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Abstract: Consensus problems have attracted significant attention in the control community
over the last decade. They act as a rich source of new mathematical problems pertaining to
the growing field of cooperative and distributed control. This paper is an introduction to
consensus problems whose underlying state-space is not a linear space, but instead a highly
symmetric nonlinear space such as the circle and other relevant generalizations. A geometric
approach is shown to highlight the connection between several fundamental models of consensus,
synchronization, and coordination, to raise significant global convergence issues not present in
linear models, and to be relevant for a number of engineering applications, including the design
of planar or spatial coordinated motions.

1. INTRODUCTION

The present paper is an introduction to recent work by the
author and several collaborators on a geometric consensus
theory aimed at unifying consensus algorithms defined on
linear and nonlinear spaces. The work started in 2003 with
the practical question of designing control laws in order to
coordinate the motion of rigid bodies moving at constant
speed in the plane. The question arised in the context of
designing autonomous oceanographic sensor networks (see
Leonard et al. [2007]). The latest published work returns
to this question by deriving the same control laws from
a general coordination theory on Lie Groups (Sarlette
et al. [2010b]). The basic investigation that sustained
the underlying research over the seven years interval is
the extension of the consensus problem, in which agents
dynamically seek a value of common agreement, from
values on the real line to values on the circle (Sepulchre
et al. [2004]). A main reference on this topic is Sarlette and
Sepulchre [2009b], strongly supported by the results of the
thesis of Sarlette [2009]. This question is thought to clarify
important connections and differences between the three
related questions of consensus, (phase) synchronization,
and coordination.

Because the results of the paper have been published
elsewhere, the present exposition is conceptual rather than
technical, referring the interested reader to the appropriate
references for the technical content and a precise statement
of the results.

The starting point is a brief summary of consensus theory
in linear spaces in Section 2. The linear consensus model
is viewed as a basic model of distributed computation.
The emphasis is on its convergence properties and on its
symmetries. The goal is to extend this model of distributed
computation to nonlinear spaces, retaining its symmetry
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properties and, to a lesser extent, its convergence proper-
ties.

Section 3 presents the geometric framework that underlies
the proposed generalization. While a Riemannian struc-
ture is sufficient for an abstract generalization of the
concept of updating the current local consensus estimate
in the direction of a local average, an additional extrinsic
geometry is assumed to turn the abstract update into
a practical algorithm for particular configuration spaces
encountered in applications: the circle, embedded in the
complex plane, the orthogonal group, embedded in a linear
matrix space, and the Grasmmann manifold, embedded
in the space of linear projectors. As a result of this ad-
ditional extrinsic geometric structure, the update of the
proposed generalized consensus algorithms reduces to a
linear update in the ambient Euclidean space followed by
a natural projection in the tangent space (for continuous-
time algorithms) or on the manifold (for discrete-time
algorithms). The underlying distance is a chordal distance
(i.e. a distance computed in the ambient space in contrast
to a geodesic distance computed on the manifold), previ-
ously used in a number of computational problems. This
simple geometric framework is sufficient to connect linear
consensus algorithms to a number of important nonlinear
models of distributed computation, including the phase
model of Kuramoto [1975], the particle model of Vicsek
et al. [1995], the grassmann packing of Conway et al.
[1996], and even the neural network model of Hopfield
[1982].

Section 4 summarizes the current understanding of con-
vergence properties of the proposed generalized consen-
sus algorithms. The fundamental difference between linear
consensus algorithms and the novel algorithms considered
in this paper is the non-convex nature of configuration
spaces like the circle. As a result, a global convergence
analysis is quite intractable and at least very dependent
on the communication graph of the consensus algorithm.
On the positive side, we consider three modifications of
consensus algorithms defined on the circle that enable a
global convergence analysis. Those solutions are of definite



interest in design applications and have been applied to the
design of (almost) globally convergent coordination control
laws (Sepulchre et al. [2008]).

Section 5 briefly addresses the problem of coordination on
nonlinear spaces and its relationship to consensus. While
synchronization is about consensus in the configuration
space, coordination is about consensus in the velocity
space: a motion is coordinated when all velocity vectors
are the same. In linear spaces, the velocity space can be
identified with the configuration space, which makes the
problems of synchronization and coordination mathemati-
cally equivalent. In contrast, when the configuration space
is nonlinear, velocity vectors at different points belong to
different tangent spaces, which raises the issue of com-
paring them in a consensus algorithm. If the configuration
space is a Lie group, the natural approach is to employ the
left and right invariant translation mappings to compare
velocities in the Lie algebra. The concept of left (and right)
relative positions can be defined accordingly, leading to
a systematic approach for the design of left (and right)
invariant coordination. When applied to the configuration
space of rigid motions in the plane or in space, this theory
recovers Lyapunov functions that were derived in an ad-
hoc manner in our initial work (Sepulchre et al. [2007]).

The paper ends with a recent “afterthought” about the
nonlinear nature of the configuration space of linear con-
sensus algorithms (Sepulchre et al. [2010]). Consensus
algorithms were originally considered in the framework
of Markov chains. The configuration space of probability
vectors is the positive orthant and consensus algorithms
iterate stochastic maps on the positive orthant. A general
result of Birkhoff [1957] relates the Lyapunov function
introduced by Tsitsiklis for consensus to a projective dis-
tance intrisically adapted to the nonlinear nature of the
positive orthant. This connection underlies the value of
a geometric approach to recognize the nonlinear nature
of a seemingly linear problem and to adapt accordingly
analysis tools such as Lyapunov functions. This claim is
supported by the failure of quadratic Lyapunov functions
to provide a tractable convergence analysis of (not so?) lin-
ear consensus algoritms (Olshevsky and Tsitsiklis [2008]).

