeed, the Bmal1 expression is subjected to negative au-
toregulation by CLOCK–BMAL1, through the product of the Rev-Erbα gene.
The complex PER–CRY enhances Bmal1 expression in an indirect manner by
binding to CLOCK–BMAL1, and thereby reducing the transcription of the
Rev-Erbα gene. Finally, environmental periodic cycles associated with earth’s
rotation are mediated through light–dark cycles. Light acts on the system by
inducing the expression of the Per gene.

The detailed computational model of [108] possesses 16 state variables and
52 parameters. State-space model equations and nominal parameter values are
available in [108, Supporting Text]. The effect of light is incorporated through
periodic square-wave variations in the maximal rate of Per expression (i.e. the
value of the parameter vsP goes from a constant low value during dark phase
to a constant high value during light phase). Parameters values remain to be
determined experimentally and have been chosen semiarbitrarily in physiolog-
ical ranges in order to satisfy experimental observations. This model has been
extensively studied through unidimensional bifurcation analyses and various
numerical simulations of entrainment [108,109].

Each parameter of the model describes a single regulatory mechanism such
as transcription and translation control of mRNAs, degradation of mRNAs or
proteins, transport reaction, and phosphorylation/dephosphorylation of pro-
teins. The analysis of single-parameter sensitivities thus reveals the importance
of individual regulatory processes on the function of the oscillator.

In order to emphasize the potential role of circuits rather than single-
parameter properties, we group model parameters according to the mRNA
loop to which they belong. In the graphical plots, each group of parameters is
associated with a different color: Per-loop in blue, Cry-loop in red, and Bmal1 -
loop in green. In addition, we gathered parameters associated with interlocked
loops in a last group represented in gray.

We develop our robustness analysis in the space QD incorporating both
scaling and phase shifting equivalence properties. This is motivated by the
uncertainty about the exact magnitude of the light input on the circadian os-
cillator and by the absence of precise experimental state trajectories preventing
from defining a precise reference position (corresponding to the initial phase).

In the following, we consider sensitivities to relative parameter variations.
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Figure 7.1 – The Leloup-Goldbeter model accounts for several regulatory processes
identified in circadian rhythms of mammals. Figure taken from [108].

Sensitivity analysis of the period and the phase response curve

The period and the phase response curve are two intrinsic characteristics of the
circadian oscillator with physiological significance. We study the sensitivity
analysis of the period and the phase response curve to measure the influence
of regulatory processes on tuning the period and shaping the phase response
curve.

A two-dimensional (ρω, ρq) scatter plot in which each point corresponds
to a parameter of the model reveals the shape and strength of the relation-
ship between both normalized robustness measures ρω (angular frequency or,
equivalently, period) and ρq (phase response curve). It enables to identify which
characteristic is primarily affected by perturbations in individual parameters:
parameters below the dashed bisector mostly influence the period; those above
the dashed bisector mostly influence the phase response curve (see Figure 7.2).

At a coarse level of analysis, the scatter plot reveals that most parameters
exhibit both low sensitivities of the period and of the phase response curve
(most points are close to the origin); only few parameters display a medium or
high sensitivity either of period or of phase response curve.

At a finer level of analysis, the scatter plot reveals a qualitative difference
of sensitivity for the parameters associated with each of the three mRNA loops
(materialized for each loop by a least-square regression line passing through
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Figure 7.2 – Local parametric robustness analysis in the space of infinitesimal phase
response curves. Normalized robustness measures ρω (angular frequency) and ρq

(infinitesimal phase response curve) reveal the distinct sensitivity of three distinct
genetic circuits (Cry, Per, and Bmal1 ). Each point is associated to a particular
parameter. The three lines are regression over the parameters of the three gene loops.
The dashed bisector indicates the positions at which both measures of robustness
are identical. Only parameters associated with the Cry-loop exhibit low angular
frequency and high infinitesimal phase response curve sensitivities. The color code
corresponds to different subsets of parameters associated to different loops (see the
text for details).



7.1. Parametric robustness analysis 87

the origin):

• the Bmal1 -loop parameters are associated with a high sensitivity of the
period and a medium sensitivity of the phase response curve (regression
line below the bisector);

• the Per-loop parameters are associated with a medium sensitivity of the
period and a high sensitivity of the phase response curve (regression line
above the bisector);

• the Cry-loop parameters are associated with a low sensitivity of the period
and a high sensitivity of the phase response curve (regression line above
the bisector, close to the vertical axis).

In each feedback loop, the three most sensitive parameters represent the three
same biological functions: the maximum rates of mRNA synthesis (vsB, vsP,
and vsC), the maximum rate of mRNA degradation (vmB, vmP, and vmC), and
the inhibition (I) or activation (A) constants for the repression or enhance-
ment of mRNA expression by BMAL1 (KIB, KAP, and KAC). Those three
parameters primarily govern the sensitivity tendency associated to each loop.

The small number of highly sensitive parameters is in agreement with the
robust nature of the circadian clock and the concentration of fragilities in some
specific locations of the architecture [168]. Our analysis suggests that the tran-
scriptional and translational control of mRNA (i.e. the control of both bio-
logical steps required to synthesize a protein) has to be regulated by specific
mechanisms (not included in the model) in order to avoid failures in the clock
function. While the topology of Per- and Cry-loops are identical, the asymme-
try introduced by the choice of parameter values leads to different sensitivity
for those loops. Both loops have a similar high sensitivity of the phase response
curve (while the light acts only on the maximum rate of Per mRNA synthesis)
but a different sensitivity of the period, the Per-loop being more sensitive than
the Cry-loop. The high sensitivity of the period for parameters associated with
the Bmal1 -loop has also being identified in [109]. However, this last prediction
of the model (high sensitivity of the period to Bmal1 -loop) is not in agreement
with experimental observations in [21, 186]. This observation may encourage
the biologist and the modeler to design of new experiments to enlighten biolog-
ical mechanisms responsible for this discrepancy between the experiment and
the model.

Two of the three sensitive parameters of the Cry-loop emphasized by our
sensitivity analysis have been identified by numerical simulations as important
for entrainment properties of the model without affecting the period (KAC
in [108] and vmC in [109]). Our approach supports the importance of those two
parameters and identifies the potential importance of a third one (vsC).
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Entrainment Angular frequency Coupling function

Figure 7.3 – Normalized sensitivity measures Sχ
∗
/
∥∥Sχ∗∥∥

∞
(entrainment) are due to

two contributions: Sχ
∗

ω /
∥∥Sχ∗∥∥

∞
(angular frequency) and Sχ

∗

Γ /
∥∥Sχ∗∥∥

∞
(coupling

function). Each (thick) horizontal bar corresponds to a sensitivity measure with
respect to a particular parameter. The (thin) horizontal lines indicate (in absolute
value) the maximal sensitivity (among all parameters) and may be useful to compare
the sensitivity of a parameter to the maximal sensitivity. The color code corresponds
to different subsets of parameters associated to different loops (see the text for details).

Sensitivity analysis of the entrainment

Entrainment is an important characteristic of the circadian model. In Sec-
tion 5.2.3, we have seen that the entrainment sensitivity Sχ∗ is mathematically
given by the summation of two terms: a term Sχ

∗

ω proportional to the period
sensitivity and a term Sχ

∗

Γ proportional to the coupling function sensitivity
at χ∗. Those two terms correspond to two biologically distinct mechanisms by
which the entrainment properties of the circadian clock can be regulated: a
modification of the period or a modification of the coupling function (resulting
from the modification of the infinitesimal phase response curve or the input
signal).

Bar plots of Sχ∗
/
∥∥Sχ∗∥∥

∞, Sχ∗

ω /
∥∥Sχ∗∥∥

∞, and Sχ
∗

Γ /
∥∥Sχ∗∥∥

∞ in which each
bar corresponds to a parameter allows to identify the most sensitive parameters
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for entrainment and to quantify the respective contribution of both mechanisms
in the entrainment sensitivity (see Figure 7.3). The entrainment sensitivity and
the contributing terms are normalized by

∥∥Sχ∗∥∥
∞ (the same maximal value of

the entrainment sensitivity) such that the summation of normalized terms is
equal to the normalized entrainment sensitivity. For each bar plot, we sorted
parameters by absolute magnitude and restricted the plot to the 14 parameters
with the highest sensitivity measure (the number 14 results from our choice to
keep the parameters with an entrainment sensitivity greater than 0.1). Those
plots allow to identify the parameters which play an important role in the
entrainment sensitivity. We note that the parameter orders for Sχ∗

/
∥∥Sχ∗∥∥

∞
and Sχ∗

ω /
∥∥Sχ∗∥∥

∞ are almost identical, except for parameters associated with
the Cry-loop. Those parameters appear in the highest ones for Sχ

∗

Γ /
∥∥Sχ∗∥∥

∞.
Figure 7.4 (top) reveals the competitive and complementary nature of both

contributions to entrainment sensitivity. For most parameters, both contribu-
tions have opposite signs, that is, points are located in the second and fourth
quadrants. In addition, both mechanisms are well decoupled such that, when
one mechanism is active, the other is almost inactive (points are located close
to the horizontal and vertical axes). Parameters associated with Cry-loop seem
to influence the entrainment sensitivity through a modification of the coupling
function (points close to the vertical axis); others parameters associated with
Per-loop and Bmal1 -loop seem to influence the entrainment sensitivity through
a modification of the period (points close to the horizontal axis).

The different mechanisms leading to entrainment sensitivity are also ob-
served in both other scatter plots (see Figure 7.4 bottom-left and -right). In
those plots, parameters associated with points close to the bisector of the first
and third quadrants influence the entrainment sensitivity through a modifica-
tion of the period (bottom-left) or the coupling function (bottom-right), re-
spectively. Again, only parameters associated with the Cry-loop seem to affect
the entrainment through a variation of the phase response curve.

