MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures
Spring 1998

6.004 Issued: 3/12/98
(B Instruction Set Architecture Reference

1. INTRODUCTION
This handout is a reference guide for the 3, the RISC processor design for 6.004. This is

intended to be a complete and thorough specification of the programmer-visible state and
instruction set.

2. MACHINE MODEL
The 3 is a general-purpose 32-bit architecture: all registers are 32 bits wide and when

loaded with an address can specify any location in the byte-addressed memory. When
read, register 31 is always 0; when written, it serves as a bit bucket.

Program Counter Main Memory

[PcC | 0x00000000: | 3 | 2 | 1 | o

0x00000004:
H 32 bits H
0x00000008:

Registers sub r3,r4,r5 32
st 13,1000 2°° bytes
RO
R1
R30 OXFFFFFFFS:
R31 OXFFFFFFFC;

=——— 32bits ——=] =——— 32bits ——=]

6.004 SPRING 1998 3/12/98

(3 INSTRUCTION SET ARCHITECTURE REFERENCE 2
3. INSTRUCTION ENCODING

Each g instruction is 32 bits long. All integer manipulation is between registers, with up
to two source operands (one may be a sign-extended 16-bit literal), and one destination
operand. Memory is referenced through load and store instructions which perform no other
computation. Conditional branch instructions are separated from comparison instructions:
branch instructions test the value of a register which can be the result of a previous compare
instruction.

There are only two types of instruction encoding: Without Literal and With Literal. In-
structions without literals include arithmetic and logical operations between two registers
whose result is placed in a third register. Instructions with literals include all other oper-
ations.

Like all signed quantities on the 3, an instruction’s literal is represented in twos-complement.|j

3.1 Without Literal

31 26 25 21 20 16 15 1110 0
| Opcode | Rc | Ra | Rb | unused

3.2 With Literal

31 26 25 21 20 16 15 5 0
| Opcode | Rc Ra Literal (signed)

4. INSTRUCTION SUMMARY

Below are listed the 32 (instructions and their 6-bit opcodes. For detailed instruction
operations, see the following section.

6.004 SPRING 1998 3/12/98

(8 INSTRUCTION SET ARCHITECTURE REFERENCE 3

Mnemonic Opcode
ADD 0x20
ADDC 0x30
AND 0x28
ANDC 0x38
BEQ 0x1D
BNE 0x1E
CMPEQ 0x24
CMPEQC 0x34
CMPLE 0x26
CMPLEC 0x36
CMPLT 0x25
CMPLTC 0x35
DIV 0x23
DIVC 0x33
JMP 0x1B
LD 0x18
LDR 0x1F
MUL 0x22
MULC 0x32
OR 0x29
ORC 0x39
SHL 0x2C
SHLC 0x3C
SHR 0x2D
SHRC 0x3D
SRA 0x2E
SRAC 0x3E
SUB 0x21
SUBC 0x31
ST 0x19
XOR 0x2A
XORC 0x3A

5. INSTRUCTION SPECIFICATIONS

This section contains the specifications for the (instructions, listed alphabetically by
mnemonic. No timing-dependent information is given: it is specifically assumed that there
are no pathological timing interactions between instructions in this specification. Each
instruction is considered atomic and is presumed to complete before the next instruction
is executed. No assumptions are made about branch prediction, instruction prefetch, or
memory caching.

6.004 SPRING 1998 3/12/98

(8 INSTRUCTION SET ARCHITECTURE REFERENCE 4

5.1 Add
Usage: ADD (Ra, Rb, Rc)
Opcode: | 100000 | Rc | Ra | Rb | unused

Operation: PC « (PC) + 4
Rc < (Ra) + (Rb)

The contents of register Ra is added to the contents of register Rb and the 32-bit sum is
written to Rc.

This instruction computes no carry or overflow information. If desired, this can be com-
puted through explicit compare instructions.

5.2 Addc
Usage: ADDC (Ra, literal, Rc)
Opcode: | 110000 | Rc | Ra | literal

Operation: PC < (PC) + 4
Rc < (Ra) + SExT(literal)

The contents of register Ra is added to literal and the 32-bit sum is written to Rc.