The paper concentrates on contributions by the author and
his collaborators but those contributions of course build
upon an impressive body of work pertaining to the geomet-
ric control of mechanical systems. Key references relevant
for the contributions presented here include the thesis
of Bullo [1998], which proposes a geometric approach to
the tracking control problem of mechanical systems, the
thesis of Nair [2006], which proposes a geometric approach
to the coordination of (dynamical models) of mechanical
systems, and the work of Justh and Krishnaprasad [2004,
2005], which revealed the importance of the Lie group
setting for a geometric theory of coordination. A more
exhaustive account of relevant references for geometric
consensus theory is to be found in the different papers
providing the material of the present survey.

2. LINEAR CONSENSUS

The starting point of this paper is the by now classical
linear consensus algorithm describing the behavior of N
agents locally exchanging information about their state

xk ∈ Rn, k ∈ V = {1, 2, ..., N}, in order to asymptotically
reach a global consensus, i.e. a common value of agreement.
In continuous-time, the update is

d
dt
xk(t) =

N
∑

j=1

ajk(t)(xj(t)− xk(t)) , k = 1, 2..., N (1)

where ajk is the weight of link j  k: the state of agent
k evolves towards to the (positively weighted) arithmetic
mean of its neighbors, 1

d
(i)

k

∑

j k ajkxj , where in-degree

d
(i)
k =

∑

j k ajk. The corresponding update in discrete-
time is

xk(t+1) = 1

βk(t)+d
(i)

k
(t)

(
∑

j k

ajk(t)xj(t)+βk(t)xk(t)) , (2)

with non-vanishing weight βk(t) ≥ β0 > 0. The weights
ajk induce a communication graph between the agents, see
Appendix. They can be asymmetric (leading to a directed
communication graph) and/or depend on time (leading to
a time-varying communication graph).

In matrix form, the continuous-time algorithm is the linear
time-varying system

d
dt
x(t) = −L(t)x(t) , (3)

where L(t) = D(i)(t) − A(t) (see Appendix), while the
discrete-time algorithms is the linear time-varying system

x(t+ 1) = M(t)x(t) , (4)

where M(t) = (D(i)(t) +B(t))−1(A(t) +B(t)) and B(t) is
a diagonal matrix with elements Bkk = βk. The matrices
M(t) are row-stochastic, i.e. the elements of each row sum
to one.

Consensus algorithms have been studied by several au-
thors, including Tsitsiklis [1984], Jadbabaie et al. [2003],
Moreau [2004, 2005], Blondel et al. [2005], Olfati-Saber
and Murray [2004], Olshevsky and Tsitsiklis [2006]; see
Olfati-Saber et al. [2007] for a review andMoreau [2005] for
some examples of applications. The main result is that the
update guarantees asymptotic consensus under minimal
connectivity assumptions of the underlying communica-
tion graph.

Proposition 1. (adapted from Moreau [2004, 2005], Olfati-
Saber and Murray [2004], Tsitsiklis [1984]) Consider a
set of N agents evolving on Rn according to (continuous-
time) (1) or according to (discrete-time) (2). Then the
agents globally and exponentially converge to a consensus
value x̄ ∈ Rn if the communication among agents is
characterized by a (piecewise continuous) δ-digraph which
is uniformly connected (see Appendix for a definition).

If in addition, G is balanced for all times, then the con-
sensus value is the arithmetic mean of the initial values:

x̄ = 1
N

∑N

k=1 xk(0).

Consensus algorithms provide a basic model of distributed
computation: a given agent at a given time only performs
local average computations but the spread of information
over time eventually enables the computation of a cen-
tralized quantity (the arithmetic average of initial states
under a balancing assumption). This diffusion mechanism
is central to distributed dynamical systems and its proper



understanding in instrumental to a distributed system
theory.

An essential feature of consensus algorithms is their sym-
metry, i.e. their invariance properties to certain transfor-
mations: the dynamics are invariant under reordering of
the agents (discrete permutation symmetry) and under
uniform translation of the state (continuous symmetry):
for any a ∈ Rn, a shifted initial condition yk(0) = xk(0)+a
∀k ∈ V yields the shifted solution yk(t) = xk(t) + a
∀k ∈ V and ∀t ≥ 0. This is because the exchange of
information only involves relative quantities (xj−xk). As a
consequence, the distributed computation of a centralized
quantity does not require that all agents share a (central-
ized) common reference frame.

In the present paper, the symmetries resulting from a
fully decentralized setting are considered as constitutive
of the consensus algorithm. This is not always the case
in the literature. However, one should be aware of the
invariance properties of a given distributed system because
they are a source of fundamental performance limitations.
Whether the exchange of information in a distributed
setting only involves relative quantities or can also in-
clude absolute quantities (access to a centralized reference
frame or distinction between the different agents) is of
course problem dependent. Our recent study of distributed
control of large segmented mirrors is an example of ap-
plication where such a symmetry is constitutive of the
design problem: the (centralized) objective of controlling
the global shape of the mirror must be achieved from
(distributed) sensors that can only measure the relative
displacement of neighboring mirror cells (Sarlette et al.
[2010a]). Even in contexts where partial or intermittent
access to a centralized controller is possible, the design of
invariant consensus algorithms is of interest to decouple
the centralized reference tracking from the coordination,
analogously to the classical decoupling between a tracking
controller and a stabilizing controller (see Sepulchre et al.
[2007] for an extended discussion).

The convergence analysis of consensus algorithms is the
convergence analysis of a time-varying linear system. Re-
markably, it can be completely characterized. For consen-
sus algorithms defined in R, the early analysis of Tsitsiklis
[1984] rests on the basic but fundamental observation that
the (time-invariant) Lyapunov function

V (x) = max
1≤i≤N

xi − min
1≤i≤N

xi (5)

is non-increasing along the solutions. The proof that it
decreases strictly over a uniform horizon under appropriate
assumptions only involves elementary calculations (see e.g.
Blondel et al. [2005] for details). Jadbabaie et al. [2003]
exploited the graph interpretation of consensus algorithms.
In discrete-time, the flow of the algorithm involves prod-
ucts of row-stochastic matrices and its convergence prop-
erties is related to ergodicity theorems in the theory of
Markov chains. The subsequent analysis of Moreau [2004,
2005] emphasizes that the convergence result relies in an
essential way on the convexity rather than the linearity
of the update law: the position of each agent k for t > τ
always lies in the convex hull of the xj(τ), j = 1, 2, ..., N .
The permanent contraction of this convex hull, at some
nonzero minimal rate because weights are non-vanishing,
allows to conclude that the agents end up at a consensus

value. This approach extends the Lyapunov function (5)
to vector-valued algorithms and allows for the convergence
analysis of nonlinear consensus algorithms provided that
the convexity property is retained.