Two of the parameters belonging to the Cry-loop (with high coupling func-
tion and low period sensitivities) have been identified by numerical simulations
as important for entrainment properties of the model without affecting the
period: KAC in [108] and vmC in [109]. Our approach supports the impor-
tance of those two parameters and identifies the potential importance of a
third one (vsC).

Remark We stress that the conclusions in [108, 109] rely on extensive simu-
lations of the model to simulate entrainment conditions while varying one pa-
rameter at a time. In contrast, the proposed analysis is systematic and allows a
computationally cheap screening of all parameters. The plots in Figure 7.2–7.4
are generated in less than a minute with our MATLAB code.
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Figure 7.4 – Normalized scalar sensitivity measures Sχ
∗
/
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∞
(entrainment),

Sχ
∗

ω /
∥∥Sχ∗∥∥

∞
(angular frequency contribution to entrainment), and Sχ

∗
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∞
(coupling function contribution to entrainment) exhibit particular correlation shapes.
The top graph represents the (Sχ

∗
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∞
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/
∥∥Sχ∗∥∥

∞
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graph represents the (Sχ
∗

Γ /
∥∥Sχ∗∥∥

∞
, Sχ

∗
/
∥∥Sχ∗∥∥

∞
)-plan. Each point is associated to

a particular parameter. The color code corresponds to different subsets of parameters
associated to different loops (see the text for details). Those correlations support the
competitive nature of both mechanisms (modification of the period or the coupling
function) leading to the entrainment sensitivity.
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Nonlocal sensitivity analysis

To evaluate the nonlocal nature of our local predictions, we plot in Figure 7.5
the time behavior of solutions for different finite (nonlocal) parameter changes.
The left plots illustrate the autonomous oscillation of the isolated oscillator
whereas the right plots illustrate the steady-state solution entrained by a pe-
riodic light input. Parameter perturbations are randomly taken in a range of
±10% around the nominal parameter value. Each panel corresponds to the per-
turbation of a different group of parameters (the black time-plot corresponds
to the nominal system behaviors for nominal parameter values).

A. Perturbations of three most sensitive parameters of Cry-loop (vsC, vmC,
and KAC) lead to small variations (mostly shortening) of the autonomous
period and (not structured) large variations of the phase-locking. This
observation is consistent with the low sensitivity of the period and the
high sensitivity of the phase response curve.

B. Perturbations of three most sensitive parameters of Bmal1 -loop (vsB,
vmB, and KIB) lead to medium variations of the autonomous period and
medium variations of the phase-locking. The variations of the phase-
locking exhibit the same structure as variations of the period, suggesting
that the change in period is responsible for the change of phase-locking for
those parameters. This observation is consistent with the high sensitivity
of the period and the medium sensitivity of the phase response curve.

C. Perturbations of three most sensitive parameters of Per-loop (vsP, vmP,
and KAP) exhibit an intermediate behavior between the situations A
and B.

D. Perturbations of parameters of interlocked loops lead to small variations
of the autonomous period and the phase-locking, which is consistent with
their low sensitivity.

Those (nonlocal) observations are thus well predicted by the classification of
parameters suggested by the (local) sensitivity analysis (see Figure 7.2).
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Figure 7.5 – Validation of the local parametric robustness analysis for finite (non-
local) parameter perturbations. Steady-state behaviors for the nominal model and
different finite (nonlocal) parameter perturbations are illustrated by time-plots of the
state variable MP under constant environmental conditions (autonomous oscillation,
left) and periodic environmental conditions (entrainment, right). Each panel (or row)
corresponds to the perturbation of a different group of parameters, the black time-
plot corresponding to system behaviors for nominal parameter values. Perturbations
are randomly taken in a range of ±10% around the nominal parameter value (for
one parameter at a time). A. Perturbations of three most sensitive parameters of
Cry-loop (vsC, vmC, and KAC) lead to small variations of the autonomous period and
(not structured) large variations of the phase-locking. B. Perturbations of three most
sensitive parameters of Bmal1 -loop (vsB, vmB, and KIB) lead to larger variations of
the autonomous period and medium variations of the phase-locking. C. Perturba-
tions of three most sensitive parameters of Per-loop (vsP, vmP, and KAP) exhibit an
intermediate behavior between the situations A and B. D. Perturbations of param-
eters of interlocked loops lead to small variations of the autonomous period and the
phase-locking.
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7.2 Parametric system identification
System identification deals with the problem of building mathematical models
of dynamical systems based on observed data from the systems. In particular,
parametric system identification aims at finding a set of parameter values in
agreement with observed data for a given state-space model structure.

In the literature, parameter values for circadian rhythm models are often
determined empirically by trial-and-error methods due to the few pieces of
experimental information about parameter values.

In this section, we aim at providing a gradient-descent algorithm to identify
a set of parameter values which gives a phase response curve close to an exper-
imental phase response curve (in our metric). We illustrate this algorithm on
a qualitative circadian oscillator model.

Gradient-descent algorithm

A standard method to tackle the system identification problem is to recast it
into an optimization framework. The minimization of an empirical cost Ṽ (λ)
yields the parameter estimate

λ̂ = arg min
λ∈Λ

Ṽ (λ) (7.4)

where Ṽ (λ) : Λ→ R≥0 penalizes the discrepancy between observed data from
the system and prediction from the model. Local minimization is usually
achieved with a gradient-descent algorithm requiring the computation of the
gradient ∇λṼ (λ).

Given an ‘experimental-like’ phase response curve q0 (or its equivalence
class q0 = [q0]), a natural cost function Ṽ (λ) is defined as

Ṽ (λ) := V (q(λ)) = 1
2 dist(q(λ), q0)2 (7.5)

where dist(·, ·) is the distance in the (nonlinear) space Q. The gradient (in the
parameter space Λ) of this cost function with respect to the parameter λj is
given by

∇λj Ṽ (λ) = gq
(
gradq V (q(λ)), Sqj (λ)

)
(7.6)

where gradq V (q(λ)) and Sqj (λ) are elements in the tangent space TqQ.
When Q is a quotient space, the evaluation of the gradient ∇λj Ṽ (λ) relies

on representatives in the total space

∇λj Ṽ (λ) = gq

(
gradq V (q(λ)), Phq S

q
j (λ)

)
(7.7)

where V (q) = V ([q]) for all q ∈ [q].
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Remark. Actual experimental phase response curves are finite discrete sets of
measurements. The comparison of the model prediction to those measurements
would require a discretized version of our distances. We do not consider this
in this paper. The illustration problem can be seen as the second step of
a procedure in which a continuous curve have been fitted in a first step to
experimental data. We can also see this problem as fitting the parameter of a
reduced model to reproduce the phase response curve of a quantitative model.

Qualitative circadian oscillator model

We illustrate the system identification on a qualitative circadian rhythm model.
The Goodwin oscillator is a cyclic feedback system where metabolites repress
the enzymes which are essential for their own synthesis by inhibiting the tran-
scription of the molecule DNA to messenger RNA (mRNA) [68]. It can be
described as the cyclic interconnection of three first-order subsystems and a
monotone static nonlinearity

τm ṁ = −m+Km
1

1 + [(p+ u)/κ]ν (7.8a)

τe ė = −e+Kem (7.8b)
τp ṗ = −p+Kp e (7.8c)
y = e. (7.8d)

A dimensionless form of this system is equivalent to impose Ke = Kp = τm =
κ = 1. For notational convenient, the remaining static gain is denotedKm = K.

To simplify the analysis (but without loss of generality), we reduce the
parameter space to two dimensions: we impose equal time constants (τe = τp =
τ) and we fix the Hill coefficient ν = 20. This high coefficient is justified for the
purpose of the illustration by the necessity to get periodic orbits (ν > 8) and
strong enough differences between infinitesimal phase response curve shapes
in the parameter space. The results for weaker coefficient are similar but less
marked. The parameter space reduces to (K, τ) ∈ R2

>0.
An ‘experimental-like’ infinitesimal phase response curve is chosen as the in-

finitesimal phase response curve computed for a quantitative circadian rhythm
model of Drosophila which agrees with experimental data [107,110].

In this context, it is meaningful to perform the identification in the spaceQD
incorporating both scaling and phase shifting equivalence properties for the
same reasons as in the previous illustration.

System identification

The Goodwin model exhibits stable oscillations in a region of the reduced pa-
rameter space (Figure 7.6, top). The border of this region corresponds to a
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supercritical Andronov-Hopf bifurcation through which the model single equi-
librium looses its stability. The contour levels of the cost function—which have
been computed in the whole region to make results interpretation easier—reveal
two local minima of the cost function.

Picking initial guess values for model parameters, the gradient-descent algo-
rithm minimizes the cost function following a particular path in the parameter
space (Figure 7.6, top). The cost function value decreases at each step of the al-
gorithm along this path (Figure 7.6, bottom). The optimal infinitesimal phase
response curve (blue or red) fits very well the ‘experimental’ one (gray), in
contrast to the initial infinitesimal phase response curve.

Due to the nonconvexity of the cost function, two paths starting from dif-
ferent initial points may evolve towards different local minima. In the present
example, the cost function happens to be (nearly) symmetric with respect to a
unitary time-constant τ and both local minima correspond to similar infinites-
imal phase response curves (up to a scaling factor and a phase shift).

To evaluate the consistency of our identification procedure in the space of
infinitesimal phase response curves with prediction on finite phase response
curves, we compare in Figure 7.7 the finite phase response curves for both
optimally identified parameters to the finite phase response curve of the quan-
titative circadian rhythm model. The finite phase response curve have been
computed through direct numerical simulations of the model. The magnitude
of the input and the reference point used to evaluate the finite phase response
curve are chosen appropriately based on the phase shift and the scaling factor
computed in the optimization procedure on infinitesimal phase response curves.
The shape of (finite) phase response curves matches. It suggests that (finite)
phase response curves are well captured by the (local) infinitesimal phase re-
sponse curves.

