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Abstract

This paper develops generalization®afpowermertb continuous states. Empowerment s a re-
cently introduced information-theoretic quantity mote@ by hypotheses about the efficiency of the
sensorimotor loop in biological organisms, but also fromsiderations stemming from curiosity-
driven learning. Empowemerment measures, for agent-@mvient systems with stochastic transi-
tions, how much influence an agent has on its environmengridythat influence that can be sensed
by the agent sensors. It is an information-theoretic gédizatn of joint controllability (influence
on environment) and observability (measurement by sepebtbe environment by the agent, both
controllability and observability being usually definedciontrol theory as the dimensionality of the
control/observation spaces. Earlier work has shown thgtosrarment has various interesting and
relevant properties, e.g., it allows us to identify saligtates using only the dynamics, and it can act
as intrinsic reward without requiring an external rewarcbwdéver, in this previous work empow-
erment was limited to the case of small-scale and discratead®s and furthermore state transition
probabilities were assumed to be known. The goal of this p&p® extend empowerment to the
significantly more important and relevant case of contirsuactor-valued state spaces and initially
unknown state transition probabilities. The continuoasesspace is addressed by Monte-Carlo ap-
proximation; the unknown transitions are addressed by Iedming and prediction for which we
apply Gaussian processes regression with iterated fanegat a number of well-known continu-
ous control tasks we examine the dynamics induced by emposrdrand include an application to
exploration and online model-learning.

Keywords: Information theory, learning, dynamical systems, seltivabed behavior

Short title: Empowerment for Continuous Agent-Environment Systems



1 Introduction

One goal of Al research is to enable artificial agents (ewivéwal or physical ones) to act “intelligently”

in complex and difficult environments. A common view is thagiligent behavior can be “engineered”;
either by fully hand-coding all the necessary rules intoabent, or by relying on various optimization-
based techniques to automatically generate it. For exammgieodern control and dynamic programming
a human designer specifies a performance signal which @kplar implicitly encodes goals of the
agent. By behaving in a way that optimizes this quantity, dgent then does what the programmer
wants it to do. For many applications, this is a perfectlysogeble approach that can lead to impressive
results. However, it typically requires some prior knovgedind sometimes subtle design by the human
developer to achieve sensible or desirable results.

In this paper, we investigate an approach to use the “emladinof an agent (i.e., the dynamics of
its coupling to the environment) to generate preferred Wehawithout having to resort to specialized,
hand-designed solutions that vary from task to task. Owraret embraces the related ideas of self-
organization and self-regulation, where we aim for comjlelRavior to derive from simple and generic
internal rules. The philosophy is that seemingly interdloand goal-driven behavior emerges as the
by-product of the agent trying to satisfy universal rulethea than from optimizing externally defined
rewards. Examples of this kind of work includlemeokinesi¢Ay, Bertschinger, Der, Guttler, & Olbrich,
2008; Der, Steinmetz, & Pasemann, 1999; Der, 2000, 200ledaly, & Der, 2010), or the work in
(Still, 2009). The second idea is that of intrinsically nvated behavior and artificial curiosity (Schmid-
huber, 1991), where an agent engages in behavior becagsalierently “interesting” or “enjoyable”,
rather than as a step towards solving a specific (externafipetl) goal. Intrinsically motivated behavior
may not directly help in solving a goal, but there are indarat that it leads to exploration and allows
an agent to acquire a broad range of abilities which can, tmeeeed arises, be easily molded into
goal-directed behavior. Related relevant publicatiowtuitie, for example, (Singh, Barto, & Chentanez,
2005). Other related work can be found in (Lungarella, Pedgdulwinkle, & Sporns, 2005; Lungarella
& Sporns, 2005; Sporns & Lungarella, 2006; Lungarella & $892006) and (Prokopenko, Gerasimov,
& Tanev, 2006; Steels, 2004; Kaplan & Oudeyer, 2004).