To complete this brief summary, it is worth observing
that when interconnections are not only balanced, but also
undirected and fixed, then the linear consensus algorithm
is a gradient descent algorithm for the disagreement cost
function

Vvect(x) =
1
2

N
∑

k=1

N
∑

j=1

ajk‖xj − xk‖2 = xT (L⊗ In)x (6)

where ‖z‖ denotes the Euclidean norm
√
zT z of z ∈ Rm,

and L is the Laplacian matrix of G(see Appendix), x ∈
RNn denotes the vector whose elements (k− 1)n+1 to kn
contain xk, and ⊗In is the Kronecker product by the n×n
identity matrix.

3. CONSENSUS IN NONLINEAR SPACES

3.1 Generalized consensus algorithms

A geometric interpretation of the linear consensus algo-
rithms (1) and (2) is to view the state xk(t) as the estimate
at time t by agent k of the consensus value. At each time
step, each agent updates its current estimate of the con-
sensus value towards a (weighted) average of its neighbors
estimates. Moreover, the weighted arithmetic average can
be given the geometric interpretation of the point that
minimizes the sum of the (weighted) squared distances :

N
∑

j=1

aijxj = min
z∈Rn

N
∑

j=1

aij‖z − xj‖2 (7)

With this geometric interpretation, consensus algorithms
can be defined on arbitrary Riemannian manifolds. The
Riemmanian (or Karcher) mean on a manifold M is de-
fined by substituting the Riemannian (geodesic) distance
for the Euclidean distance in (7):

mean(x1, . . . , xN ) = min
z∈M

N
∑

j=1

aij dM(z, xj)
2 (8)

Furthermore, on a Riemannian manifold, “updating a
point towards a new point” simply translates as “mov-
ing along the geodesic path connecting the two points”.
This approach yields an intrinsic definition of consensus
algorithms on Riemannian manifolds but suffers both a
fundamental limitation and a practical limitation. The
fundamental limitation is that the uniqueness of a geodesic
is only ensured locally. If several geodesics connect two
points, both the concepts of mean and the concepts of
“moving along shortest paths connecting two points” be-
come non unique. A practical limitation is that the com-
putation of geodesics at each time step in a distributed al-
gorithm might represent a formidable computational task.
Those limitations can be overcome to a large extent if the
manifold is embedded in an Euclidean space and if mean
and distance calculcations are carried out in the Euclidean
geometry of the ambient space.



An additional desired property of our generalized con-
sensus algorithms is to retain the symmetry properties.
In essence, distributed algorithms should be defined on
spaces where all points “look alike”. This is the case for
Lie groups, and, more generally, homogeneous spaces.

Those considerations led us to consider in Sarlette and
Sepulchre [2009c] state spaces that satisfy the following
assumption :

Assumption 1. M is a connected compact homogeneous
manifold smoothly embedded in E with the Euclidean
norm ‖x‖ = rM constant over x ∈ M.

The embedding space E denotes the linear vector space Rn

or the linear matrix space Rn×n . It is a well-known fact
of differential geometry that any smooth m-dimensional
Riemannian manifold can be smoothly and isometrically
embedded in R2m. The additional condition ‖y‖ = rM is
in agreement with the fact that all points on M should be
equivalent.

On a manifold that satisfies Assumption 1, a convenient
alternative to the intrisic generalization of consensus al-
gorithms is to base the calculations on the distance of the
ambient Euclidean space. Replacing the distance on M by
the Euclidean distance in E in the definition (8) leads to
the induced arithmetic mean IAM ⊆ M of N agents
of weights aij > 0 and positions xj ∈ M, j = 1...N :

IAM(x1, . . . , xN ) = argmin
z∈M

N
∑

j=1

aij ‖ x̂j − ẑ ‖2 (9)

The notation ẑ denotes the (vector) embedding of z in the
linear space E .
As a global minimizer, the induced arithmetic mean is not
necessarily a singleton. But it is continuously differentiable
and it includes the reassuring properties that the IAM of
a single point x1 is the point itself, that it is invariant
under permutations of agents of equal weights, and that it
commutes with the symmetry group of the homogeneous
manifold. Although less intrinsic, its main advantage over
the Karcher mean is computational. The IAM is closely
related to the weighted centroid in the ambient space,
defined as

Ce(x̂1, . . . , x̂N ) =
1

ai

N
∑

j=1

aij x̂j , ai =

N
∑

j=1

aij .

Since ‖c‖ = rM by Assumption 1, an equivalent definition
for the IAM is

IAM = argmax
z∈M

(ẑT Ce) (10)

Hence, computing the IAM just involves a search for the
global maximizers of a linear function on E in a very
regular search spaceM. Local maximization methods even
suffice if the linear function has no maxima on M, which
is formulated as a blanket assumption.

Assumption 2. The local maxima of a linear function
f(ẑ) = ẑT b over z ∈ M, with b fixed in E , are all global
maxima.

Assumptions 1 and 2 are satisfied for a number of nonlinear
spaces encoutered in applications. Meaningful examples

discussed in Sarlette and Sepulchre [2009c] include the
circle S1, the unit sphere of E , the orthogonal group
SO(n), and the Grassmann manifold Gr(p, n).

The circle is a fundamental and representative example.
The circle embedded in the (complex) plane with its center
at the origin satisfies Assumptions 1 and 2. The IAM
is simply the central projection of Ce onto the circle. It
corresponds to the entire circle if Ce = 0 and reduces to a
single point in other situations. The IAM uses the chordal
length between points, while the Karcher mean would use
arclength distance.