7.3 Summary
In this chapter, we performed a (local) robustness analysis of a detailed cir-
cadian rhythm model and a (local) parametric systems identification with a
gradient-descent algorithm. Both local analyses have been validated with non-
local investigations.

The results suggest that a local analysis is useful to study those oscillators
without facing the curse of dimensionality obstacle associated with numerical
exploration of the parameter space.

The sensitivity analysis can be a first step to identify a reduced parameter
space in which to perform the system identification. It would be of interest to
apply the system identification on the detailed oscillator model.
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Figure 7.6 – Parametric system identification in the space of infinitesimal phase re-
sponse curves. (Top) The cost function (gray levels) between an experimental in-
finitesimal phase response curve and the (input) infinitesimal phase response curves
exhibits a nonconvex behavior in the reduced parameter space. The gradient-descent
algorithm follows the path indicated by dots. (Bottoms) The cost along the path
followed by the gradient-descent algorithm decreases with the iteration number. The
shape of the optimal infinitesimal phase response curve (blue or red) is closer to the
reference infinitesimal phase response curve (gray) than the initial infinitesimal phase
response curve (blue or red).
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Figure 7.7 – Validation of the parametric system identification for finite phase re-
sponse curves. The (finite) phase response curves computed at optimally identified
parameters (blue and red) in the parameter space match well with the (finite) phase
response curve of the quantitative circadian rhythm model (gray). The magnitude
of the input and the reference point have been chosen based on the results of the
optimization procedure in the space of infinitesimal phase response curves.
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Chapter 8

Systems analysis of
neural oscillator models
in the space of
phase response curves

Neural oscillators are essential building blocks in neurodynamics. They play a
key role in many neural functions.

Historically, the core mechanism responsible for neural oscillators was based
on the hysteresis-and-adaptation motif [47, 48, 84, 130]. Nowadays, this archi-
tecture is still at the heart of all neural oscillator systems [51,52].

In neural (or cardiac) excitable cells, the phase response curve is used to
study ensemble behavior in a network. In particular, synchronization in coupled
neurons and entrainment in uncoupled neurons subject to correlated inputs
(also known as stochastic synchronization). The recent book [155] compiles
several applications of phase response curves in neuroscience.

An important fraction of applications of phase response curves in neurody-
namics focuses on infinitesimal phase response curves. In particular, they aim
at studying the behavior of networks in which each oscillator is characterized by
a canonical infinitesimal phase response curve, that is, the infinitesimal phase
response curve in a close neighborhood of the bifurcation giving birth to the
oscillator. Two main classes of canonical phase response curves are the follow-
ing. Class-I phase response curves exhibit only primarily positive or primarily
negative phase shift; class-II phase response curves exhibit a sinusoidal phase
shift.

However, due to time-scale separation, the domain of validity of infinitesimal

99
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phase response curves vanishes in the singular limit.
We apply the metric developed in Chapter 4 to investigate the fragility of

the classification of neural oscillator models based on the bifurcation giving
birth to the oscillator and we apply the singular perturbation theory developed
in Chapter 6 to predict the shape of finite phase response curves.

This chapter is organized as follows. Section 8.1 propose a model classifi-
cation directly based on a distance in the space of response curves. Section 8.2
provide geometric predictive tools of the shape of finite phase response curves.

Contributions. The main contributions of this chapter are (i) to emphasize
that the current classification method based on the bifurcation giving birth
to the oscillator makes little sense and to propose a new classification based
directly on the shape of phase response curve and (ii) to predict, through a
novel geometric approach, the shape of finite phase response curves.

8.1 Model classification
Model classification aims at separating models in groups which share respec-
tively common qualitative and/or quantitative characteristics.

In the literature, models of neurons are often grouped into two classes based
on the bifurcation that gives birth to periodic firing [81]. Class-I excitable neu-
rons arise from saddle-node on invariant circle bifurcations and can theoreti-
cally fire at arbitrarily low finite frequencies. Class-II excitable neurons arise
from a subcritical or supercritical Andronov-Hopf bifurcations and possess a
nonzero minimum frequency of firing. Recently several papers have suggested
that class-II neurons display a higher degree of stochastic synchronization than
class-I neurons [2,54–56,83,119]. All those studies analyze phase models using
canonical phase response curves associated with each class (see bellow) and
the role played by the shape of the infinitesimal phase response curves for this
property. As we will see latter the shape of the infinitesimal phase response
curve can change quickly as the oscillator model is away from the bifurcation
and thus the qualitative synchronization behavior may also change.

In this section, we compare this model classification to a classification di-
rectly based on the distance to canonical infinitesimal phase response curves in
the space of infinitesimal phase response curves.

Model classification scheme in the space of phase response curves

A strong relationship between the bifurcation type and the shape of the in-
finitesimal phase response curve has been demonstrated [18, 41, 81]: near the
bifurcation, the infinitesimal phase response curve of class-I excitable neurons
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is nonnegative or nonpositive and approximated by

qI(θ) := [1− cos(θ)] , (8.1)

whereas the infinitesimal phase response curve of class-II excitable neurons has
both positive and negative parts and is approximated by

qII(θ) := sin(θ + π). (8.2)

We propose to classify models in the parameter space based on the distance
between the model infinitesimal phase response curve and canonical infinitesi-
mal phase response curves

q ∈

{
class-qI if dist(q, qI) < dist(q, qII)
class-qII if dist(q, qI) > dist(q, qII)

(8.3)

where dist(·, ·) is the distance in the space Q.
Remark. Recently, it has been shown that, arbitrary close to a saddle-node
on invariant circle bifurcation, the phase response curve continuously depends
on model parameters and its shape can be not only primarily positive or pri-
marily negative but also nearly sinusoidal [42]. However, it remains true that
many neural oscillators undergoing a saddle-node on invariant circle bifurcation
are such that they exhibit a primarily positive (or primarily negative) phase
response curve.

Neural oscillator model

We illustrate the model classification on a simple neuron model developed by
Morris and Lecar [127]. This model is a popular two-dimensional reduced model
of excitable neurons

C V̇ = −gCa m∞(V ) (V − VCa)− gK w (V − VK)− gL (V − VL) + Iapp (8.4a)
ẇ = φ (w∞(V )− w)/τw(V ) (8.4b)

where

m∞(V ) = 0.5 [1 + tanh((V − V1)/V2)] (8.5)
w∞(V ) = 0.5 [1 + tanh((V − V3)/V4)] (8.6)

and

τw(V ) = 1/ cosh((V − V3)/(2V4)). (8.7)

The applied current Iapp plays the role of input.
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This model exhibits both classes of excitability for different parameter val-
ues [143, 176]. In particular, the calcium conductance gCa modifies the nature
of the bifurcation giving birth to the periodic orbit. For large values of gCa,
the model exhibits a class-I excitability (saddle-node on invariant circle bifur-
cation). For smaller value of gCa, the model exhibits a class-II excitability
(Andronov-Hopf bifurcation).

In this context, it is meaningful to classify model based on a distance in
the space QD incorporating both scaling and phase shifting equivalence prop-
erties. We are indeed interested only in comparing the qualitative shape of
infinitesimal phase response curves.

Results

Standard classification scheme is unidimensional and defines an horizontal sep-
aration in the two-dimensional parameter space (Iapp, gCa) (Figure 8.1, left).
Indeed, a model is classified based on the bifurcation giving birth to periodic
firing while varying the applied current Iapp.

However, the shape of the infinitesimal phase response curve close to the
bifurcation can be different from the ideal shape predicted at the bifurcation
boundary (Figure 8.1, right).

The classification scheme based on the infinitesimal phase response curve
shape provides a different separation in the parameter space (Figure 8.1, right).
The new classification scheme allows one neuron (for one value of gCa) to pass
from one class to another (crossing of the separation) for different values of
applied current Iapp. Infinitesimal phase response curves computed for several
points close to the bifurcation boundary confirm the classification based on
the qualitative shape of infinitesimal phase response curves. In particular,
parameter set B belongs to the new class-I.

For class-II oscillators, we observe that the correspondence between the
bifurcation-based classification and the phase response curve-based classifica-
tion is limited to a narrow region in the neighborhood of the bifurcation.

To verify the predictive value of our classification, we plot in Figure 8.2
the time evolution of a uncoupled neuron network in which all neurons are
entrained by the same stochastic input (i.e. stochastic synchronization). For
each neuron (one horizontal line), we plot a point when the neuron fires (raster
plot). Each panel (from A to C) corresponds to a different point in the pa-
rameter space. The synchronization level is quantified by the time-evolution
of the spike distance in panel D [96]. This distance is equal to 0 for perfect
synchronization and to 1 for perfect desynchronization.