Here we will consider the principle @mpowermentKlyubin, Polani, & Nehaniv, 2005a, 2008), an
information-theoretic quantity which is defined as the ctertapacity between an agent’s actions and
its sensory observations in subsequent time steps. Empmmeican be regarded as “universal utility”
which defines an a priori intrinsic reward or rather, a valtiky for the states in which an agent finds
itself in. Empowerment is fully specified by the dynamics lué agent-environment coupling (namely
the transition probabilities); a reward does not need topeeified. It was hypothesized in (Klyubin et
al., 2005a, 2008) that the greedy maximization of empowatmeuld direct an agent to “interesting”
states in a variety of scenarios:

e For one, empowerment can be considered a stochastic geagaoal of the concept ofmobility
(i.e., number of options available to an agent) which is agyéul heuristic in many deterministic
and discrete puzzles and games. Being in a state with higlowerment gives an agent a wide
choice of actions — conversely, if an agent in “default mogeises itself a priori in a high-
empowerment state, it is best equipped to quickly move frioenet into a variety of target states
in an emergency (for example, in the game of soccer, a gqatkesho is about to receive a
penalty kick and has no prior knowledge about the playervyieh#o expect naturally positions
himself in the middle of the goal). In this regard the quantift empowerment allows an agent
to automatically (without explicit external human inpudentify those states, even in complex
environments.

¢ In the present paper we show that, for a certain class ofruamiis control problems, empower-
ment provides a natural utility function which imbues itates with an a priori value, without an



explicit specification of a reward. Such problems are typichose where one tries to keep a
system “alive” indefinitely, i.e., in a certain goal regiar &is long a time as possible. On the other
hand, choosing the wrong actions or doing nothing woulckemdtiead to the “death” of the system
(naturally represented by zero empowerment). A naturah@kais pole-balancingt In this con-
text, we will find the smoothness of the system informs thallempowerment gradients around
the agent’s state of where the most “alive” states are. Ghgaxctions such that thiecal em-
powerment score is maximized would then lead the agent ntget states. In the pole-balancing
example this means that for a wide range of initial condgjdhe agent would be made to balance
the pendulum.

Previous studies with empowerment showed promise in veudomains but were essentially limited
to the case of small-scale and finite-state domains (theuitbics gridworld) and furthermore, state
transition probabilities were assumed to be known a pridie main contribution of this article is
to extend previous work to the significantly more importaase of (1) continuous vector-valued state
spaces and (2) initially unknown state transition proligds. The first property means that we will be
able to calculate empowerment values only approximatelyrenspecifically, here we will use Monte-
Carlo approximation to evaluate the integral underlying dmpowerment computation. The second
property considers the case where the state space is mvimexplored and implies that the agent
has to use some form of online model-learning to estimatesitian probabilities fronmstate-action-
successor stat&iplets it encounters while interacting with the envircemh Here, we will approach
model-learning using Gaussian process regression withtéie forecasting.

To summarize, the paper is structured into three parts kvl

1. Thefirst part, Section 2, gives a first, informal definitadrempowerment and illustrates its general
properties in a well-known finite-state domain.

2. The second part forms the main technical portion. SeQiatarts with a formal definition of
empowerment for the continuous case and gives an algorithitsfcomputation based on Monte-
Carlo approximation of the underlying high-dimensiondegrals. Section 4 describes model-
learning using Gaussian process regression (GPs) — hqveavee this itself is a rather complex
subject matter, for brevity here we cannot go beyond a heghHdescription.

3. The third part examines empowerment empirically in a nemd$ continuous control tasks well
known in the area of reinforcement learning. The experisheiiit demonstrate how empowerment
can form a natural utility measure, and how states with high@verment values coincide with the
natural (and intuitive) choice of a goal state in the regpeactomain. This way, if we incorporate
empowerment into the perception-action loop of an agegt, by greedily choosing actions that
lead to the highest empowered states, we can obtain a sdgrgival-driven behavior. As an
application of this, we study the problem of exploration amadel-learning: using empowerment
to guide which parts of the state-space to exlore next, tkeatagan quickly “discover the goal”
and thus more efficiently explore the environment — withothiaeistively sampling the state space.

2 lllustrative example

Although a more formal definition of empowerment will follawthe next section, here we will start by
motivating it through a toy example. Informally, empowernmeomputes for any state of the environment

1Empowerment in the pole-balancing example was first inga&i in (Klyubin et al., 2008) with a discretized state spac
anda priori known state transition probabilities. Here we will strongktend this example to the continuous case and online
learning. State transition probabilities are initiallytk@own. Instead, the agent has to learn the transition ppitities while
interacting with the environment.



the logarithm of theeffectivenumber of successor states the agent can induce by its @ctibhus
empowerment essentially measures to what extent an agemifltaence the environment by its actions:
it is zero if, regardless what the agent does, the outconlebwithe same. And it is maximal if every
action will have adistinc® outcome. Note that empowerment is specifically designedidw dor more
general stochastic environments, of which determiniséinditions are just a special case.