This instruction computes no carry or overflow information. If desired, this can be com-
puted through explicit compare instructions.

5.3 And
Usage: AND (Ra, Rb, Rc)
Opcode: [101000] Rc | Ra | Rb | unused

Operation: PC < (PC) + 4
Rc + (Ra) A (RD)

This performs the bitwise boolean AND function between the contents of register Ra and
the contents of register Rb. The result is written to register Rc.

5.4 Andc
Usage: ANDC (Ra, literal, Rc)
Opcode: | 111000 | Rc | Ra | literal

Operation: PC « (PC) + 4
Rc « (Ra) A SEXT(literal)

This performs the bitwise boolean AND function between the contents of register Ra and
literal. The result is written to register Rc.

6.004 SPRING 1998 3/12/98

(8 INSTRUCTION SET ARCHITECTURE REFERENCE)

5.5 Beq/Bf
Usage: BEQ (Ra, label, Rc)
BF (Ra, label, Rc)
Opcode: | 011101 | Rc | Ra | literal |
Operation: literal = ((OFFSET (label) - OFFSET (current instruction)) > 2) - 1
PC < (PC) + 4
EA <+ (PC) + 4 - SEXT(literal)
Rc «+ (PC

)
If (Ra) = 0 then PC < EA

The PC of the instruction following the BEQ instruction (the updated PC) is written to
register Rc. Then the contents of register Ra are tested. If they are zero, the PC is
loaded with the target address; otherwise, execution continues with the next sequential
instruction.

The displacement literal is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign extended to 32 bits, and added to the
updated PC to form the target address.

5.6 Bne/Bt
Usage: BT (Ra, label, Rc)
BNE (Ra, label, Rc)
Opcode: | 011110 | Rc | Ra | literal |
Operation: literal = ((OFFSET (label) - OFFSET (current instruction)) > 2) - 1
PC « (PC) + 4
EA <+ (PC) + 4 - SExT(literal)
Rc «+ (PC)

If (Ra) # 0 then PC + EA

The PC of the instruction following the BNE instruction (the updated PC) is written to
register Rc. Then the contents of register Ra are tested. If they are non-zero, the PC is
loaded with the target address; otherwise, execution continues with the next sequential
instruction.

The displacement literal is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign extended to 32 bits, and added to the
updated PC to form the target address.

5.7 Cmpeq
Usage: CMPEQ (Ra, Rb, Rc)
Opcode: [100100] Rc | Ra | Rb | unused

Operation: PC <« (PC) + 4
If (Ra) = (Rb) then Rc <— 1 else Rc «+— 0

6.004 SPRING 1998 3/12/98

(8 INSTRUCTION SET ARCHITECTURE REFERENCE 6

The contents of register Ra are compared to the contents of register Rb. If the two are
equal, the value one is written to register Rc; otherwise zero is written to Rc.

5.8 Cmpeqc
Usage: CMPEQC (Ra, literal, Rc)
Opcode: | 110100 | Rc | Ra | literal

Operation: PC <« (PC) + 4
If (Ra) = SEXT(literal) then Rc < 1 else Rc < 0

The contents of register Ra are compared to literal. If the two are equal, the value one is
written to register Rc; otherwise zero is written to Rc.

5.9 Cmple
Usage: CMPLE (Ra, Rb, Rc)
Opcode: | 100110 | Rc | Ra | Rb | unused

Operation: PC « (PC) + 4
If (Ra) < (Rb) then Rc < 1 else Rc «— 0

The contents of register Ra (as a signed quantity) are compared to the contents of register
Rb (as a signed quantity). If the less-than-or-equal relationship holds, the value one is
written to register Rc; otherwise zero is written to Rc.

5.10 Cmplec
Usage: CMPLEC (Ra, literal, Rc)
Opcode: [110110] Rc | Ra | literal

Operation: PC < (PC) + 4
If (Ra) < SEXT(literal) then Rc < 1 else Rc < 0

The contents of register Ra (as a signed quantity) are compared to literal. If the less-
than-or-equal relationship holds, the value one is written to register Rc; otherwise zero is
written to Rc.