The stronger synchronization observed for parameter set C than for both
parameter sets A and B supports the better prediction given by a classification
scheme based on the shape of the phase response curve rather than on the
bifurcation at the origin of the periodic firing.
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Figure 8.1 – Parametric model classification based on a distance in the space of
infinitesimal phase response curves. (Left) Standard classification relies on the bi-
furcation giving birth to the periodic orbit while varying the applied current Iapp
(class-I in blue and class-II in green). This unidimensional classification defines an
horizontal separation in the parameter space. Ideal phase response curves at the bi-
furcation are shown. (Right) Our classification relies on the distance to nearest ideal
phase response curves (class-I in blue and class-II in green). This classification in the
two-dimensional parameter space determines very different subsets. Parameter set A
(resp. C) belongs to class-I (resp. class-II) and its phase response curve is closest
to the class-I ideal phase response curve (resp. class-II ideal phase response curve).
However, parameter set B (in red) belongs to class-II and its phase response curve is
closest to the class-I ideal phase response curve. (Parameter values: C = 20 µF/cm2,
gK = 8 mS/cm2, gL = 2 mS/cm2, VCa = 120 mV, VK = −80 mV, VL = −60 mV,
V1 = −1.2 mV, V2 = 18 mV, V3 = 12 mV, V4 = 17.4 mV, φ = 1/15 s−1.)
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Figure 8.2 – Validation of the parametric model classification for stochastic synchro-
nization. Stochastic synchronization for uncoupled network of state-space models are
illustrated by time-plots of firing times (one line corresponds to one neuron). Each
panel (from A to C) corresponds to a point in the parameter space (see Figure 8.1).
In panel D, the spike-distance quantifies the synchronization level of the network (it
is equal to 0 for perfect synchronization and to 1 for perfect desynchronization). Pa-
rameter sets A and B exhibit a lower stochastic synchronization (higher values of the
spike-distance) than parameter set C, consistent with the fact that the phase response
curve of parameter set B is shapewise closer to the phase response curve of parameter
set A than to the one of parameter set C.
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8.2 Geometric prediction
Neural oscillators exhibit multiple time-scale dynamics. Motivated by the in-
herent limitations of the infinitesimal phase response curves for relaxation os-
cillators, it is of interest to predict the shape of the finite phase response curve.

Neural oscillator model

We illustrate our geometric approach on a simple neuron model developed by
FitzHugh and Nagumo [48, 130]. This model is a popular two-dimensional
simplification of the Hodgkin-Huxley model of spike generation in squid giant
axons

v̇ = v − v3/3− w + u (8.8a)
τ ẇ = a− bw + v (8.8b)
y = v (8.8c)

where v is the voltage variable, w is the recovery variable, and ε := 1/τ is a
small parameter.

The critical manifold of the system under a constant input ū is illustrated
in Figure 8.3 (top). The critical manifold of the system under a constant step
input is identical to the critical manifold of the zero-input system, but shifted
along w-axis.

The functions ψ+ and ψ− describing the time spent on the critical manifold
from a initial condition z0 to a final condition zτ may be computed numerical
and are illustrated in Figure 8.3 (bottom). We note that the dependence of the
function on the input value ū is more complex than a simple shift. This is due
to the direct dependence of the slow vector field on the slow variable w.

Phase response curves for excitatory or inhibitory impulses

Figure 8.4 illustrates the phase response curve of the FitzHugh-Nagumo model
for excitatory and inhibitory impulses u(·) = α δ(·), with α > 0 and α < 0. The
solid lines are the geometric predictions computed in the singular limit. Dots
represent the phase response computed through numerical time-simulations of
trajectories of the model for different values of the parameter ε.

The singular phase response curve is equal to zero except in one region of
the periodic orbit which corresponds to the region right before the initiation
(resp. termination) of the upper part of the periodic orbit for an excitatory
(resp. inhibitory) impulse. In this region, an impulse advances the initiation
(resp. termination) of the upper part of the periodic orbit. The phase advance
decreases monotonically to zero until the phase corresponding to the lower
(resp. upper) fold.
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Figure 8.3 – Geometry of FitzHugh-Nagumo model. (Top) The critical manifold of
FitzHugh-Nagumo model under zero-input (gray) exhibits bistability for a wide range
of slow variable values. Excitatory step input (green) and inhibitory step input (red)
shift the critical manifold along w-axis on the right and on the left, respectively.
(Bottom) Time intervals ψ+(w− + ū, w, ū) spent on the upper branch of the critical
manifold (for ū < 0, ū = 0, or ū > 0) are increasing functions of the slow variable w
and equal to 0 for w = w− + ū. Time intervals ψ−(w+ + ū, w, ū) spent on the lower
branch of the critical manifold (for ū < 0, ū = 0, or ū > 0) are decreasing functions
of the slow variable w and equal to 0 for w = w+ + ū. (Parameter values: a = 0.7,
b = 0.8, I = 1.)
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excitatory impulse

inhibitory impulse

Figure 8.4 – Phase response curves for excitatory and inhibitory impulses: singular
prediction (solid line) and simulations (dots). (Parameter values: see Figure 8.3. The
impulse input is such that |α| = 1.5.)

For small values of ε, the geometric prediction matches very well the actual
phase response curves. For larger values of ε, the prediction still matches
(qualitatively) the larger phase shifts arising before the lower (resp. upper) fold
but do not capture the small phase shifts arising before the upper (resp. lower)
fold.

Phase response curves for excitatory or inhibitory pulses

Figure 8.5 illustrates the phase response curve of the FitzHugh-Nagumo model
for excitatory and inhibitory pulses of finite duration. The solid lines are the
geometric predictions computed in the singular limit. Dots represent the phase
response computed through numerical time simulations of trajectories of the
model for different values of the parameter ε.

The singular phase response curve is equal to zero except in two regions
of the periodic orbit. The first region which exhibits the highest phase shifts
corresponds to same region as for the impulse case. The phase shifts in this re-
gion follow a piecewise law: the breaking point in the phase shifts corresponds
to the separation between points that continues to evolve on the shifted ini-
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inhibitory pulse

excitatory pulse

Figure 8.5 – Phase response curves for excitatory and inhibitory pulses of finite du-
ration: singular prediction (solid line) and simulations (dots). (Parameter values:
see Figure 8.3. The pulse input is such that |ū| = 0.25 and ∆ = 0.1T .)

tial branch and those that directly jump to the opposite branch. The second
region corresponds to point close to the other fold (see case 1 and case 2 in
Figure 6.4). An excitatory (resp. inhibitory) pulse may delay the termination
(resp. initiation) of the upper part.

Once again, for small values of ε, the geometric prediction matches very
well the actual phase response curves. For larger values of ε, the prediction
matches qualitatively both non-zero regions of the phase response curve.

The main difference between the phase response curve for an impulse and
for a pulse is that a positive (resp. negative) pulse may delay the termination
(resp. advance the initiation) of the behavior on the upper branch, while a
positive (resp. negative) impulse may not.

In Table 8.1, we summarize the capacity of an input to create a phase shift.
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Input Initiates upper part Terminates upper part

excitatory impulse yes no

inhibitory impulse no yes

excitatory pulse yes (++) yes (+)

inhibitory pulse yes (+) yes (++)

Table 8.1 – Capacity of an input to create a phase shift by advancing or delaying the
initiation or termination of the evolution on the upper branch of the critical manifold.
The main difference between the phase response curve for an impulse and for a pulse
is that a positive (resp. negative) pulse may delay the termination (resp. advance
the initiation) of the behavior on the upper branch, while a positive (resp. negative)
impulse may not.

8.3 Summary
In this chapter, we investigated the current classification method of neural
oscillator models based on the bifurcation giving birth to the oscillator and we
stressed that the shape of the phase response curve (and thus the input–output
behavior the neuron) can change quickly away from the bifurcation. We also
predicted the geometric shape of the finite phase response curves (better suited
for fast-slow oscillators).

As a consequence, it means that the input–output systems analysis of fast-
slow neural oscillators should advantageously be performed in the space of the
finite phase response curves.
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Chapter 9

Phase oscillator control
in the space of
phase response curves

The last decades have witnessed a growing interest in the analysis and the
synthesis of oscillators [50, 72, 164]. Global and local stability analysis of os-
cillators but also the generation of oscillators with large basin of attraction in
stabilizable nonlinear systems were widely addressed in the control theory liter-
ature (see [165, and references therein]). Here, we focus on a different problem.
Any periodic oscillation can be characterized by its amplitude, frequency (or
frequencies spectrum), and phase. Several strategies have been proposed to
control each of these characteristics [12,16,37,94].

Many design and control problems arising for oscillators are related to char-
acteristics of the dynamics on the circle. It makes thus sense to develop the
design and control strategies directly on the circle (and not in the state space).
Yet, few approaches have been proposed so far.

We investigate some elementary strategies based on the phase response
curve to control the phase of a large class of oscillators. Our control objective
is to drive an oscillator to track the phase of a reference trajectory evolving
at the natural frequency of the system. While this problem can be found in
many applications, it has been motived by biological applications in the study
of circadian rhythm. Recent work addressing the phase control using model
predictive control includes [13,15]. An independent but closely related idea has
been proposed in [27] in the context of a neuronal model.

This chapter is organized as follows. Section 9.1 reviews several design and
control problems arising for oscillators and emphasizes the phase nature of the
design or control objectives. Section 9.2 introduces a biological toy motivating
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example, focuses on phase control map and phase response curve-based control
strategies, and applies these control laws to the motivating example.

Contributions. The main contribution of this chapter is to develop control
strategies to drive an oscillator to track the phase of a reference trajectory
evolving at the natural frequency of the system.

The material of this chapter is the result of a collaboration with Denis
Efimov (former postdoctoral researcher at the University of Liège).

9.1 Design and control of phase oscillator
In this section, we review several phase oscillator design and control problems
arising in engineering. In these applications, the design or control objectives
concern the frequency or the phase of the oscillator which emphasizes the per-
tinence to study such problems on the circle (and not in the state space). This
section does not intend to be exhaustive.

In nuclear fusion engineering, oscillatory phenomena are observed in current
carrying magnetically confined plasmas. It corresponds to a periodic crash-like
reorganization of the plasma core known as the sawtooth instability. Experi-
mental evidence has shown that the sawtooth period may follow the modula-
tion frequency of an external control signal [105], leading to the phase-locking
phenomenon.

In electronic engineering, oscillatory systems are commonly needed to gen-
erate precise clock signals that translate data to desired frequency band in
receivers or trigger events in digital circuits. In those oscillators, noise mainly
appears as phase noise (or timing jitter) and degrades the performance of those
electronic devices. Therefore, the design of low-noise oscillators is an critical
aspect of circuit design in many applications [79, 188]. The conversion of the
noise from circuit components into phase noise is characterized by the so-called
perturbation projection vector [31].