The generalization of linear consensus algorithms to state
spaces that satisfy Assumptions 1 and 2 is straightforward:
the update is simply taken as a linear update towards the
centroid in the ambient space, and then projected to the
closest point of the manifold M . In continuous-time, this
amounts to the differential equation

ẋk(t) = ProjTMxk

(

∑

jajk(x̂j − x̂k)
)

, k = 1...N .

(11)
Similarly, the discrete-time update is

xk(t+ 1) = ProjM ( 1

βk+d
(i)

k

(
∑

j k

ajkx̂j + βkx̂k)) (12)

which can also be written as

xk(t+ 1) ∈ IAM({xj(t)|j  k in G(t)} ∪ {xk(t)}) (13)

These updates admit an analytic expression for several
manifolds of interest, see Sarlette and Sepulchre [2009c].
For the circle, the embeddding of a point θk ∈ S1 in C is
the vector eiθk . The continuous-time update is

θ̇k = Im
(

∑

jajk(e
i(θj−θk) − 1)

)

=
∑

j ajk sin(θj − θk)

(14)
while the discrete-time update is

θk(t+ 1) = arg





1

βk+d
(i)

k

(
∑

j k

ajke
iθj + βke

iθk)



 (15)

Those expressions establish a clear connection between
consensus algorithms on the circle and well-known phase
synchronization models. For the equally-weighted com-
plete graph, the continuous-time update (14) is the cel-
ebrated model of Kuramoto [1975] with identical (zero)
natural frequencies. For the equally-weighted complete
graph, the norm of the centroid is

‖ Ce ‖2=‖ 1

N

N
∑

j=1

eiθj ‖2 (16)

and (14) is a gradient system for (16). It is interesting to
observe that this cost function was used as a measure of
synchrony in the original paper of Kuramoto under the
name complex order parameter. The discrete-time update
(15) is Vicsek’s phase update law (see Vicsek et al. [1995])
governing the headings of a set of particles in the plane.
The communication graph G(t) is in this case a (state-
dependent) proximity graph, with weight ajk = 1 if par-
ticle j and k lie within a given radius of visibility and
ajk = 0 otherwise. The precise relationship between the
continuous-time and discrete-time consensus algorithms
on the circle is further discussed in see Sarlette et al. [2006].
Consensus on the circle is studied in Sepulchre et al. [2007],



Sarlette et al. [2006], Scardovi et al. [2007a], Sepulchre
et al. [2008]. In Sarlette and Sepulchre [2009c], correspond-
ing algorithms are also derived on the orthogonal group
and on the Grassmann manifold.

3.2 Consensus and anti-consensus configurations

Consider a set of N agents of positions xk on a manifold
M satisfying Assumption 1.

For a given (fixed) graph G, a stable fixed point of consen-
sus algorithms is when the state of each agent is the IAM of
its neighbors neighbors j  k, weighted according to the
strength of the corresponding edge. Such a configuration
is called a consensus configuration. Synchronization is
the particular consensus configuration where xj = xk

∀j, k. In linear consensus algorithms, synchronization is
the only consensus configuration of a strongly connected
graph. But this is no longer true in nonlinear spaces,
where consensus configurations become graph-dependent.
Only very particular graphs - such as equally-weighted
complete graphs or trees - admit synchronization as the
sole consensus configuration. Of course, synchronization
is a consensus state for all graphs. As a consequence,
switching among different graphs increases the probability
of eventually reaching a synchronized configuration.

On compact spaces such as those considered in this paper,
it also makes sense to consider anti-consensus algorithms,
that do the opposite of consensus : each state is updated
to move away from the mean of its neighbors. Stable
fixed points of those algorithms are called anti-consensus
configurations. The opposite of synchronization is called
balancing. Balanced configurations correspond to anti-
consensus configurations in which the IAM of the agents
includes the entire manifold. In balanced configurations,
the agent states spread over the entire manifold. Com-
putational algorithms that aim at maximally spreading a
set of points over a compact manifold are not uncommon.
They include the Grasmmann packing problem, that has
attracted significant attention in the recent years.

On the circle, synchronization maximizes the centroid
norm while balancing states minimize it. Anti-consensus
configurations for the equally-weighted complete graph are
fully characterized in Sepulchre et al. [2007]. It is shown
that the only anti-consensus configurations that are not
balanced correspond to (N + 1)/2 agents at one position
and (N−1)/2 agents at the opposite position on the circle,
for N odd. Balanced configurations are unique for N = 2
and N = 3 and form a continuum for N > 3.

(Anti)-consensus algorithms on compact manifolds em-
bedded on a unit sphere can be thought as distributed
ways to optimize the norm of the global centroid. Each
agent updates its state by optimizing a local estimate of
the centroid. Eventually, one expects the entire swarm
to evolve either to synchronization (maximization) or to
balancing (minimization). Of course, spurious local min-
ima and maxima will exist for a given graph. But switch-
ing among graphs that share a restricted set of (anti)-
consensus states will favor convergence towards them. In
particular, synchronization is a consensus state shared
by all graphs, which explains why synchronization is the

most frequently asymptotic state observed in simulations
of consensus algorithms.

4. CONVERGENCE ANALYSIS

The consensus algorithms (11) and (12) are meaningful
extensions of synchronization algorithms for compact ho-
mogeneous spaces like the circle. However, those config-
uration spaces are not convex. As a consequence, their
convergence properties are fundamentally different from
those of (1) and (2) on vector spaces.

The convergence analysis of consensus algorithms on non-
linear spaces is extensively studied in the thesis of Sarlette
[2009]. The expository paper by Sarlette et al. [2008]
focuses on the circle but contains most important conver-
gence results. We briefly summarize them in the present
section.

4.1 General (but not global) convergence results

Moreau’s convergence analysis of consensus algorithms is
based on the contraction of the convex hull of agents’
states. This analysis is not restricted to linear updates
and it applies to the nonlinear consensus algorithms of this
paper over arbitrary convex sets of the manifold M . In the
case of the circle, for instance, the largest convex subset
is a semicircle. As a consequence, uniform convergence
to consensus under a uniform connectedness assumption
holds provided that the states are initially contained in
a semicircle. Because none of the considered manifolds
is globally convex, the linear convergence result never
provides a global convergence analysis.