As an example, consider the taxi-domain (Dietterich, 1988yell-known prob-

R S| lem in reinforcement learning with finite state and actioacgpand stochastic tran-
sitions. The environment, shown on the left, consists a5 gridworld with four
<> special locations designated 'R’,’Y’,G’,/B’. Apart fronthe agent (“the taxi”), there
is a passenger who wants to get from one of the four locatmamother (selected
Y B at random). The state of the system is the coordinate of the agent, the loca-

tion of the passenger (one of 'R’,'Y’G’,/B’,'in-the-cady and its destination (one of

'R’Y’)G’/B"). Overall there are 500 = 5 x 5 x 5 x 4 distinct states. Usually in RL, where the interest
is on abstraction and hierarchical learning, a factoredessmtation of the state is used that explicitly
exploits the structure of the domain. For our purpose, widgatifying salient states is part of the
problem, we do not assume that the structure of the domainask and will use a flat representation
instead. The agent has six possible elementary actiondirshdour ('N’,;S’,E’;’W’) move the agent
in the indicated direction (stochastically, there is a 20%nce for random movement). If the resulting
direction is blocked by a wall, no movement occurs. The agantalso issue a pick-up and drop-off
action, which require that the taxi is at the correct loqatmd (in the latter case) the passenger is in
the car. Issuing pick-up and drop-off when the conditioresrast met does not result in any changes. If
a passenger is successfully delivered, the environmemisit:r the agent is placed in the center and a
passenger with new start and destination is generated.

Using these state transition dynamics, we comput8-tep empowerment, i.e., teéectivenumber
of successor states reachable over an action horiz8rstefps (meaning we consider compound actions
of a sequence of three elementary actions) for every statieeofystem. Figure 1 shows some of the
results: the values are ordered such that every subplotssttmwempowerment values that correspond
to a specific slice of the state space. For example, the tbgubplot shows the empowerment value
of all z, y locations if the passenger is waiting at 'Y’ and its desiorais 'G’, which with our labeling
of the states corresponds to states 376-400. Inspectingdte two things become apparent: for one,
in general, locations in the center have high empowermestaflise the agent has freedom to move
wherever it wants); locations in the corners have low empoweat (because the agent has only limited
choices of what it can do). More interesting is the empowetrwalue at the designated locations: if
a passenger is waiting at a certain location, its empowetnaenl that of its neighborg steps away,
increases. Similarly, if a passenger is in the car, the erepment of the destination, and that of its
neighbors2 steps away, increases. The reason is that in both situatienagent now has additional,
previously unavailable, ways of affecting the environm@iot (c) and (d) have a higher relative gain
in empowerment, because they result in the end of an episddeh teleports the agent to the center).
Thus these states stand out as being “interesting” undehndbastic of empowerment. Incidentally,
these are also exactly the subgoal states if the agent’'smaskto transport the passenger from source
to destination. Note that here we did not have to specifyreataeward or goals, as empowerment is
intrinsically computed from the transition dynamics alone

Empowerment essentially “discovers” states where additidegrees of freedom are available, and
creates a basin of attraction around them, indicating rdafemtures of the environment of interest to
the agent. It is not difficult to imagine an agent that uses @wgpment as a guiding principle for
exploration; e.g., by choosing in each state greedily thiemthat leads to the successor state with the
highest empowerment. We expect that such an agent woulet sethe state space in a far more sensible

2Meaning that for discrete state spaces, the sets of succeases are disjoint for differerent actions; for continsstate
spaces, the domains of the underlying pdfs are non-overigpp



P=Y, Dest=G, (#376 - #400) P=R, Dest=G, (#401 - #425) P=Car, Dest=G, (#476 - #500) P=Car, Dest=B, (#351 - #375)

R G G R R G
I B Y B Y B Y ;
(a) P waiting at 'Y’ (b) P waiting at 'R’ (c) Pincar, goingto’G’ (d) P in car, going to 'B’

Figure 1: Plottingempowermenfor a subset of states (here locations) for the taxi domaar.ckrity,
every plot shows the mean-subtracted empowerment (3-stepfertain slice of the state space, where
white corresponds to low empowerment (1.55 nats), and daolesponds to high empowerment (2.75
nats).

way than blind random exploration, as following the trailmfreasing empowerment would quickly lead
to the discovery of the salient states in the environmenthdéremainder of the paper, we will develop
methods for carrying over this idea into the continuum anualestrate how empowerment supersedes
typical hand-designed rewards in a humber of establishedhoeark domains.