In neural engineering, the desire to control the spiking behavior of neural
oscillators and, by extension, the level of synchronization in neural populations
appears naturally in the context of Parkinson’s disease, which has been asso-
ciated with pathological synchronization of motor control neurons. A popular
therapeutic procedure, known as deep brain stimulation, consists in injecting
current signals directly into the brain through an implanted electrode in or-
der to desynchronize the neural population. Several control strategies have
been proposed to choose the injected signal: event-based feedback control (e.g.
charge-balanced [26,28], minimum-time [129], or minimum-energy [128]).

In aerospace engineering, the optimal control problem of a spacecraft ren-
dezvous with a satellite is frequent. The optimum can be in the sense of
minimum-time, minimum fuel consumption, or a rational combination of both.

http://researchers.lille.inria.fr/~efimov/
http://researchers.lille.inria.fr/~efimov/
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Due to the circular nature of the satellite orbit, it is very tempting to regard
this problem as a phase control problem.

9.2 Phase oscillator control strategies
In this section, we introduce a biological toy motivating example. Then we pro-
vides the phase control map and phase response curve-based control strategies.
Finally we apply these control laws to the motivating example.

9.2.1 A motivating example
A common illustration of phase assignment is the jet-lag that most scientists
experience when traveling to conferences. The organism needs some time to
“reset” the phase of its initial circadian rhythm to shifted environmental light
conditions. This problem prompts biologists to study phase resetting and en-
trainment mechanisms in simple models of circadian oscillations.

The fundamental mechanism in the Goldbeter model of Neurospora circa-
dian rhythms is the auto-inhibition of the transcription of the gene frq [67,110].
This inhibition is through a feedback loop that involves nuclear translocation.
Light (modeled by input u) controls the circadian system by enhancing the rate
of frq gene expression.

Corresponding to these assumptions, one obtains an ordinary differential
equation (ODE) system for concentrations as follows:

Ṁ = (vs + u) Kn
I

Kn
I + FnN

− vm
M

Km +M
, (9.1a)

ḞC = ksM − vd
FC

Kd + FC
− k1 FC + k2 FN , (9.1b)

ḞN = k1 FC − k2 FN , (9.1c)

whereM > 0 denotes the concentration of frq mRNA, and FC > 0 and FN > 0
are used to indicate the concentrations of FRQ in the cytoplasm and in the
nucleus, respectively.

The parameters used by Goldbeter are given in Section 9.2.3. With these
parameters, there are periodic orbit oscillations (a unique unstable equilibrium
and an asymptotically stable periodic orbit). If vs is used as a bifurcation
parameter, a Hopf bifurcation occurs at vs ≈ 0.60.

Periodic excitation by light input results in phase and frequency entrain-
ment of the natural circadian oscillations [67, 110, 172]. This means that the
application of a suitable input u over a periodic time window close to the
natural periodic orbit period T may entrain the phase of the system. This
phenomenon is illustrated for the specific model in [67,110]. The input is usu-
ally modeled as a sequence of pulses of limited duration and amplitude (for
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instance, one unique pulse of duration Tw = 12 h and amplitude ∆ = vs/4 is
applied every 24 hours).

9.2.2 Design of control strategies
In this section, we start with the derivation of the phase control map. Next, we
propose three control strategies: feedforward (FF), proportional feedback (P)
and proportional-integral feedback (PI) control.

Phase control map

For control purposes, we consider the application of a fixed input w(t) of finite
duration 0 < Tw � T at different time instants t0 < t1 < · · · . The time
instants ti, i ∈ N, are the control parameters. For an initial phase θ, the
input w(t) (asymptotically) causes a phase shift approximately measured by
(see the zeroth order approximation in Section 3.5)

Q(θ;w(·)) =
∫ Tw

0
q(ω s+ θ)w(s) ds. (9.2)

The phase difference χ = θ − θr (mod 2π) between a reference oscillator

θr(t) = ω t+ θr(0) (mod 2π) (9.3)

and a controlled oscillator evolving according to

θ̇ = ω + q(θ)w(t− t0), θ(0) = θ0, (9.4)

thus satisfies

χ(t) = χ(0) = θ(0)− θr(0), for 0 ≤ t < t0, (9.5)

and

χ(t0 + Tw) = χ(0) +Q(θ(t0);w(·)) (9.6)
= χ(0) +Q(ω t0 + θr(0) + χ(0);w(·)) . (9.7)

If the input signal is no longer an isolated application of w(t) but instead a
train of such finite-duration inputs

u(t) =
+∞∑
i=0

w(t− ti) , (9.8)

the equations (9.5)–(9.7) suggest to study the evolution of the phase difference
via the discrete map

χi+1 = χi +Q(ω ti + θr(0) + χi;w(·)) (9.9)
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where χi denotes the phase error χ(ti). This discrete map rests on the assump-
tion that the (asymptotic) phase shift Q(θ(ti);w(·)) has been reached after the
(finite) duration ti+1 − ti. To validate the assumption, one must impose

ti+1 − ti ≥ Ts ∀i ∈ N (9.10)

where the minimal “sampling” time Ts is typically chosen according to the
periodic orbit attractivity.

The discrete map (9.9) is a first-order discrete-time control system whose
control parameters are the pulse timings ti, i ∈ N. Equivalently, one may
rewrite (9.9) as

χi+1 = χi +Q(θi;w(·)) (9.11)

(where θi denotes the phase θ(ti)) and treat θi as the control variable.
In the remaining, we discuss three elementary control strategies to select

these control parameters: a feedforward control, a proportional feedback con-
trol, and a proportional-integral feedback control.

Feedforward control of the phase control map

The feedforward control strategy is based on the model (9.9) and does not
require any measurement about the current phase of the system. As the phase
variable θ evolves on the unit circle S1, phase shifts in both directions can be
used to modify the phase.

For the ease of exposition, we assume that the phase response curve has
particular properties (it is similar to type-II phase response curve from [81]).
The corresponding control strategies for other types of phase response curves
can be easily deduced from this main case.

Assumption 1. The phase response curve is continuous and it has one zero
θ0
s ∈ S1 with negative slope and another θ0

u ∈ S1 with positive slope, θ0
s < θ0

u.

Since the phase response curve is 2π-periodic (from Definition 1), the zeros
can be arranged in the required order θ0

s < θ0
u changing the initial point on the

periodic orbit. Define

θmax = arg max
θ∈S1

Q(θ;w(·)) , Qmax = Q(θmax;w(·)) , (9.12)

θmin = arg min
θ∈S1

Q(θ;w(·)) , Qmin = Q(θmin;w(·)) , (9.13)

with θ0
s < θmin < θ0

u < θmax, Qmax > 0, and Qmin < 0.
The integer part of the numbers

n+ = (2π − χ0)/Qmax, n− = −χ0/Qmin, (9.14)
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determine the number of steps required to drive the initial phase error χ0 into
a neighborhood of zero applying positive or negative phase shift, respectively.
These numbers are minimal since for their calculation we use the maximum
amplitudes of shift (Qmax or Qmin). Defining N = floor[min(n+, n−)], where
the function floor[n] returns the greatest integer not bigger than n, a natural
feedforward control is to apply N pulses of maximal phase shift (0 ≤ i < N)

θi =
{
θmax , for n+ ≤ n−
θmin , for n+ > n−

. (9.15)

A last pulse is needed to annihilate the residual error. The corresponding phase
θN is thus the solution of the following equation (obtained by annihilating the
phase error χN+1 in (9.11))

θN :
{
Q(θN ;w(·)) + χN = 2π , for n+ ≤ n−
Q(θN ;w(·)) + χN = 0 , for n+ > n−

. (9.16)

Following this control strategy, the phase error evolves as

χi =
{
χ0 + iQmax , for n+ ≤ n−
χ0 + iQmin , for n+ > n−

, (9.17)

for 0 ≤ i ≤ N and we have χN+1 = 0(= 2π).
The sequence of phases θi, 0 ≤ i ≤ N , determines the sequence of times ti

as follows: t0 is chosen as the first t ≥ 0 such that

θ0 = (θ(0) + ω t) (mod 2π) . (9.18)

For i = 0, . . . , n, one assumes

θ(ti + Ts) = (θi +Q(θi;w(·)) + ω Ts) (mod 2π) . (9.19)

Since
θ̇ = ω , for ti + Ts ≤ t ≤ ti+1 , (9.20)

one defines ti+1 as the first time t ≥ ti + Ts such that

θi+1 = (θ(ti + Ts) + ω (t− (ti + Ts))) (mod 2π) . (9.21)

This strategy is called “feedforward” since it does not require any measure-
ment of the phase variable.

Proportional feedback control of the phase control map

The proportional feedback control strategy assumes on-line measurements of
the current phase variable after each “pulse” application. To realize this strat-
egy it is enough to replace in (9.21) the values θ(ti +Ts) computed from (9.19)
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with measurement values. By measurements we mean the calculation of the
phase based on measurements of the state vector x(ti + Ts). The phase of x(t)
can be computed using the following algorithm:

θ(t) = arg inf
ϑ∈S1

‖x(t)− xγ(ϑ)‖2. (9.22)

Of course the application of (9.22) is valid only in the neighborhood of the
periodic orbit.

The overall strategy for proportional feedback control is similar to the feed-
forward one. The desired phases θi are computed by

ni+ = (2π − χi)/Qmax, ni− = −χi/Qmin, (9.23)

θi =

 θmax , for 1 ≤ ni+ ≤ ni− ,
θmin , for 1 ≤ ni− < ni+ ,
`(χi) , otherwise ,

(9.24)

where the function `(χ) represents a solution of the equation

`(χ) :
{
Q(`(χ);w(·)) + χ = 2π , for ni+ ≤ ni−
Q(`(χ);w(·)) + χ = 0 , for ni+ > ni−

. (9.25)

The time instants ti are given by (9.18) and (9.21).

