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What is empowerment?
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Question

How can we find interesting states/actions in an MDP ...

... without actually solving the whole problem first (with DP/RL methods)?

Motivation: we seek to identify general principles that may help us answering this question.

We present: Empowerment (Heuristic: ’Being in control of one’s own future is good.’)

Information-theoretic formulation.

Independent of specific goals, only considers ’general’ properties of the dynamics of

the decision process.

Computable from local quantities.
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A graphical model

Represent: agent-environment interaction over time as a graphical model (memory-less):

ot

st

at

st+1

p(ot|st)

p(st+1|st, at)

p(at|ot)

State at time t
State at time t+ 1

Decision at time tObservation at time t

With

Random variables st, ot, at, t = 1, 2, . . . (having finite domain)

Conditional distribution tables for

Sensor: p(ot|st) (without losing generality we will ignore sensors)

Agent’s decision: p(at|ot)

State transition: p(st+1|st, at)
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Definition of empowerment (discrete case)

Now: let’s consider the single transition from (a fixed) s to s′.

Definition: For every state s we define empowerment C(s) as the channel capacity between

selection of an action a and resulting successor state s′:

C(s) := max
~p(a)

I(Ss : As) = max
~p(a)

∑

s′

∑

a

p(a)p(s′|s, a) log

{

p(s′|s, a)
∑

a′ p(s′|s, a′)p(a′)

}

where

As discrete random variable modeling selection of action

~p(a) distribution over As (number-of-actions vector)

Ss discrete random variable modeling occurance of successor state given s

p(s′|s, a) transition probabilities (dynamics of the world)

Algorithm: C(s) can be computed via Blahut-Arimoto, if transition probs are known.
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Illustration: understanding empowerment

Special cases: suppose p(s′|s, a) is one of the following:

...

a1 a2 am

s

s′1

Empowerment zero(all ations leading to the same suessor state)

...

...

a1 a2 am

s

s′1 2 m

Empowerment max (= log(m))(all ations leading to di�erent suessor states)

...

...

a1 a2 am

s

s′1 2 m

Empowerment zero(if p(s′|s, a) = p(s′|s))
...

...... ...

a1 a2 am

s

s′

Empowerment max (= log(m))(all ations leading to disjunt sets of possiblesuessor states)
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Illustration: empowerment vs. mutual informationFor all ases on the preeding slide, empowerment (hannel apaity) was equal to the mutual information. Ofourse, this is not always the ase ...

...

PSfrag replaements 1 2

a1 a2 a100

a101Mutual info: 0.055Empowerment: 0.6931 (exp(·) = 2)
p
∗
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0.5/100...
0.5/100

0.5















Things are getting even more interesting one we start to onsider temporally-extended ations (n-step) ....
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N-step empowerment

...

st st+1 st+2 st+n

at at+1 at+n−1

1-step transitions p(st+1|st, at)

...

st st+1 st+2 st+n

at at+1 at+n−1
~ant

n-step transitions p(st+n|st, ~a
n
t )

1-step transitions: dynamics of the system naturally modeled at the level of 1-step transitions

n-step transitions: consider open-loop action sequences ~ant of n 1-step actions

~ant :=
(

at, . . . , at+n−1

)

and induced transitions from st to st+n under ~ant :

p(st+n|st,~a
n
t ) =

∑

st+n

· · ·
∑

st+1

p(st+n|st+n−1, at+n−1) · · · p(st+1|st, at)

n-step empowerment: In general, will consider empowerment for n-step transitions [which

technically doesn’t change anything, just replace p(st+1|st, at) by p(st+n|st,~ant ) and loop

over all possible n-step actions instead of over all 1-step actions].

Remark: set of possible n-step actions is formed through exhaustive enumeration [thus

number-of-n-step-actions = number-of-1-step-actionsn].

GSO Workshop: Empowerment for Continuous Agent-Environment Systems (9/9/11) – p.8/31



Example: taxi-domain

Y

R G

B

State: factored representation (5*5*5*4=500 states)

x-location {1, . . . , 5}

y-location {1, . . . , 5}

passenger {’Y’,’R’,’B’,’G’,’Car’}

destination {’Y’,’R’,’B’,’G’}

State: flat representation {1, . . . , 500} !