5.11 Cmplt
Usage: CMPLT (Ra, Rb, Rc)
Opcode: | 100101 | Rc | Ra | Rb | unused

Operation: PC « (PC) + 4
If (Ra) < (Rb) then Rc <— 1 else Rc «— 0

The contents of register Ra (as a signed quantity) are compared to the contents of register
Rb (as a signed quantity). If the less-than relationship holds, the value one is written to
register Rc; otherwise zero is written to Rc.

6.004 SPRING 1998 3/12/98

(8 INSTRUCTION SET ARCHITECTURE REFERENCE 7

5.12 Cmpltc
Usage: CMPLTC (Ra, literal, Rc)
Opcode: | 110101 | Rc | Ra | literal

Operation: PC « (PC) + 4
If (Ra) < SEXT(literal) then Rc < 1 else Rc < 0

The contents of register Ra (as a signed quantity) are compared to literal. If the less-than
relationship holds, the value one is written to register Rc; otherwise zero is written to Rc.

5.13 Div
Usage: DIV (Ra, Rb, Rc)
Opcode: | 100011 | Rc | Ra | Rb | unused

Operation: PC « (PC) + 4
Rc < (Ra)/(Rb)

The contents of register Ra are divided by the contents of register Rb and the 32-bit quotient
is written to register Rc. The result is truncated.

5.14 Divce
Usage: DIVC (Ra, literal, Rc)
Opcode: [110011] Rc [Ra [literal

Operation: PC « (PC) + 4
Rc < (Ra)/SEXT(literal)

The contents of register Ra are divided by literal and the 32-bit quotient is written to
register Rc. The result is truncated.

5.15 Jmp
Usage: JMP (Ra, Rc)
Opcode: [011011] Rc | Ra | literal

Operation: PC <« (PC) + 4
EA < (Ra) A OXxFFFFFFFC
Rc «+ (PC)
PC <+ FA

The PC of the instruction following the JMP instruction (the updated PC) is written to
register Rc, followed by loading the PC with the target address. The new contents of PC
are supplied from register Ra. The low two bits of Ra are masked. Ra and Rc may specify
the same register; the target calculation using the old value is done before the assignment
of the new value. The unused literal field should be filled with zeroes.

6.004 SPRING 1998 3/12/98

(8 INSTRUCTION SET ARCHITECTURE REFERENCE 8

5.16 Ld
Usage: LD (Ra, literal, Rc)
Opcode: | 011000 | Rc | Ra | literal

Operation: PC « (PC) + 4
EA < (Ra) + SEXT(literal)
Rc < Memory[EA]

The effective address EA is computed by adding the contents of register Ra to the sign-
extended 16-bit displacement literal. The location in memory specified by EA is read into
register Rc.

5.17 Ldr

Usage: LDR (label, Rc)

Opcode: | 011111 | Rc | Ra | literal |
Operation: literal = ((OFFSET (label) - OFFSET (current instruction)) > 2) - 1

PC < (PC) + 4
EA <+ (PC) + 4 - SExT(literal)
Rc < Memory[EA|

The effective address EA is computed by shifting the sign-extended literal left two bits (to
address a longword boundary) and adding it to the updated PC. The location in memory
specified by EA is read into register Rc. The Ra field is ignored and should be zero.

5.18 Mul
Usage: MUL (Ra, Rb, Rc)
Opcode: [100010] Rc | Ra | Rb | unused

Operation: PC < (PC) + 4
Rc « (Ra) - (Rb)

The contents of register Ra are multiplied by the contents of register Rb and the 32-bit
product is written to register Rc. On overflow, the least significant 32 bits of the true
result are written to the destination register.

5.19 Mulc
Usage: MULC (Ra, literal, Rc)
Opcode: | 110010 | Rc | Ra | literal

Operation: PC « (PC) + 4
Rc « (Ra) - SEXT(literal)

The contents of register Ra are multiplied by literal and the 32-bit product is written to
register Rc. On overflow, the least significant 32 bits of the true result are written to the
destination register.

