Knowledge representation (INFO0049-1)

Exercise session 3
3 March 2015

***Try to draw search trees wherever possible to see how prolog executes a
query***

Exercise on Lists

Basic list-predicates
1. Define predicates for

« Retrieving the first element of a list: first(+List, -Element)

« Retrieving the last element of a list: last(+List, -Element)

« Returning the length of a list: list_length(+List, -Length)

« Removing in a list ALL elements equal to T: remove_all(+T, +List, -
NewList)

« Removing in a list one element equal to T: remove(+T, +List, -NewList)

« Removing in a list of numbers all elements smaller than or equal to
N: smaller(+N, +NumberList, -NewNumberList)

- Switching the first two elements of a list: switch_first two(+List, -
NewList). For example a call to switch_first_two([a,b,c,d,e,f], L) should
return L = [b,a,c,d,e,f]

- Switching every pair of elements in a list: switch_every two(+List, -
NewList). For example a call to switch_every two([a,b,c,d,e,f,g], L)
should return L = [b,a,d,c,f,e,g]

2. Write a predicate calculate_sum(+List, -Sum) that, given a list of numbers,
calculates the sum of all these numbers. Then write a predicate
calculate(+List, -Avg) that calculates the average of the numbers in the list.
Can you do this by traversing the list only once?

3. LOA is a game comparable to checkers. The board consists of squares.
Each square can be filled with a white or black disk, or be empty. Suppose
that we represent a row on the board as a list where each element is either
the atom w (white disk), the atom b (black disk) or the atom n (no disk). Define

the predicate count_disk(+Row, -Count) that given a row returns the number
of disks on that row. What is the answer to the following queries?

?- count_disk([w,b,n,n],Count).
?- count_disk([w,b,n,n],2).
?- count_disk([w,b,n,n],4).
?- count_disk(List,Count).

4. We store a LOA game as a list of all moves (in chronological order). A
move (starting from one position on the board, going to another position) is
represented with a move functor with 4 arguments: the first and second
arguments are the column (a letter) and row (a number) of the from-position;
the third and fourth arguments are the column and row of the to-position. E.g.
we can have the following game: [move(b,1,b,3), move(c,6,c,8),
move(b,3,b,5)]. In this game the first player moved from b1 to b3, then the
second player moved from c6 to ¢8 and then the first player moved from b3 to
b5.

1. Write a predicate nb_rounds(+List, +NoOfRounds) that, given a
movelist, calculates the number of 'rounds' played in the game. With
'round' we mean one move of each of the two players (unless at the
end of the game).

?- nb_rounds([move(b,1,b,3), move(c,6,c,8), move(b,3,b,5)], Count).

Count=2
true.

2. Write a predicate splits(+List, -List1, -List2) that splits a given movelist
(List) into two lists: one with the black moves (List1), the other with the
white moves (List2). Keep in mind that a movelist can contain an odd
number of moves (like in the movelist given above).

?- split(fmove(b,1,b,3), move(c,10,c,8), move(b,3,b,5)], BlackMoves,
WhiteMoves).

BlackMoves = [move(b,1,b,3), move(b,3,b,5)]
WhiteMoves = [move(c,10,c,8)]
true.

3. Write a predicate merge(+List1, +List2, -List) that given a list with the
moves from black (List1) and a list with the moves from white merges
(List2) both into a chronological movelist (List).

5. Write a predicate cattree(+N,-Tr), where N is a natural
number and Tr is a binary tree with N internal notes, and leaves labeled with

symbol x. General all possible binary trees with N internal nodes (N+1
leaves).

?- cattree(4,Tr).

Tr=1[x, [x, [x, [x, x|l ;
Tr=1[x, [x, [[x, x], x]I] ;
Tr=1[x, [[x, x], [x, X]I] ;
Tr=1[x, [[x, [x, x]], x]] ;
Tr =[x [[[x, x], x],] ;
Tr=[[x, x], [x, [x, X]I] ;
Tr =[x, x], [[x, x], x]] ;
Tr=1[x, [x, x]], [x, x]] ;
Tr =[x, x], x], [x, x]] ;
Tr=1[[x, [x, [x, x]]], x] ;
Tr =[x, [[x, x], x]], x] ;
Tr =[x, x], [x, X]], X] ;
Tr=1[lx, [x, x]], x], x] ;
Tr=1[Ix, x], x], x], x] ;
false.

6. Given a list of lists write a predicate flatten_list_of lists(+List, -Flatlist) that
“flattens' the list.
?- flatten_list_of lists([[a, b, c], [d, e, f]], FlatList).

FlatList = [a,b,c,d,e,f]
true.

7. Suppose we represent a matrix as a list of lists, e.g.:
A =[[a11,a12,a13], [a21,a22,a23]]

Write a predicate find_transpose(+A, -AT) that computes the transposed
matrix:

AT = [[a11,a21], [a12,a22], [a13,a23]]

Your code should work for any matrix, not only for a 2-by-3 matrix.