Actions: ’North’, ’South’, ’East’, ’West’, ’Pick-up’, ’Drop-off’

Transitions:

Movement 80% successful, 20% deviation to left/right

’Pick-up’ only succeeds if passenger waits at current location (else no effect)

’Drop-off’ only succeeds if destination is at current location (else no effect)

Note:

No reward. We just look at the dynamics, see if we can do something ...

Episode ends: once a passenger is dropped off, we immediately move to the center

(and randomly generate new start/destination)
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Taxi domain: 3-step empowerment (pick-up)

Now let’s look at the 3-step empowerment of states if a passenger is ...

Y

R

B

G

3−step empowerment 
 Dest=G, Passenger=Y (states #376 −− #400)

...waiting at ’Y’

Y

R

B

G

3−step empowerment 
 Dest=G, Passenger=R (states #401 −− #425)

...waiting at ’R’

Y

R

B

G

3−step empowerment 
 Dest=Y, Passenger=B (states #51 −− #75)

...waiting at ’B’

Y

R

B

G

3−step empowerment 
 Dest=Y, Passenger=G (states #76 −− #100)

...waiting at ’G’... and what happens if a passenger is piked up?
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Taxi domain: 3-step empowerment (drop-off)

Once the passenger is picked up, empowerment changes like this if the passenger wants to

Y

R

B

G

3−step empowerment 
 Dest=Y, Passenger=Car (states #101 −− #125)

... go to ’Y’

Y

R

B

G

3−step empowerment 
 Dest=R, Passenger=Car (states #226 −− #250)

... go to ’R’

Y

R

B

G

3−step empowerment 
 Dest=B, Passenger=Car (states #351 −− #375)

... go to ’B’

Y

R

B

G

3−step empowerment 
 Dest=G, Passenger=Car (states #476 −− #500)

... go to ’G’
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Taxi domain: 3-step empowerment (complete)

In other words: Assume our ’goal’ is to bring the passenger from ’B’ to ’R’.

Y

R

B

G

3−step empowerment 
 Dest=R, Passenger=B (states #176 −− #200)

Before ’pick-up’

Y

R

B

G

3−step empowerment 
 Dest=R, Passenger=Car (states #226 −− #250)

Immediately after ’pick-up’, before ’drop-off’

Observe:

Following the trail of highly-empowered states brings us to each of the two sub-goal

states.

In fact, we could [nearly] solve the taxi-domain just looking at the empowerment

values and greedily choosing actions accordingly.

Which is remarkable, because we didn’t have to introduce an artificial ’reward’ to

make the system behave as we want it to behave.
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Summary (so far)

Empowerment: ’Hub states’

Information-theoretic formulation (cf. bottleneck states = graph-theoretic

formulation)

Unsupervised & goal-free: only considers general properties of the dynamics of the
decision process [muh like PCA, whih only onsiders general properties of the data, i.e. thevariane, but not if a partiular diretion is atually helpful in solving the problem at hand℄.Loal: omputed from transition funtion alone (f. ost-to-go funtion inRL=global).Considers e�ets of ations on di�erent time-sales.

Applications:

Identify ’interesting’ states to create possible subgoals to facilitate planning/learning at

different levels of abstraction.

Identify ’irrelevant’ actions (actions that eventually have the same outcome).

Drive exploration (instead of blindly trying out all possible actions, empowerment

gives us a heuristic which to try first).

However, up to now we were only able to examine empowerment for toy problems with discrete

state spaces.Let's see how we an sale-up to ontinuous state spaes ...GSO Workshop: Empowerment for Continuous Agent-Environment Systems (9/9/11) – p.13/31



How can we calculate empowerment in Rd?
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Empowerment (continuous case)

Objective: In the general case we would have to compute

C(x) = sup
p(~un

t )

∫

X

∫

Un
p(~un

t )p(xt+n|xt, ~u
n
t ) log

{

p(xt+n|xt, ~u
n
t )

p(xt+n|xt)

}

dxt+n d~un
t

where

xt state, a D-dimensional vector (xt ∈ X ⊂ RD)

ut control, a NA-dimensional vector (ut ∈ U ⊂ RNA )

~un
t n-step control, a Nn := (NA)n-dimensional vector (~un

t ∈ Un ⊂ RNn )

p(xt+n|xt, ~u
n
t ) n-step transition probabilities

Big problem: in practice intractable (and no closed form solution possible):

How to integrate over the D-dimensional state space?