6.004 SPRING 1998 3/12/98

(8 INSTRUCTION SET ARCHITECTURE REFERENCE 9

5.20 Or
Usage: OR (Ra, Rb, Rc)
Opcode: | 101001 | Rc | Ra | Rb | unused

Operation: PC « (PC) + 4
Rc < (Ra) V (RD)

This performs the bitwise boolean OR function between the contents of register Ra and the
contents of register Rb. The result is written to register Rc.

5.21 Orc
Usage: ORC (Ra, literal, Rc)
Opcode: | 111001 | Rc | Ra | literal

Operation: PC « (PC) + 4
Rc < (Ra) V SEXT(literal)

This performs the bitwise boolean OR function between the contents of register Ra and
literal. The result is written to register Rc.

5.22 Shl
Usage: SHL (Ra, Rb, Rc)
Opcode: [101100] Rc [Ra [Rb [unused

Operation: PC « (PC) + 4
Rc < (Ra) < (Rb)4.o

The contents of register Ra are shifted left 0 to 31 bits by the five-bit count in register Rb.
The result is written to register Rc. Zeroes are propagated into the vacated bit positions.

5.23 Shic
Usage: SHLC (Ra, literal, Rc)
Opcode: [111100] Rc | Ra | literal

Operation: PC <« (PC) + 4
Rc + (Ra) < literaly.

The contents of register Ra are shifted left 0 to 31 bits by the five-bit count in literal. The
result is written to register Rc. Zeroes are propagated into the vacated bit positions.

6.004 SPRING 1998 3/12/98

(3 INSTRUCTION SET ARCHITECTURE REFERENCE 10

5.24 Shr
Usage: SHR (Ra, Rb, Rc)
Opcode: | 101101 | Rc | Ra | Rb | unused

Operation: PC « (PC) + 4
Rc < (Ra) > (Rb)4.o

The contents of register Ra are shifted logically right 0 to 31 bits by the five-bit count in
register Rb. The result is written to register Rc. Zeroes are propagated into the vacated
bit positions.

5.25 Shrc
Usage: SHRC (Ra, literal, Rc)
Opcode: [111101] Rc [Ra [literal

Operation: PC < (PC) + 4
Rc < (Ra) > literaly.

The contents of register Ra are shifted logically right 0 to 31 bits by the five-bit count in
literal. The result is written to register Rc. Zeroes are propagated into the vacated bit
positions.

5.26 Sra
Usage: SRA (Ra, Rb, Rc)
Opcode: | 101110 | Rc | Ra | Rb | unused

Operation: PC « (PC) + 4
Rc < (Ra) > (Rb)4.o

The contents of register Ra are shifted arithmetically right 0 to 31 bits by the five-bit count
in register Rb. The result is written to register Rc. The sign bit (Ra)s; is propagated into
the vacated bit positions.

5.27 Srac
Usage: SRAC (Ra, literal, Rc)
Opcode: [111110] Rc | Ra | literal

Operation: PC « (PC) + 4
Rc < (Ra) > literaly.

The contents of register Ra are shifted arithmetically right 0 to 31 bits by the five-bit count
in literal. The result is written to register Rc. The sign bit (Ra)s; is propagated into the
vacated bit positions.

6.004 SPRING 1998 3/12/98

(3 INSTRUCTION SET ARCHITECTURE REFERENCE 11

5.28 St
Usage: ST (Rc, literal, Ra)
Opcode: [011001] Rc | Ra | literal

Operation: PC < (PC) + 4
EA < (Ra) + SEXT(literal)
Memory[EA] < (Rc)

The effective address EA is computed by adding the contents of register Ra to the sign-
extended 16-bit displacement literal. The contents of register Rc are then written to
memory at this address.

5.29 Sub
Usage: SUB (Ra, Rb, Rc)
Opcode: [100001] Rc | Ra | Rb | unused

Operation: PC <« (PC) + 4
Rc + (Ra) — (RDb)

The contents of register Rb is subtracted from the contents of register Ra and the 32-bit
difference is written to register Rc.

This instruction computes no borrow or overflow information. If desired, this can be
computed through explicit compare instructions.