Proportional-integral feedback control of the phase control map

In the previous sections, it was assumed that the phase response curve is ex-
actly known, but the map (9.2) is an approximation only valid for infinitesimal
inputs. Suppose, that the static uncertainty on the model (9.11) is modeled by

χi+1 = χi +Q(θi;w(·)) + d (9.26)

where Qmin < d < Qmax is an unknown constant additive disturbance. The
presence of d results in a steady state error for both the feedforward and the
proportional feedback control.

For proportional-integral feedback control, the desired phases θi are given
by a solution of the following equation

Q(θi;w(·)) := sat(−d̂i − κχi) , (9.27)

with

d̂i+1 = d̂i + γ [χi+1 − (1− κ)χi] , d̂0 = 0 . (9.28)
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phase

phase shift

Figure 9.1 – Analytical (lines) and numerical (dots) phase response curves of the
Goldbeter model for inputs with Tw = 1 and increasing ∆. The amplitude of the
phase response curve increases with the amplitude of the input (respectively ∆ = 0.1,
∆ = 0.8, and ∆ = 1.6). (Parameter values: vm = 0.505, vd = 1.4, vs = 1.6, ks = 0.5,
k1 = 0.5, k2 = 0.6, Km = 0.5, Kd = 0.13, KI = 1, n = 4.)

The parameters κ and γ are chosen such that 0 < κ < 1 and 0 < γ < 1. The
function sat(·) is defined as

sat(u) =

 u for Qmin ≤ u ≤ Qmax ,
Qmax for u > Qmax ,
Qmin for u < Qmin .

(9.29)

The time instants ti are given by (9.18) and (9.21).
Note that the proportional-integral feedback control is implemented with

an anti-wind up compensator.

9.2.3 Application to motivating example
In this section, we apply our control strategies to the circadian oscillator model
presented in Section 9.2.1. We choose the parameters used by Goldbeter [110].

We use a very simple pulse input defined as

w(t) =
{

∆ for t < Tw
0 otherwise (9.30)

with Tw = 1 and with different values of ∆. Figure 9.1 represents analytical
and numerical phase response curve. The “analytical” phase response curve is
obtained from (9.2) while the “numerical” phase response curve is computed
by simulating the nonlinear model. The analytical and the numerical phase
response curves are very similar for small inputs (the first-order approximation
is valid) but differ for larger inputs.

The simulation results in Figure 9.2 are for the input with the largest mag-
nitude (∆ = 1.6). For the control design, we only use the analytical phase
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response curve over the domain [θmax, θmin]. In this region, the phase model
has a clear and robust response to the stimulation. We observe the existence
of a disturbance d (not exactly constant) between the analytical phase re-
sponse curve and the numerical one. The discrete-time evolution of the phase
error χ is shown for four cases: χFF is for the feedforward reference (9.17),
χOL presents the phase error for the feedforward control, χP shows the error
of the proportional feedback control, and χPI is the error when applying the
proportional-integral feedback control strategy. Input curves correspond to the
control signal in feedforward, proportional feedback, and proportional-integral
feedback control cases (they almost all overlap). The algorithm (9.22) is used
to compute the phase based on measurement of the state vector. The curve χFF
indicates the reference behavior for the variable χOL. We choose Ts = T such
that the discrete model (9.17) captures the main behavior of the nonlinear
model and χOL accurately follows χFF. The phase error χP of the propor-
tional feedback control evolves almost as the phase error χOL. As expected,
we observe a steady state error for both the feedforward and the proportional
feedback control. The proportional-integral feedback asymptotically reject this
constant error.

Figure 9.3 illustrates the time-evolution of the output variableM for the ref-
erence oscillator (MREF) and for the initially shifted oscillator controlled with
the proportional-integral feedback control strategy (MPI). The timing differ-
ence of the maxima in M between those trajectories is a measure of the phase
difference for the full-dimensional model. The proportional-integral feedback
control strategy (asymptotically) annihilates this difference.

9.3 Summary
We presented basic control strategies to ensure the convergence of an oscillator
phase to that of a reference phase trajectory with the same natural frequency.
The control laws are based on a first-order discrete control system computed
from the infinitesimal phase response curve of the model. Three control laws
were considered: feedforward, proportional feedback and proportional-integral
feedback strategies. The control algorithms developed in this paper were illus-
trated on the original Goldbeter model of Neurospora circadian rhythm.

As a consequence, it emphasizes the importance to develop control strate-
gies directly on the circle representation if the control objective concerns the
frequency or the phase of the oscillator.

The proposed approach is basic but it opens several interesting questions
including a formal proof of convergence and its potential use in addressing more
challenging engineering questions such as the rendezvous problem in satellite
orbital control.
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input

phase 
error

OL

P

PI

FF

time

Figure 9.2 – Discrete-time evolution of the phase error χ for four cases: χFF is for the
feedforward reference (9.17), χOL presents the phase error for the feedforward control,
χP shows the error of the proportional feedback control, and χPI is the error when
applying the proportional-integral feedback control strategy (κ = 0.25 and γ = 0.9).
Input curves correspond to the control signal in feedforward, proportional feedback,
and proportional-integral feedback control cases (they almost all overlap).
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input

state 
variable

time

PI REF

Figure 9.3 – Time-evolution of the output variable M for the reference oscillator
(MREF) and for the initially shifted oscillator controlled with the proportional-integral
feedback control strategy (MPI). The input curve corresponds to the control signal
in proportional-integral feedback control case.
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Chapter 10

Conclusion

The present dissertation is a story about systems models of rhythms at the
interface between (internal) state-space and (external) circle representations.
While the existing literature is relatively separated in two distinct areas, this
dissertation recasts input–output systems questions in the space of phase re-
sponse curves, contributing to bridge the gap between both descriptions.

The conclusion is organized as follows. The first section summarizes the
main outcomes of this dissertation and their implications. The second section
broadens the view with further perspectives.

10.1 Summary

Two fundamental classes of oscillator systems

A conceptual contribution of the present dissertation is to discriminate between
two fundamental classes of oscillators (Chapter 2). Oscillators are regarded
as globally dissipative systems whose stable equilibrium is transformed into a
periodic orbit by a local destabilizing mechanism. One destabilizing mechanism
is through delay in the feedback loop, the other is through hysteresis created
by autocatalysis. The two classes of oscillators differ both in their analysis and
synthesis.

This fundamental classification is watermarked throughout the dissertation.
The two main biological systems studied in this dissertation are exemplative of
each class: (i) the core architecture of circadian rhythms is a delayed negative-
feedback loop and (ii) the basic building block of neural oscillators relies on a
dynamical hysteresis induced by autocatalysis.
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Classical systems questions in the space of phase response curves

To address input–output systems questions for oscillators, the main conceptual
contribution of the present dissertation is to formulate those questions in the
space of phase response curves.

A first theoretical contribution of this thesis is to develop metrics to com-
pare oscillators in the space of phase response curves (Chapter 4). We identify
two natural equivalence properties, that is, scaling and phase shifting, and we
propose a metric in the four spaces resulting from various combination of these
equivalence properties. These metrics are valid to compare oscillators charac-
terized by continuous-time circle representations (weak input) or hybrid circle
representations (impulse train).

A main theoretical contribution of this thesis is to develop a local sensitivity
analysis for oscillators in the space of phase response curves (Chapter 5). This
sensitivity analysis focuses on infinitesimal phase response curves which locally
describe the oscillator behavior around the periodic orbit and which can be
characterized analytically (through the adjoint linear equation). This sensitiv-
ity analysis is systematic and computationally tractable but it only provides
a local sensitivity analysis in the parameter space, around a nominal set of
parameter values. It complements more global—but less tractable—tools such
as bifurcation analysis or parameter space exploration.

In addition to the abstract developments, we provide the numerical tools
required to turn those developments into concrete algorithms (Appendix A).

Circadian rhythms, neural oscillators, and phase oscillator control

A methodological contribution is to illustrate the pertinence of those analysis
tools to study systems questions about models of circadian rhythms and neural
oscillators (exemplative of each class).

• The systems analysis of circadian rhythm models focuses on paramet-
ric robustness analysis and parametric system identification (Chapter 7).
The robustness analysis emphasizes the important parameters of the
model. The system identification finds a set of parameter values that
matches experimental phase response curve.

• The systems analysis of neural oscillator model focuses on model clas-
sification (Section 8.1). In contrast with standard classification relying
on the bifurcation which gives birth to the oscillator, this approach is
directly linked to the shape of the phase response curve in the whole
parameter space.

In addition, as a side contribution, we also investigate phase oscillator con-
trol (Chapter 9). In particular, we design some elementary control strategies
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to assign the phase of an oscillator based on the shape of the phase response
curve.

Singularly perturbed phase response curves

Finally, motivated by the limitation of infinitesimal phase response curves for
relaxation oscillators (due to the time-scale separation), an “ongoing” contribu-
tion of the dissertation is to develop the novel geometric concept of “singularly
perturbed phase response curve” to predict the phase response to finite pertur-
bations (Chapter 6). We take advantage of the time-scale separation to rely on
the geometric structure underlying the oscillator. We illustrate this approach
a neural oscillator and we show that those oscillators are sensitive only in the
regions of the periodic orbit that precede jumps (Section 8.2).

10.2 Perspectives
The present dissertation is a first step that contributes to bridging the gap
between input–output systems theory in the state space and on the circle.
It opens the door to further steps.

Implications for systems analysis of oscillator networks

In this dissertation, we developed methods for the analysis of single oscillators.
A natural extension is to develop tools to analyze networks of interconnected
oscillators.