How to intergrate and maximize over the Nn-dimensional n-step action space?

And what’s with p(xt+n|xt, ~u
n
t )? How do we get the n-step transitions in first place?
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Approximating empowerment I

1. Discretize n-step controls to a [small] number of symbolic actions ~aν , ν = 1, . . . , Nn:

C(x) := max
p(~a)

Nn
∑

ν=1

p(~aν)

∫

X
p(x′|x,~aν) log

{

p(x′|x,~aν)
∑Nn

i=1 p(x
′|x,~ai)p(~ai)

}

dx′

where

p(x′|x,~aν) density modeling transitions from x to x′ under~aν (here

~aν translates into a n-step control vector).

2. Use simple Monte-Carlo to evaluate remaining integral over state space:

∫

X
p(x′|x,~aν) log

{

p(x′|x,~aν)
∑Nn

i=1 p(x
′|x,~ai)p(~ai)

}

dx′ ≈
1

NMC

NMC
∑

j=1

log

[

p(x̃′
ν,j |x,~aν)

∑Nn
i=1 p(x̃

′
ν,j |x,~ai)p(~ai)

]

where

NMC number of samples

x̃
′
ν,j random sample drawn from p(x′|x,~aν)

GSO Workshop: Empowerment for Continuous Agent-Environment Systems (9/9/11) – p.16/31



Approximating empowerment II

3. Gaussian model: Make sure that p(x′|x,~aν) is of a form that allows us to easily draw samples

from, e.g. assume it’s a Gaussian:

p(x′|x,~aν) = N (x′|µν(x),Σν(x))

where

µν(x) D-dimensional mean

Σν(x) D ×D covariance matrix

Remarks:

Model-learning: Gaussian assumption of transitions probs is automatically fulfilled, if

model learned by, e.g., Gaussian process regression.

Now we plug all these things into our Blahut-Arimoto algorithm ...
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Algorithm: Blahut-Arimoto(Computational omplexity: k · N2
n · N)1. Input:(a) State x whose empowerment we wish to alulate.(b) For every ation ν = 1, . . . , Nn a state transition model p(x′|x, ~aν), eah fully de�ned by itsmean µν and ovariane Σν .2. Initialize:(a) p0(~aν) := 1/Nn for ν = 1, . . . , Nn.(b) Draw N samples {x̃′

ν,i}
N
i=1 eah, from p(x′|x, ~aν) = N (µν(x),Σν(x)) for ν = 1, . . . , Nn.() Evaluate p(x̃′

ν,i|x, ~aµ) for all ν = 1, . . . , Nn; µ = 1, . . . , Nn; i = 1, . . . , N .3. Iterate k = 1, 2, . . .(a) zk := 0, ck−1 := 0(b) For ν = 1, . . . , Nni.

dν,k−1 :=
1

N

N
∑

j=1

log





p(x̃′

ν,j |x, ~aν)
∑Nn

i=1
p(x̃′

ν,j
|x, ~ai)pk−1(~ai)



ii. ck−1 := ck−1 + pk−1(~aν) · dν,k−1iii. pk(~aν) := pk−1(~aν) · exp{dν,k−1}iv. zk := zk + pk(~aν)() For ν = 1, . . . , Nni. pk(~aν) := pk(~aν) · z−1

k4. Output:(a) Empowerment C(x) ≈ ck−1 (estimated).(b) Distribution p(~a) ≈ pk−1(~a) ahieving the maximum mutual information.
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Algorithm (sketch): learning a model using GPs

1. Collect sufficiently large number of 1-step transitions {xℓ, aℓ,x
′
ℓ}.

2. Learn 1-step system dynamics from multiple univariate GPs

.