Another general observation is that the continuous-time
algorithm (11) defines a gradient system for the disagree-
ment cost function

V (x) = 1
2

N
∑

k=1

N
∑

j=1

ajk‖x̂j − x̂k‖2 = x̂T (L⊗ In)x̂ (17)

whenever the communication graph is fixed and undi-
rected. As a consequence, the general theory of gradient
systems applies in this situation: all solutions converge to
the set of critical points and all strict minima of V (x)
are stable equilibria. Synchronization corresponds to the
global minimum of the disagreement cost function. The
descent property extends to discrete-time algorithms for
sufficiently small step sizes (i.e. for βk close to one) or
for an asynchronous version of (12): in the latter case,
the value of the different agents is updated one at the
time; then the Lyapunov function can only decrease, in
contrast to the synchronous situtation where the entire
vector of agents’states is updated at once. Those results
are reminiscent of convergence results for the Hopfield
neural network model Hopfield [1982] in which N neurons
with states xk ∈ {−1, 1} are updated according to

xk(t+ 1) = sign





N
∑

j=1

ajkxj(t) + ξk



 , 1, 2, ..., N (18)

where ξk is a firing threshold. Defining the sphere Sn of
dimension n as {xk ∈ Rn+1 : ‖xk‖ = 1}, the set {−1, 1}
can be seen as “ S0 ”, while the circle is S1. It is a –
perhaps not so irrelevant – curiosity to observe that, for



ξk = 0, (18) is in fact the strict analog of (12) for “the
sphere of dimension 0” — namely moving towards the
neighbors in the embedding vector space and projecting
back to the state space. The absence of inertia in (18)
corresponds to β = 0 in (12). Both (15) and (18) can be
viewed as projections of descent algorithms for a symmet-
ric quadratic potential, which remain descent algorithms
under locally asynchronous update such that convergence
is ensured. Both algorithms can fail to converge and run
into a limit cycle in synchronous operation.

4.2 Global convergence analysis is graph dependent

The global properties of consensus algorithms defined on
nonlinear spaces are graph dependent. Some graphs –
including the complete (directed or undirected) graph and
any root-connected tree – have the property that almost
all solutions converge to a synchronized solution. But it
seems quite hard to characterize the graphs that have that
property (see Section 4.3. in Sarlette et al. [2008]). Graphs
that have some (discrete) symmetry are prone to (locally)
stable consensus configurations different from sync. In fact,
any sufficiently spread agent configuration on the circle can
be made a stable consensus configuration of a well-chosen
directed graph.

It is shown in (Sarlette and Sepulchre [2009b]) that stable
limit sets of consensus algorithms on the circle do not
restrict to equilibria. Fixed directed graphs can be con-
structed that lead to stable periodic and quasi-periodic
behaviors. The situation is even more complex for time-
varying graphs.

4.3 Three solutions to recover (almost) global convergence

The negative fact that a global analysis of the proposed
consensus algorithms seems elusive on nonlinear spaces,
even on the circle, is compensated for by the fact that
the algorithms can be modified in such a way that conver-
gence is guaranteed under a mere uniform connectedness
assumption, such as in linear spaces. Three solutions have
been investigated (on the circle) to recover global conver-
gence.

Potential shaping. A first solution only concerns the
case of a fixed undirected graph. The continuous-time
algorithm (11) is then a gradient system and, for al-
most all initial conditions, convergence is guaranteed to
a local minimum of the disagreement cost function. In
other words, the sinusoidal coupling in (14) derives from a
potential. It is shown in (Sarlette and Sepulchre [2009b])
how to shape the potential in such a way that the only
stable equilibrium corresponds to synchronization. The
only graph information needed to construct this potential
is an upper bound on the number of nodes. A descent algo-
rithm for this shaped potential guarantees almost global
convergence to synchronization if the (fixed undirected)
graph is connected.

Gossip Algorithm. A second solution, first proposed in
Sarlette et al. [2008], is to introduce randomness in the link
selection of the consensus algorithm, following the idea
of a gossip consensus algorithm, see Boyd et al. [2006].

At each time instant, a given agent selects randomly one
(or none) of its neighbors. The update is then taken
as if this neighbor was the only one, disregarding the
information from others. Such a gossip algorithm can
be shown to uniformly converge to synchornization with
probability one under a uniform connectedness of the
graph, even if the graph is directed and/or time-varying.
An extreme version of this gossip algorithm is when the
update is chosen with no inertia (β = 0): each agent
selects one neighbor randomly and replaces its current
value by the neighbor’s value with a certain probability.
In this case, the consensus value is the initial condition
of one of the agents. The convergence property of this
gossip algorithm is very general and does not require any
geometric structure on the underlying configuration space.
The convergence property of the algorithm only relies
on the probabilistic time evolution of N states switching
among at most N different symbols. The probability
that the number of possible symbols decreases over a
finite time horizon (defined by the uniform connectedness
assumption) is positive, leading eventually to consensus.
Favoring the probability of convergence to synchronization
through randomness comes with a price: convergence can
be arbitrarily slow. The expected synchronization time
can be shown to be independent of the initial conditions
but it is not easy to characterize which graph property
favors faster convergence. Designing the “right” amount of
randomness for a given graph would be a sensible design
question.

Dynamic consensus. A third solution, first proposed in
(Scardovi et al. [2007a]), is to increase the amount of infor-
mation exchanged by the agents. The non-convexity of S1

can be circumvented if the agents are able to communicate
auxiliary variables in addition to their positions on the
circle. An interpretation is that the limited number of
communication links for information flow is compensated
by sending larger communication packets along existing
links. Such strategies allow to recover the synchronization
properties of vector spaces for almost all initial conditions.
Their potential interest lies more in engineering applica-
tions than in physical modeling, where communication of
auxiliary variables is questionable. The use of auxiliary
variables was initially motivated by the design of coordi-
nated motions in the plane: the assumption of complete
communication in Sepulchre et al. [2007] was relaxed in
this way to an assumption of uniform connectedness Sepul-
chre et al. [2008].