• Metrics for interconnections.
In previous works on metrics for systems, many metrics go further than
comparing systems “in open loop”. For example, Zames [39,197] and then
Vinnicombe [182,183] developed the gap metric which compares systems
behavior under feedback condition. The behavior of two systems can be
very close in open loop condition, but very far in closed loop condition
(and vice versa). It would be of interest to develop metrics conceptually
similar to the gap metric for oscillators, that is, metrics that are focused
on an interconnection theory.

• Sensitivity analysis of networks.
The collective behavior of an oscillator network may be sensitive (or ro-
bust) to perturbations of some individual oscillators. Sensitivity analysis
at the network level would probably allow to identify those oscillators
that play a critical role in the collective behavior.

• Phase response curves of networks.
The collective behavior of an oscillator network may be regarded as one
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“global” oscillator with its own input and output. The phase response
curve of this global oscillator would likely depend on the phase response
curve of each individual oscillator belonging to the network. Analyzing
this dependence would provide valuable information to study intercon-
nections of oscillator networks (e.g. populations of neural oscillators).

Singularly perturbed phase response curves for bursting oscillators

In this dissertation, we studied singularly perturbed phase response curves for
two time-scale systems. Another class of multiple time-scale systems are burst-
ing oscillators. Those oscillators are characterized by three distinct time scales:
a fast time scale for the spike generation, a slow time scale for the intraburst
spike frequency, and an ultra slow time scale for the interburst frequency [51].

The underlying geometry of bursting oscillators is conceptually similar to
the one of relaxation oscillators. In this case, for the two-dimensional layer
dynamics, the singular manifold corresponds to a lower branch of equilibria
(resting state) and an upper cylinder of stable periodic orbits (bursting state).
Using averaging technique, we may “smooth” the dynamics on the cylinder of
stable periodic orbits and apply a similar approach to predict the shape of the
singular phase response curve for this kind of systems. We may investigate
the dependence of this shape on the type of singularities that induce jumps
between resting and bursting states, leading to a classification of bursters.

The predicted singularly perturbed phase response curve may then be ex-
ploited to analyze synchronization of coupled singularly perturbed oscillators.
In particular, it would likely provide a phase-based interpretation to the fast-
threshold modulation phenomenon [160].



Appendix A

Numerical tools

Several numerical algorithms exist for the numerical computation of periodic
orbits [11, 115, 157]. Most algorithms recast the periodic orbit computation as
a two-point boundary value problems. Numerical boundary value methods fall
into two classes:

1. shooting methods generate trajectory segments using a numerical time in-
tegration and match segment end points with each other and the bound-
ary conditions;

2. global methods project the differential equations onto a finite dimensional
space of discrete closed curves that satisfy the boundary conditions.

Both methods yield a set of (nonlinear) equations that are solved with root
finding algorithms, usually Newton’s method.

In this appendix, we summarize popular simple algorithms for the computa-
tion of periodic orbits. Then we emphasize how the computation of the (state)
infinitesimal phase response curve is a cheap by-product of this computation.
Finally we extend those algorithms for the computation of oscillator sensitivi-
ties: angular frequency, steady-state periodic solution, and infinitesimal phase
response curve sensitivities. More sophisticated algorithms can be found in the
literature and adapted similarly (see [70,73,115]).

A.1 Numerical computation of periodic orbits
A periodic orbit γ is characterized by the 2π-periodic steady-state solution
xγ : S1 → γ describing a closed curve in the state space and the angular
frequency ω ∈ R>0 (or equivalently the period T ) which solve the boundary
value problem (3.55).
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Introducing a (nonuniform) partition Π of the unit circle S1

Π : 0 = θ0 < θ1 < · · · < θN = 2π, (A.1)

the 2π-periodic steady-sate solution xγ(·) is numerically approximated by a
closed discrete curve in the state space X . A discrete curve is a set of points
{xγ0 , x

γ
1 , . . . , x

γ
N} associated to the set of phases such that xγi approximates

xγ(θi) for all i = 0, 1, . . . , N . This discrete curve is closed, that is, xγN = xγ0 ,
which reflects the periodicity of the solution xγ(·). In the following, the circle
partition Π is fixed and the discrete curve is numerically represented by the
vector xγΠ = [xγ0

>
, xγ1
>
, . . . , xγN

>]>. We denote hi = θi+1 − θi.
Equations for approximate periodic orbits take then the form of N n-

dimensional vector equations

ri(xγΠ, ω) = 0, i = 0, 1, . . . , N − 1, (A.2)

where different residual maps ri lead to different numerical methods (TableA.1).
Those equations are completed by the periodicity condition

rN (xγΠ, ω) := xγN − x
γ
0 = 0 (A.3)

and the phase condition

rϕ̂(xγΠ, ω) := ϕ̂(xγΠ;λ) = 0. (A.4)

We solve this set of (nonlinear) equations r(xγΠ, ω) = 0 with the root finding
Newton’s method. Starting from an initial guess

(
(xγΠ)(0)

, ω(0)
)
, this method

iteratively update the solution

(xγΠ)(k+1) = (xγΠ)(k) + (∆xγΠ)(k) and ω(k+1) = ω(k) + ∆ω(k). (A.5)

Correction terms are computed by solving the linear problem[
A bx

γ

cx
γ>

dx
γ

] [
∆xγΠ
∆ω

]
= −

[
rΠ(xγΠ, ω)
rϕ̂(xγΠ, ω)

]
(A.6)

where A has a particular block structure for one-step schemes and bx
γ , cxγ ,

and dxγ are also defined by blocks

A =


G0 −H0

. . . . . .
GN−1 −HN−1

−In In

 , bx
γ

=


bx
γ

0
...

bx
γ

N−1
0n×1

 , (A.7)

cx
γ> =

[
∂ϕ̂
∂x0

· · · ∂ϕ̂
∂xN−1

∂ϕ̂
∂xN

]
, dx

γ

=
[
∂ϕ̂
∂ω

]
. (A.8)



A.1. Numerical computation of periodic orbits 129

Forward multiple shooting Trapezoidal scheme

ri φ(hi
ω
, xγi ,0, λ)− xγi+1 xγi+1 − x

γ
i −

1
2
hi
ω

[
f(xγi , 0, λ) + f(xγi+1, 0, λ)

]
Gi

∂φ
∂x0

(hi
ω
, xγi ,0, λ) −In − 1

2
hi
ω
∂f
∂x

(xγi , 0, λ)

Hi In −In + 1
2
hi
ω
∂f
∂x

(xγi+1, 0, λ)

bx
γ

i − hi
ω2

∂φ
∂t

(hi
ω
, xγi ,0, λ) − 1

2
hi
ω2

[
f(xγi , 0, λ) + f(xγi+1, 0, λ)

]
G̃i In −In + 1

2
hi
ω
∂f
∂x

(xγi , 0, λ)>

H̃i
∂φ
∂x0

(hi
ω
, xγi ,0, λ)> −In − 1

2
hi
ω
∂f
∂x

(xγi+1, 0, λ)>

Ei
∂φ
∂λ

(hi
ω
, xγi ,0, λ) 1

2
hi
ω

[E(θi;λ) + E(θi+1;λ)]

Epi
[
d
dλ

∂φ
∂x0

(hi
ω
, xγi ,0, λ)

]>
pi+1 − 1

2
hi
ω

[
Ep(θi;λ)>pi + Ep(θi+1;λ)>pi+1

]
P 1

N+1I(N+1)n
1

2π diag(h0
2 ,

h0+h1
2 , . . . ,

hN−1+hN
2 , hN2 )⊗ In

Table A.1 – Residual maps ri, linear block elements Gi, Hi, and bx
γ

i , adjoint linear
block elements G̃i and H̃i, and sensitivity block elements Ei, Epi , and P for two
one-step numerical algorithms (i = 0, 1, . . . , N − 1).
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Expressions of block elements Gi, Hi, and bx
γ

i depend on the methods used to
generate residual maps ri(xγΠ, ω) = 0, with i = 0, 1, . . . , N − 1, for approximate
periodic orbits (TableA.1).

The main computational effort in one iteration arises from the evaluation
of the (N + 1)n × (N + 1)n structured matrix A whose block elements are
computed through fundamental solution time integrations or Jacobian matrix
evaluations.

A.2 Numerical computation of
infinitesimal phase response curves

The (state) infinitesimal phase response curve p : S1 → Rn of a periodic orbit
is the solution of the boundary value problem (3.56).

The (state) infinitesimal phase response curve is numerically approximated
by a set of points {p0, p1, . . . , pN} associated to the phases in the partition Π
such that pN = p0.

Following the same procedure as for approximate periodic orbits, equations
for approximate infinitesimal phase response curves take the form of (N + 1)n
linear equations

Ã pΠ = 0 (A.9)
where the matrix Ã has the same structure as the matrix A

Ã =


G̃0 −H̃0

. . . . . .
G̃N−1 −H̃N−1

−In In

 . (A.10)

Block elements of Ã can be constructed based on numerical computations done
for the periodic orbit computation (TableA.1).