.

.

.

.

.

.

.

.

x1

x2

xD

GPν1

GPν2

GPνD

x x
′

x′
1

x′
2

x′
D

N
(

µν1(x), σ2
ν1(x)

)

N
(

µν2(x), σ2
ν2(x)

)

N
(

µνD(x), σ2
νD(x)

)

N
(

µν(x),Σν(x)
)

3. Using that, recursively predict n steps ahead to obtain the desired n-step transition

probabilities (which again remains Gaussian when using the Laplace approximation,

see [Girard et al., NIPS 2003]).
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Experiments
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Experiment #1: inverted pendulum

Dynamics: (l = 1, m = 1, g = 9.81, µ = 0.05)

ϕ̈(t) =
−µϕ̇(t) +mgl sinϕ(t) + u(t)

ml2

with u ∈ {−5,−2.5, 0,+2.5,+5}.

Goal: 

Motor ϕ

ϕ̇

Goal: to give this system some purpose, we consider the pendulum swing-up task.

Experiment: compare

Empowerment-based control (i.e. choosing in every state the action that leads to

successor state with maximum empowerment) with

Optimal control (optimal wrt time, i.e. choosing in every state the action that has the

lowest cost-to-go for a quadratic cost function penalizing state transitions outside the

goal). Optimal ontrol problem is solved by approximate dynami programming on a high-resolutiongrid.
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Results: empowerment vs. optimal value function

Left: Optimal value funtion V ∗ for the pedulum domain, omputed with �tted value iteration (using the truestate transition funtion) over a 1000 × 1000 grid. Right: 3-step Empowerment for the pendulum domain,evaluated for every state on a 100 × 100 grid (using the learned model). Note how the funtions in therespetive plots measure two ompletely di�erent things, yet the overall shape of the result is the same.
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Results: performance

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

5

Time (sec)

Performance of optimal policy (FVI+KNN on 1000x1000 grid)

 

 

phi

phidot

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

Time (sec)

Performance of maximally empowered policy (3−step)

 

 

phi

phidot

Phase plot of ϕ and ϕ̇ when following the respetive greedy poliy from the last slide. Note that for ϕ, they-axis shows the height of the pendulum (+1 means upright, the goal state).
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Experiment #2: acrobot inverted balance

Goal:

upright balance

Motor

θ1

θ2

θ̇1

θ̇2

Dynamics: see [Spong 95]

Goal: to give this system some purpose, we consider the inverted balance task.

Experiment: (same as before)

Empowerment-based control (i.e. choosing in every state the action that leads to

successor state with maximum empowerment)

Notice: this is a fairly difficult problem and RL typically only attempts the easier “swing-up” task
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Experiment #2: results

0 5 10 15 20 25 30

−2

−1

0

1

2

t [sec]Note that we added a non-primitive �balane� ation to allow stabilizing. Bang-bang alone is not su�ient.
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Experiment #3: exploration + model learning

Up to this point we have used the true transitions dynamics in the empowerment

calculations.

Question: what happens if the dynamics is not known in advance?

Now: combine and interleave empowerment with online model learning, thus

using empowerment to drive the exploration of the environment
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Experiment #3: framework

Environment

Agent

get action 

for state 

observe state perform action

update model

of environment

queries

predict successor 

state for 1−step and

n−step action

Model Action selector:

Empowerment

xt+1

xt

xt at

(xt, at,xt+1)

Mt
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Experiment #3: empowerment vs. RMAX

Compare: RMAX with empowerment in the inverted pendulum domain:

0 50 100 150 200 250 300 350 400 450 500
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Experiment #3: which states were visited?

−pi −pi/2 0 pi/2 pi
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(a) RMAX
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(b) Empowerment
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Discussion

Results:

One

Two

Three

Open technical questions:

Is there a more efficient way to approximately compute empowerment?

How can we deal with a larger number of n-step actions? Right now we use all

possible sequences of length n, such that computational complexity scales with

|A|2n, where |A| is number of 1-step actions.

How can we deal with continuous actions?

Open conceptual questions:

How can we benefit from empowerment? Why should we care about computing it?
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Further reading
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