3 Computation of empowerment

This section defines empowerment formally and gives an idhgoifor its computation.

3.1 General definition of empowerment

Empowerment (Klyubin et al., 2005a) is defined for stocleadyinamic systems where transitions arise
as the result of making a decision, e.g. such as an agen&dtiteg with an environment. Here we
will assume a vector-valued state spatec R and (for simplicity) a discrete action spage =
{1,...,N4}. The transition function is given in terms of a den3ip(x;1|x;, a;) which denotes the
probability of going from state; to x;.; when making decisiom,. While we assume the system is
fully defined in terms of thesé-step interactions, we will also be interested in more ganerstep
interactions. Thus, forn > 1, we consider the sequen@g = (ay, . .., at+n—1) Of n Single-step actions
and the induced probability densityx;, |x;, @}') of making the corresponding-step transition.

For notational convenience we can assume that, withoublogsnerality,1-step andh-step actions
are equivalent: let the set of possiblestep actions be formed through exhaustive enumeratioti of a
possible combinations df-step actions. V4 is the number of possiblé-step actions in every state,
the number of.-step actions is theiV,, := (NN4)". With this approach, we can consider the system as
evolving at the time-scale of-step actions, so that-step actions can be regardedlastep actions at a
higher level of decision making. This abstraction allowdas$reatl-step andi-step actions on equal
footing, which we will use to simplify the notation and drogferences to the time index. Instead of
writing p(x¢+n|x¢, @) we will now just writep(x’|x, @) to denote the transition from to x’ undera,
irrespective of whethet is ann-step action ofl-step action. Furthermore we will use the symbdb
loop over actiong.

Let X’ denote the random variable associated withivenx. Assume that the choice of a particular
actiona is also random and modeled by random variadle The empowerment’(x) of a statex

3Note that we have to consider stochastic transitions inghémuum. Otherwise if, for every action, the resultingsegsor
states are distinct, empowerment always attains the mawiwaue. In practice this will usually be the case when sitinga
continuous control tasks with deterministic dynamics. His ttase we artificially add some zero mean Gaussian noise wit
small variance (see Section 5.2). This can be interpretedaateling limited action or sensoric resolution, dependinghe
take. Itis also a natural assumption for a robot realizechndare.



p(x' =?x =7.a= (AA) p(x' =?|x =?,a = (AD))
(x| #1] #2 [ #3] [xix [ #1] #2] #3 ]

#1 8l1|.19| 0 #1 0| .72 .28
#2 0 1 0 #2 0 0 1
#3 0 0 1 #3 0 0 1
p(x =?x=t,a=4)  p(x'=2x=%a=D)  p(x =x=?,a=(DA)) p(x =?]x=?,a=(DD))
X AR B [ AR [B] [ A28 [x [#A]#]B]
#1 9]|.1]0 #1 0| .8|.2 #1 0| .8|.2 #1 0|01
#2 0|10 #2 0|0 |1 #2 0|0 |1 #2 0|0 |1
#3 0|01 #3 0|01 #3 0|01 #3 0|01
1-step transitions (2 actions) 2-step transitions (4 actions)

Figure 2: Transition probabilities for a concrete numdr@ample (see text)

(more precisely, the-step empowerment) is then defined as the Shannon chanragityausing the
differential entropy) between, the choice of an action sequence, argthe resulting successor state:
C(x) := m(z%( I(X'; Al x)
pla
= m(z%( {HX'|x) - HX'|A,x)}. 1)

pla
The maximization of the mutual information is with respexatl possible distributions oved, which in
our case means vectors of length of probabilities. The entropy and conditional entropy axeg by

H@'p) =~ [ pdolog plxx)ax 2)

X

H(X/|A7X) = Zp au X|~A—am )

N7L

_ —Zp a,,/ '[x, @) - log p(x'|x, &, )dx. @3)

Strictly speaking, the entropies in Egs. (2) and (3) aresdiffitial entropies (which could be negative)
and the probabilities are to be read as probability dessittdowever, as we always end up using the
mutual information, i.e. the difference between the eng®pwe end up with well-defined non-negative
information values which are always finite due to the limitedolution/noise assumed above. Using
p(x'|x) = SN p(xX|x, @)p(d@;) in Egs. (2) and (3), Eq. (1) can thus be written as