5.30 Subc
Usage: SUBC (Ra, literal, Rc)
Opcode: [110001] Rc | Ra | literal

Operation: PC < (PC) + 4
Rc < (Ra) — SEXT(literal)

The constant literal is subtracted from the contents of register Ra and the 32-bit difference
is written to register Rc.

This instruction computes no borrow or overflow information. If desired, this can be
computed through explicit compare instructions.

5.31 Xor
Usage: XOR (Ra, Rb, Rc)
Opcode: | 101010 | Rc | Ra | Rb | unused

Operation: PC « (PC) + 4
Rc + (Ra) @ (Rb)

This performs the bitwise boolean XOR function between the contents of register Ra and
the contents of register Rb. The result is written to register Rc.

6.004 SPRING 1998 3/12/98

(3 INSTRUCTION SET ARCHITECTURE REFERENCE 12

5.32 Xorc
Usage: XORC (Ra, literal, Rc)
Opcode: | 111010 | Rc | Ra | literal

Operation: PC « (PC) + 4
Rc <+ (Ra) @ SExT(literal)

This performs the bitwise boolean XOR function between the contents of register Ra and
literal. The result is written to register Rc.

6. EXTENSIONS FOR EXCEPTION HANDLING

The standard 3 architecture described above is modified as follows to support exceptions
and privileged instructions.

6.1 Exceptions

[exceptions come in three flavors: traps, faults, and interrupts.

Traps and faults are both the direct outcome of an instruction (e.g., an attempt to exe-
cute an illegal opcode) and are distinguished by the programmer’s intentions. Traps are
intentional and are normally used to request service from the operating system. Faults are
unintentional and often signify error conditions.

Interrupts are asynchronous with respect to the instruction stream, and are usually caused
by external events (e.g., a character appearing on an input device).

6.2 The XP Register

Register 30 is dedicated as the “Exception Pointer” (XP) register. When an exception
occurs, the updated PC is written to the XP. For traps and faults, this will be the PC of
the instruction following the one which caused the fault; for interrupts, this will be the PC
of the instruction following the one which was about to be executed when the interrupt
occurred.

Since the XP can be overwritten at unpredictable times as the result of an interrupt, it
should not be used while interrupts are enabled.

6.004 SPRING 1998 3/12/98

(3 INSTRUCTION SET ARCHITECTURE REFERENCE 13

6.3 Supervisor Mode

The high bit of the PC is dedicated as the “Supervisor” bit. The instruction fetch and LDR
instruction ignore this bit, treating it as if it were zero. The JMP instruction is allowed to
clear the Supervisor bit but not set it, and no other instructions may have any effect on
it. Only exceptions cause the Supervisor bit to become set.

When the Supervisor bit is clear, the processor is said to be in “user mode”. Interrupts
are enabled while in user mode.

When the Supervisor bit is set, the processor is said to be in “supervisor mode”. While
in supervisor mode, interrupts are disabled and privileged instructions (see below) may be
used. Traps and faults while in supervisor mode have implementation-defined (probably
fatal) effects.

Since the JMP instruction can clear the Supervisor bit, it is possible to load the PC with a
new value and enter user mode in a single atomic action. This provides a safe mechanism
for returning from a call to the Operating System, even if an interrupt is pending at the
time.

6.4 Exception Handling

When an exception occurs and the processor is in user mode, the updated PC is written to
the XP, the Supervisor bit is set, the PC is loaded with an implementation-defined value,
and the processor begins executing instructions from that point. This value is called the
“exception vector”, and may depend on the kind of exception which occurred.

The only exception which must be supported by all implementations is the “reset” excep-
tion (also called the “power up” exception), which occurs immediately before any instruc-
tions are executed by the processor. The exception vector for power up is always 0. Thus,
at power up time, the Supervisor bit is set, the XP is undefined, and execution begins at
location 0 of memory.

6.5 Privileged Instructions

Some instructions may be available while in supervisor mode which are not available in user
mode (e.g., instructions which interface directly with I/O devices). These are called “priv-
ileged instructions”. These instructions always have an opcode of 0x00; otherwise, their
form and semantics are implementation-defined. Attempts to use privileged instructions
while in user mode will result in an illegal instruction exception.

6.004 SPRING 1998 3/12/98