The proposed dynamic consensus algorithm exploits the
embedding of the algorithm in a linear space. Algorithms
(11) and (12) compute an update in the embedding space
and project the result onto the manifold. If the embedding
variables can be exchanged, the consensus algorithm can
instead be run entirely on the embedding variables, while
each agent tracks its own embedding variable. Consensus
among the embedding variables relies on convergence of
linear consensus algorithms, leading to asymptotic consen-
sus on the manifold as well. When the manifold is a Lie
group such as the circle, the communication of auxiliary
variables can be implemented in such a way that it respects
the symmetry constraints of the algorithm, i.e. without
the need of a common reference frame. See Scardovi et al.
[2007a] and Sarlette [2009] for details and a formal proof.



5. COORDINATION ON NONLINEAR SPACES

The design and analysis of control laws that coordinate
swarms of identical autonomous agents has attracted sig-
nificant attention in the recent years: a non-exhaustive
list includes flocking mechanisms (Jadbabaie et al. [2003],
Blondel et al. [2005]), vehicle formations (Fax and Murray
[2004], Desai et al. [2001], Olfati-Saber and Murray [2002],
Justh and Krishnaprasad [2004, 2005]), spacecraft forma-
tions (Mesbahi and Hadaegh [2001], VanDyke and Hall
[2006], Lawton and Beard [2002], Krogstad and Gravdahl
[2006], McInnes [1996], Ren [2006]), mechanical system
networks (Smith et al. [2001], Hanssmann et al. [2006],
Nair [2006]), and mobile sensor networks (Scardovi et al.
[2007b], Sepulchre et al. [2007, 2008], Leonard et al. [2007],
Swain et al. [2007]).

Coordination is closely related to consensus and synchro-
nization: while synchronization refers to consensus among
positions (or configuration variables), coordination refers
to consensus among velocities. For instance, on the circle,
phase synchronization refers to consensus on S1, while
coordination would refer to a situation where all phase
variables evolve at the same speed, a situation commonly
referred to as phase locking. Both synchronization and
coordination can be considered as consensus problems, but
in different spaces: the configuration space for the former,
and the tangent bundle for the latter. When the config-
uration space is linear, there is a natural identification
between the configuration space and the tangent space.
Velocity vectors are treated as vectors of the configuration
space by translating them to the origin. Coordination and
synchronization are then equivalent in the sense that they
both reduce to a linear consensus problem. The situation
is different when the configuration space is nonlinear. Ve-
locity vectors of different agents then belong to different
tangent spaces that can non longer be identified to the
configuration space. This raises the issue of comparing
velocities and to ensure the analog invariance properties
of a coordination control law.

Lie groups offer a convenient setting for coordination on
nonlinear spaces because the group operation provides
an invertible translation mapping that generalizes the
translation operation in linear spaces. Because the group
operation is in general non commutative, one distinguishes
between two translation operations: the product g−1

k gj
defines a left-invariant relative position between gk and gj
while the product gjg

−1
k provides a right-invariant relative

position. Both generalize the relative position rk − rj in a
linear space. The recent work by Sarlette et al. [2010b]
builds upon this generalization to investigate a coordi-
nation theory on Lie groups. Left-invariant (resp. right-
invariant) coordination is defined as designing a control
law that stabilizes left-invariant (resp. right-invariant) rel-
ative positions. Bi-invariant coordination refers to simul-
taneous left and right invariant coordination.

Intuitively, constant relative positions correspond to equal
velocities. On Lie groups, velocities can be compared in
the Lie algebra, i.e. the tangent space at identity, which is
a linear space. And indeed, constant left-invariant relative
positions are shown to be equivalent to identical right-
invariant velocities. Likewise, constant right-invariant rel-
ative positions are shown to be equivalent to identical left-

invariant velocities. This characterization allows to classify
all possible coordinated motions on a particular Lie group.
Lie groups of special interest in mechanics include the
group of rotations SO(n), the group of rigid motions in
the plane SE(2) and the group of rigid motions in space
SE(3).

The characterization of coordination in terms of equal
velocities suggests a systematic Lyapunov design of coor-
dinating control laws. The Lyapunov functions measure
the distance to coordination by comparing the velocity
vectors in the Lie algebra. The feedback control laws are
then selected to decrease those distances along the closed-
loop trajectories.

The illustration of the theory on the Lie group SE(2) is
instructive.

Right-invariant coordination on SE(2). The left-invariant
velocity of an agent with position rk and orientation θk
is the velocity in body frame (i.e. the linear velocity vkl
and the angular velocity ωk). Right-invariant coordination
thus corresponds to equal velocities in body frame. The
trajectory of a given agent in the plane is arbitrary, but
any two agents’ trajectories are related by a rigid rotation
and translation in the plane. Right-invariant coordination
on SE(2) is achieved by running a consensus algorithm
among the linear and angular velocities.

Left-invariant coordination on SE(2). The right-invariant
linear velocity of an agent is the center of curvature

vkr = eiθkvkl − iωkrk

where the complex notation is a compact notation for pla-
nar rotations. Note that vkr differs from the linear velocity
in reference frame when ωk 6= 0. Left-invariant coordi-
nation thus corresponds to equal centers of curvatures.
Left-invariant coordinated motions correspond to parallel
motion of the agents (if the angular velocitiy is zero) or
to concentric circular motions around a fixed center of
curvature (if the angular velocity is different from zero).
Left-invariant coordination is achieved by synchronizing
the centers of curvature. The naive Lyapunov function
for left-invariant coordination is the disagreement cost
function

V (x) = 1
2

N
∑

k=1

N
∑

j=1

ajk‖vkr − vjr‖2 (19)

between right-invariant velocities expressed in the Lie alge-
bra. This formula connects a general coordination theory
on Lie groups to the ad-hoc Lyapunov design proposed
in Sepulchre et al. [2007] for coordination in a model of
steered particles moving at unit speed in the plane. In a
model of steered particles, the linear velocity vkl is fixed to
the constant vector e1. The steering control is a consensus
angular velocity ω corrected by a feedback term aimed at
achieving left-invariant coordination. If ω = 0, the expres-

sion (19) reduces to 1
2

∑N

k=1

∑N

j=1 ajk‖eiθk − eiθj‖2 and
the associated Lyapunov control stabilizes parallel motion.
The task happens to be equivalent to synchronization of
the agents’ orientations, which is a consensus problem
on the circle. If ω 6= 0, the Lyapunov function becomes
1
2

∑N
k=1

∑N
j=1 ajk‖eiθk − eiθj − iω(rk − rj)‖2 and the asso-

ciated Lyapunov control stabilizes circular motion. Those



two types of coordinated motion are the only two possible
coordinated motions in a model of steered particles.