The matrix Ã is by construction singular with a simple rank deficiency.
This rank deficiency is overcome by adding a normalization condition for pΠ.
Using (3.56c), we have

v>Π P pΠ = ω (A.11)
where vΠ is the approximate tangent vector to the periodic orbit and P is a
ponderation matrix which depends on the method class. We seek a system of
defining equations that is square and regular. A standard way to tackle this
issue is to border the matrix Ã as follows (see [157, Theorem 5.8] for details)[

Ã bp

cp> dp

] [
pΠ
ξ

]
=
[

0
ω

]
(A.12)

with dp 6= 0, cp> = v>Π P , and bp /∈ range(Ã) (for example bp = vΠ).
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A.3 Numerical computation of sensitivities
The angular frequency sensitivity Sω ∈ R1×l and the sensitivity of the 2π-
periodic steady-sate solution Sx

γ : S1 → Rn×l are the solutions of the linear
boundary value problem (5.6). Equations for approximate periodic orbit sen-
sitivities take the form of a system of linear equations[

A bx
γ

cx
γ>

dx
γ

] [
Sx

γ

Π
Sω

]
=
[
EΠ
Eϕ

]
(A.13)

where Eϕ̂ = −∂ϕ̂∂λ and Ei depends on the numerical method used (Table A.1).
The sensitivity of the (state) infinitesimal phase response curve Sp : S1 →

Rn×l is the solution of the linear boundary value problem (5.14). Equations
for approximate infinitesimal phase response curve sensitivities take the form
of a system of linear equations[

Ã bp

cp> dp

] [
SpΠ
ξ

]
=
[
EpΠ
Epω

]
(A.14)

where Epω = Sω − p>Π P S
v
Π and Epi depends on the numerical method used

(TableA.1).
In both cases, square matrices in left hand sides are identical to the matrices

used for the computation of the periodic orbit and the infinitesimal phase re-
sponse curve, respectively. The only additional computation effort arises from
the evaluation of the right hand side.



132 Appendix A. Numerical tools



Appendix B

Omitted derivations

B.1 Sensitivity of the periodic orbit
Let λ0 be a nominal value of the parameter λ, and suppose that the nominal
boundary value problem

dxγ

dθ
(θ;λ0)− 1

ω(λ0) f(xγ(θ;λ0), 0, λ0) = 0 (B.1a)

xγ(2π;λ0)− xγ(0;λ0) = 0 (B.1b)
ϕ̂(xγ(0;λ0), λ0) = 0 (B.1c)

has unique periodic solution xγ(θ;λ0) = φ(θ/ω(λ0), xγ0(λ0),0, λ0) over [0, 2π]
and angular frequency ω(λ0). Under technical assumptions (see [92, Theo-
rem 3.5] for details), we know that for all λ sufficiently close to λ0, that is,
‖λ− λ0‖2 sufficiently small, the boundary value problem

dxγ

dθ
(θ;λ)− 1

ω(λ) f(xγ(θ;λ), 0) = 0 (B.2a)

xγ(2π;λ)− xγ(0;λ) = 0 (B.2b)
ϕ̂(xγ(0;λ), λ) = 0 (B.2c)

has also unique periodic solution xγ(θ;λ) = φ(θ/ω(λ), xγ0(λ),0, λ) over [0, 2π]
and angular frequency ω(λ) that are close to the nominal xγ(θ;λ0) and the
nominal angular frequency ω(λ0). The continuous differentiability of f with
respect to x and λ implies the additional property that the solution xγ(θ;λ) is
differentiable with respect to λ near λ0. To see this, write

xγ(θ;λ) = xγ(0;λ) + 1
ω(λ)

∫ θ

0
f(xγ(s;λ), 0, λ) ds. (B.3)
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Taking partial derivatives with respect to λ yields

Sx
γ

(θ;λ) = ∂xγ

∂λ
(0;λ)

+ 1
ω(λ)

∫ θ

0

[
∂f

∂x
(xγ(s;λ), 0, λ)Sx

γ

(s;λ) + ∂f

∂λ
(xγ(s;λ), 0, λ)

]
ds

− 1
ω(λ)2

[∫ θ

0
f(xγ(s;λ), 0, λ) ds

]
Sω(λ) (B.4)

where Sxγ (θ;λ) := ∂xγ

∂λ (θ;λ) and Sω(λ) := ∂ω
∂λ (λ). Differentiating with respect

to θ, it can be seen that Sxγ (θ;λ) satisfies the differential equation

dSx
γ

dθ
(θ;λ) = 1

ω(λ) A(θ;λ)Sx
γ

(θ;λ) + 1
ω(λ) E(θ;λ)− 1

ω(λ)2 v(θ;λ)Sω(λ)

(B.5)

where

A(θ;λ) := ∂f

∂x
(xγ(θ;λ), 0, λ), (B.6)

E(θ;λ) := ∂f

∂λ
(xγ(θ;λ), 0, λ), (B.7)

v(θ;λ) := f(xγ(θ;λ), 0, λ). (B.8)

For λ sufficiently close to λ0, the matrices A(θ;λ) and E(θ;λ), and the vec-
tor v(θ;λ) are defined on [0, 2π]. Hence, Sxγ (θ;λ) is defined on the same inter-
val. In addition, taking partial derivative of (B.2b) and (B.2c) with respect to
λ yields

Sx
γ

(2π;λ)− Sx
γ

(0;λ) = 0 (B.9)
∂ϕ̂

∂x
(xγ(0;λ), λ)Sx

γ

(0;λ) + ∂ϕ̂

∂λ
(xγ(0;λ), λ) = 0. (B.10)

Then the sensitivity functions Sxγ (θ;λ) and Sω(λ) are the unique solutions of
the boundary value problem

dSx
γ

dθ
(θ;λ)− 1

ω(λ) A(θ;λ)Sx
γ

(θ;λ) + 1
ω(λ)2 v(θ;λ)Sω(λ) = 1

ω(λ) E(θ;λ),

(B.11a)
Sx

γ

(2π;λ)− Sx
γ

(0;λ) = 0, (B.11b)
∂ϕ̂

∂x
(xγ(0;λ), λ)Sx

γ

(0;λ) + ∂ϕ̂

∂λ
(xγ(0;λ), λ) = 0. (B.11c)
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B.2 Sensitivity of the phase response curve
Let λ0 be a nominal value of the parameter λ, and suppose that the nominal
boundary value problem

dp

dθ
(θ;λ0) + 1

ω

∂f

∂x
(xγ(θ;λ0), 0, λ0)> p(θ;λ0) = 0 (B.12a)

p(2π;λ0)− p(0;λ0) = 0 (B.12b)
〈p(θ;λ0), f(xγ(θ;λ0), 0, λ0)〉 = ω (B.12c)

has a unique 2π-periodic solution p(θ;λ0) = ∇xΘ(xγ(θ;λ0);λ0) over [0, 2π].
Under appropriate technical assumptions (see [92, Theorem 3.5] for details),
we know that for all λ sufficiently close to λ0, that is, ‖λ − λ0‖2 sufficiently
small, the boundary value problem

dp

dθ
(θ;λ) + 1

ω

∂f

∂x
(xγ(θ;λ), 0, λ)> p(θ;λ) = 0 (B.13a)

p(2π;λ)− p(0;λ) = 0 (B.13b)
〈p(θ;λ), f(xγ(θ;λ), 0, λ)〉 = ω (B.13c)

has also a unique 2π-periodic solution p(θ;λ) = ∇xΘ(xγ(θ;λ);λ) over [0, 2π]
that is close to the nominal p(θ;λ0). The continuous differentiability of ∂f∂x with
respect to x and λ implies the additional property that the solution p(θ;λ) is
differentiable with respect to λ near λ0. To see this, write

p(θ;λ) := p(0;λ)− 1
ω(λ)

∫ θ

0

∂f

∂x
(xγ(s;λ), 0, λ)> p(s;λ) ds, (B.14)

Taking partial derivatives with respect to λ yields

Sp(θ;λ) := Sp(0;λ)

− 1
ω(λ)

∫ θ

0

[(
n∑
k=1

∂2f

∂xk∂x
(xγ(s;λ), 0, λ)Sx

γ

k (s;λ)

+ ∂2f

∂λ∂x
(xγ(s;λ), 0, λ)

)>
p(s;λ)

]
ds

− 1
ω(λ)

∫ θ

0

[
∂f

∂x
(xγ(s;λ), 0, λ)> Sp(s;λ)

]
ds

+ 1
ω(λ)2

[∫ θ

0

∂f

∂x
(xγ(s;λ), 0, λ)> p(s;λ) ds

]
Sω(λ) (B.15)
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where Sp(θ;λ) := ∂p
∂λ (θ;λ). Differentiating with respect to θ, it can be seen

that Sp(θ;λ) satisfies the differential equation

dSp

dθ
(θ;λ) = − 1

ω(λ) A(θ;λ)> Sx
γ

(θ;λ)− 1
ω(λ) E

p(θ;λ)> p(θ;λ) (B.16)

where

Epij(θ;λ) :=
n∑
k=1

∂2fi
∂xj∂xk

(xγ(θ;λ), 0, λ)Sx
γ

k (θ;λ)

+ ∂2fi
∂xj∂λ

(xγ(θ;λ), 0, λ)− 1
ω(λ)

∂fi
∂xj

(xγ(θ;λ), 0, λ)Sω(λ). (B.17)

For λ sufficiently close to λ0, the matrices A(θ;λ) and Ep(θ;λ), and the vec-
tor p(θ;λ) are defined on [0, 2π]. Hence, Sp(θ;λ) is defined on the same interval.
In addition, taking partial derivative of (B.13b) and (B.13c) with respect to λ
yields

Sp(2π;λ)− Sp(0;λ) = 0 (B.18)
〈Sp(θ;λ), v(θ;λ)〉+ 〈p(θ;λ), Sv(θ;λ)〉 = Sω(λ) (B.19)

where

Sv(θ;λ) := ∂f

∂x
(xγ(θ;λ), 0, λ)Sx

γ

(θ;λ) + ∂f

∂λ
(xγ(θ;λ), 0, λ). (B.20)

Then the sensitivity function Sp(θ;λ) is the unique solutions of the boundary
value problem

dSp

dθ
(θ;λ) + 1

ω(λ) A(θ;λ)> Sp(θ;λ) = − 1
ω(λ) E

p(θ;λ)> p(θ;λ), (B.21a)

Sp(2π;λ)− Sp(0;λ) = 0, (B.21b)
〈Sp(θ;λ), v(θ;λ)〉+ 〈p(θ;λ), Sv(θ;λ)〉 = Sω(λ). (B.21c)
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