= ma % / p(x'|x,dy) /
= x p(a, x'|x,d,) - log SN SANER dx 4)

i—1 P(X'[x, di)

Hence, given the density(x’|x, @, ) for makingn-step transitionsempowermenis a functionC' :
X — RZY that maps an arbitrary stateto its empowerment’(x).
3.2 A concrete numerical example

Before we proceed, let us make the previous definition manerete by looking at a numerical example.
To simplify the exposition, the example will be discreteu@hintegration over the domain is replaced



by summation). We consider an agent in an environment witketistates, labeled #1,#2,#3, and two
possible actions, denotedl or D. The dynamics of the environment is fully described by thstep
transitions shown in Figure 2(left). The right side of theufiggshows the correspondiBestep transitions
which are derived from thé-step transitions; for example, the entriix’ = #1|x = #1,a = (AA)) is
obtained by

#3
p(x' = #1l|x = #1,a = (AA)) = Z p(xX' =#lx=i,a=A) -px' =ilx =1,a = A)
i=#1
= (9x.9+(1x0)+(0x0)=.81.
Let us now assume we want to calculate #agtep empowerment valué(#1) for statex = #1.

First, consider the-step mutual information](X”’; A|x = #1), for statex = #1. According to Eq. (1),
we have

#3
. . B ‘ bl B px-z\x-#la—AA)
G AR = #1) = HAD): 30 6 =il = 1,0 44) 1og{ AN }

#3

+ p(AD)'ZZ;l p(x' =ilx =#1l,a = AD log{px —jx__ﬂfl_c;; AD) }
- p(x' =ilx = #1,a = DA)

+ MDM-E%(X_HX—#la—DAkg{ o = T = 1) }
S p(x' =i|lx = #1,a=DD)

+ MDM-E%(X_NX—#la—DDI%{ o = T = 1) }

The denominator in the logarithm is calculated for ama:

p(x =ilx =#1) = px =ilx=#1,a=AA) p(AA)

(
+ p(x' =ilx=#1,a=AD) - p(AD)
+ p(x' =ilx =#1,a=DA)-p(DA)
+ p(x' =ilx=#1,a=DD)-p(DD)

As we can see, the resulting value ftY’; A|x = #1) will only depend on the individual prob-
abilities of the actionsp(AA),p(AD),p(DA),p(DD), but not on the transition probabilities as these
are fixed for a given environment. One natural choice for tt®a probabilities could be the uniform
distribution. However, for empowerment we try to find an gssient of action probabilities such that
the resultingl (X”’; A) value is maximimized among all possible assignments (eorigthgn for this will
be given in the next section). Below we have calculated thposverment values Ml (taking uniform
distribution over actions) and Em (taking the maximizingtdbution over actions) in our example for
various time horizons, i.el-step,2-step, etc. Note that, while empowerment values are |dgard, for
the purpose of illustration the results are given in termsf( I (X”’; A)):

1-step 2-step 3-step 4-step 5-step
State Ml Em | MI Em | MI Em | Ml Em | MI Em
x=+#111.70 1.71} 193 2.17| 181 210|158 2.05f 1.38 2.02
X = #2 2 2 |17 2 145 2 126 2 |114 2
X = #3 1 1 1 1 1 1 1 1 1 1




The first column,1-step, illustrates the full range of possible empowermeahies. Empowerment
in state #3 is zero (heré,= exp(0)), because all actions in #3 have the same outcome. Empowerme
in state #2 is maximal (hei& corresponding to the two possihlestep actions), because each action in
#2 has a different outcome. In state #1 the set of successessiverlap, thus the empowerment value
is in between the two extremes.

As the time horizon increases, we can make the followingmBsens. One is that the empowerment
value of #3 always stays at zero, because no matter what ére dges, the outcome will be the same
(thus absorbing states are “dead” states). Two, the M@l goes down, whereas its Em value stays
constant (this in fact is an important observation). Theaeds that, as the time horizon increases, so
does the number of possible-6tep) actions, e.g32 = 2° for 5 steps. However, a large number of these
actions will bring the agent into #3 from which it cannot geeaTherefore, if all actions contribute in
equal parts to the result (which they do in MI, where we assameiform distribution), those that lead
to zero empowerment will dominate and thus also the endtredlube close to zero. On the other hand,
the maximization in Em will suppress the effect of indistilghable actions (assigning zero probability
to actions having the same outcome and high probabilitiestions having distinct outcomes) and thus
ensure that the two distinct choices in #2 are always cdyratentified.