The geometric theory of coordination on Lie groups facil-
itates extensions to other nonlinear configuration spaces
such as SE(3), see Scardovi et al. [2008], Sarlette et al.
[2010b] for details.

6. A NONLINEAR GLIMPSE AT LINEAR
CONSENSUS

A remarkable feature of the convergence analysis of the
time-varying linear system associated to consensus algo-
rithms (3) and (4) is the non-quadratic nature of the
Lyapunov function (5). It is an essential feature of the con-
vergence analysis: the recent paper Olshevsky and Tsitsik-
lis [2008] provides the explicit construction of a sequence
of eight matrices M(t) that satisfies the assumptions of
a linear consensus algorithm but that does not admit a
common time-invariant quadratic Lyapunov function. We
recently proposed in (Sepulchre et al. [2010]) a geometric
interpretation of this non-quadratic Lyapunov function, as
a distance measure intrinsically related to the nonlinear
nature of the underlying state-space. Since the consensus
algorithm (1) is invariant by translation, it can be assumed
without loss of generality that it is defined in the positive
orthant K = {(x1, . . . , xN ) : xi ≥ 0, 1 ≤ i ≤ n}. In
other words, each row-stochastic matrix M(t) defines a
positive linear map in K, i.e. an application that maps the
interior of the cone on itself. (The assumption βk > 0 in
(2) guarantees that points in the interior of the cone are
mapped in the interior of the cone). As a linear map, it
is also monotone, i.e. it preserves the natural order of the
cone K.

A general result by Birkhoff [1957] shows that positive
linear maps on cones are nonexpanding. On the positive
orthant, the contraction measure is the Hilbert metric

dH(x, y) = max
1≤i≤N

log(xi/yi)− min
1≤i≤N

log(xi/yi)

and a consequence of Birkoff theorem is that

dH(M(t)x,M(t)y) ≤ dH(x, y)

for any x and y in the (interior of) the positive orthant.
Row-stochasticity of M(t) means that M(t)1 = 1. The
distance to 1 is

VB(x) = dH(x,1) = max
1≤i≤N

log(xi)− min
1≤i≤N

log(xi)

which is precisely the Lyapunov function (5) in log coordi-
nates. Both Lyapunov functions provide a distance to con-
sensus. The Lyapunov function (5) is translation-invariant
(V (x + λ1) = V (x)) while Birkhoff Lyapunov function is
scaling-invariant (VB(λx) = V (x) for λ > 0). They both
provide a measure of the diameter of the convex hull of
(x1, . . . , xn), which is the Lyapunov function proposed by
Moreau [2005].

This interpretation of the non-quadratic Lyapunov func-
tion (5) underlines the perhaps not so linear nature of
the underlying state space of linear consensus algorithms.
Because Birkhoff theorem holds in arbitrary cones, this
geometric interpretation allows to consider consensus al-
gorithms in arbitrary cones. The paper by Sepulchre et al.
[2010] uses this framework to study consensus algorithms
on the cone of positive definite matrices, which are closely

related to stochastic quantum maps encountered in non-
commutative probability spaces.

7. CONCLUSION

The paper is a survey of the work by the author and
collaborators on a geometric consensus theory. While ele-
mentary, the proposed theory enables precise connections
between several popular models of distributed computa-
tion, by viewing them as realizations of the same geometric
update on different nonlinear configuration spaces. Phase
synchronization is viewed as a consensus algorithm on
the circle, while coordination on Lie groups is viewed as
consensus of invariant velocities in the Lie algebra.

An essential difference between linear consensus algo-
rithms and their nonlinear extensions is the non-convex
nature of symmetric spaces like the circle. This property
is what makes the convergence analysis graph dependent
when the state space is nonlinear. From a design viewpoint,
it is of interest to reformulate consensus algorithms on
nonlinear spaces in such a way that they converge (almost)
globally under the same assumptions as linear consensus
algorithms. Several solutions were proposed on the circle.

The proposed theory was initially motivated by coor-
dination problems whose configuration spaces are those
encountered in mechanics, such as SE(2) or SE(3). But
a particular emphasis of the geometric approach is also
on the invariance properties of distributed computation
models. Much work remains to be done in this direction,
but recognizing the invariance properties of distributed
systems and characterizing the associated fundamental
design limitations may end up being the most important
added value of a geometric consensus theory in applica-
tions, see Sarlette et al. [2010a], Sarlette and Sepulchre
[2009a] for preliminary steps in that direction.
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APPENDIX: NOTIONS OF GRAPH THEORY

In the framework of coordination with limited interconnec-
tions between agents, it is customary to represent commu-
nication links by means of a graph (see for instance Diestel
[1997], Chung [1997]).

Definition 1. A directed graph G(V , E) (short digraph G)
is composed of a finite set V of vertices, and a set E of
edges which represent interconnections among the vertices
as ordered pairs (j, k) with j and k ∈ V.
A weighted digraph G(V , E ,A) is a digraph associated with
a set A that assigns a positive weight ajk ∈ R>0 to each
edge (j, k) ∈ E.

An unweighted graph is often considered as a weighted
graph with unit weights. A weighted graph can be defined
by its vertices and weights only, by extending the weight
set to all pairs of vertices and imposing ajk = 0 if and
only if (j, k) does not belong to the edges of G. A digraph
is said to be undirected if ajk = akj ∀j, k ∈ V . It may
happen that (j, k) ∈ E whenever (k, j) ∈ E ∀j, k ∈ V ,
but ajk 6= akj for some j, k ∈ V ; in this case the
graph is called bidirectional. Equivalently, an unweighted
undirected graph can be defined as a set of vertices and a
set of unordered pairs of vertices.

In the present paper, each agent is identified with a vertex
of a graph; theN agents = vertices are designed by positive
integers 1, 2, ..., N , so V = {1, 2, ..., N}. The presence of
edge (j, k) has the meaning that agent j sends information
to agent k, or equivalently, agent k measures quantities
concerning agent j. It is assumed that no “communication
link” is needed for an agent k to get information about

itself, so G contains no self-loops: (k, k) /∈ E ∀k ∈ V . In
visual representations of a graph, a vertex is depicted by a
point, and edge (j, k) by an arrow from j to k. Therefore
a frequent alternative notation for (j, k) ∈ E is j  k.
One also says that j is an in-neighbor of k and k is an out-
neighbor of j. In the visual representation of an undirected
graph, all arrows are bidirectional; therefore arrowheads
are usually dropped. One simply says that j and k are
neighbors and writes j ∼ k instead of j  k and k  j.

The in-degree of vertex k is d
(i)
k =

∑N

j=1 ajk. The out-

degree of vertex k is d
(o)
k =

∑N
j=1 akj . A digraph is said to

be balanced if d
(i)
k = d

(o)
k ∀k ∈ V ; in particular, undirected

graphs are balanced.

The adjacency matrix A ∈ RN×N of a graph G contains
ajk in row j, column k; it is symmetric if and only if G is
undirected. Denote by |E| the number of edges in G.

The in- and out-degrees of vertices 1, 2, ..., N can be assem-
bled in diagonal matrices D(o) and D(i). The in-Laplacian
of G is L(i) = D(i) − A. Similarly, the associated out-
Laplacian is L(o) = D(o) − A. For a balanced graph G,
the Laplacian L = L(i) = L(o). The standard definition
of Laplacian L is for undirected graphs. For the latter,
L is symmetric. For general digraphs, by construction,
(1N )T L(i) = 0 and L(o) 1N = 0 where 1N is the column
vector of N ones. The spectrum of the Laplacian reflects
several interesting properties of the associated graph, spe-
cially in the case of undirected graphs, see for example
Chung [1997]. In particular, it reflects its connectivity
properties.

A directed path of length l from vertex j to vertex k is a
sequence of vertices v0, v1, ..., vl with v0 = j and vl = k
and such that (vm, vm+1) ∈ E for m = 0, 1, ..., l − 1. An
undirected path between vertices j and k is a sequence of
vertices v0, v1, ..., vl with v0 = j and vl = k and such that
(vm, vm+1) ∈ E or (vm+1, vm) ∈ E , for m = 0, 1, ..., l − 1.
A digraph G is strongly connected if it contains a directed
path from every vertex to every other vertex (and thus
also back to itself). A digraph G is root-connected if it
contains a node k, called the root, from which there is a
path to every other vertex (but not necessarily back to
itself). A digraph G is weakly connected if it contains an
undirected path between any two of its vertices. For an
undirected graph G, all these notions become equivalent
and are simply summarized by the term connected. For
G representing interconnections in a network of agents,
clearly coordination can only take place if G is connected.
If this is not the case, coordination will only be achievable
separately in each connected component of G. A more
interesting discussion of connectivity arises when the graph
G can vary with time. In this case, the communication
links are represented by a time-varying graph G(t) in which
the vertex set V is fixed (by convention), but edges E and
weights A can depend on time. All the previous definitions
carry over to time-varying graphs; simply, each quantity
depends on time. To prevent edges from vanishing or grow-
ing indefinitely, the present paper considers δ-digraphs,
for which the elements of A(t) are bounded and satisfy
the threshold ajk(t) ≥ δ > 0 ∀(j, k) ∈ E(t), for all t. In



addition, in continuous-time G is assumed to be piecewise
continuous. For δ-digraphs G(t), it is intuitively clear that
coordination may be achieved if information exchange is
“sufficiently frequent”, without requiring it to take place
all the time. The following definition of “integrated con-
nectivity over time” can be found in Blondel et al. [2005],
Moreau [2004, 2005], Tsitsiklis [1984].

Definition 2. (from Moreau [2004, 2005]) In discrete-time,
for a δ-digraph G(V , E(t),A(t)) and some constant T ∈
Z≥0, define the graph Ḡ(V , Ē(t), Ā(t)) where Ē(t) contains
all edges that appear in G(τ) for τ ∈ [t, t + T ] and

ājk(t) =
∑t+T

τ=t ajk(τ). Similarly, in continuous-time, for
a δ-digraph G(V , E(t),A(t)) and some constant T ∈ R>0,
define the graph Ḡ(V , Ē(t), Ā(t)) by

ājk(t) =















∫ t+T

t

ajk(τ)dτ if

∫ t+T

t

ajk(τ)dτ ≥ δ

0 if

∫ t+T

t

ajk(τ)dτ < δ

(j, k) ∈ Ē(t) if and only if ājk(t) 6= 0 .

Then G(t) is said to be uniformly connected over T if there
exists a time horizon T and a vertex k ∈ V such that Ḡ(t)
is root-connected with root k for all t.

The (equally weighted) complete graph is an unweighted,
undirected graph that contains an edge between any pair
of vertices. An undirected tree is a connected undirected
graph in which it is impossible to select a subset of at
least 3 vertices and a subset of edges among them to form
an undirected cycle. A directed tree of root k is a root-
connected digraph of root k, in which every vertex can
be reached from k by following one and only one directed
path. In a directed tree G, the (unique) in-neighbor of a
vertex j is called its parent and its out-neighbors are its
children. The root has no parent, and the vertices with no
children are called the leaves. This can be carried over to
an undirected graph after selecting an arbitrary root.