3.3 Empowerment or mutual information?

Let us summarize. Empowerment measures to what extent aumh e@e influence the environment by
its actions. It specifically works for stochastic system$i€ve state transitions are given in terms of
probabilities), but can also apply to deterministic systdmhich are just a special case of stochastic
systems). Empowerment is zero if, regardless what the alymd, the outcome will be the same (i.e.,
the outcome distribution for a given successor staie independent of the action). And it is maximal if
every action will have a distinct outcome (i.e., the probgbihat a single outcome is produced by two
different actions is zero).

Let us now briefly discuss why the related information-tle¢icrquantity mutual information, which
would largely have the same properties and would be eas®rtpute, is not as powerful as channel
capacity at identifying interesting states of the envirenin

®© 0 First, let us comment that to use the idea of modeling theentie of the action

. channel, one has to define some kind of distribution on therat As we are consid-
q» ' ering only an agent’s embodiment, but have not defined a@ietrthere is no default
" ~action distribution that one could use. Therefore, one hidsstinguish particular action

O aoo distributions for which the action channel is to be measuiidgge main natural choices
are the choice of an action distribution that is equallyribsted, not singling out any particular action,
and that one which maximizegx”; A), i.e. the one that achieves channel capacity. As we have seen
in the last section, the equidistribution of actions cahtfairesolve important properties of the action
channel which the optimal distribution does detect. Thetmbsious situation is one where one has a
large number of equivalent actions. If mutual informatiesuames a uniform distribution over actions, it
will be mislead by large numbers of actions that lead to tineesautcome. As another example, consider
the following situation. Assume an agent Hag different actions available and is in a state where every
action has the same effect (empowerment and mutual inf@mabth zero). Now let us assume the
agent enters a new state, as shown on the left side, wheoms¢iito agg Still have the same outcome
(state 1), but one actiom o, leads to a different state (state 2). In this case, use ofahiritormation
with equidistributed would still be close to zers (0.05 nats), indicating that all actions roughly have
the same effect, whereas empowerment correctly identifiesiistinct choices# 0.69 = log(2) nats)
since it will redistribute the actions in a way that highliglthe additional degrees of freedom attained

by a100.



3.4 Computing empowerment when a model is available

Next we describe the Blahut-Arimoto algorithm for compgtthe channel capacity given in Eq. (4). For
now we assume that the{step) transition probabilities(x’|x, @, ) are known for all actiong,,v =
1,...,Ny,.

3.4.1 Blahut-Arimoto algorithm

The Blahut-Arimoto algorithm (Blahut, 1972) is an EM-likégarithm that iterates over distributions
pr(@), wherek denotes thé-th iteration step, to produce the distributipfia@) that achieves the maxi-
mum in Eq. (4). Since we consider a discrete action domai(w) is represented by a vectpg(d) =
(Pks - - - ,pé\’"). To avoid cluttered notation, we define

[ —
dyye = / p(X'|x, @) log Np(x |X’a”z | dx’. 5)
J SN p(x'[x. @)}

We start with an initial distributiorpo(@) which is chosen using the uniform distribution, that is
py = 1/N, forv = 1,...,N,. At each iterationk > 1, the probability distributiorp,(a) is then
obtained fronp_1(@) as

=2 phy exp(dygo1) v =1,...,N, (6)
wherez; is a normalization ensuring that the new probabilities soiore, i.e.

Nnp
2=y i1 exp(dyg-1). (7)

v=1

Oncepy(d) = (p}f, . ,pfj”) is computed for iteratiotk, we can use it to obtain an estimaig(x) for
the empowermen®'(x) given in Eq. (4) via

N7L

Cr(x) =D pf - dug. 8
v=1

The algorithm in Egs. (6)-(8) can either be carried out forxedinumber of iterations, or it can be
stopped once the chan€y(x) — C;_1(x)| < e drops below a chosen threshold and heigéx) is
reasonably close t6'(x).

One problem still remains, which is the evaluation of thehhilimensional integral over the state
space ind,, .

3.4.2 Monte-Carlo integration

Taking a closer look at Eq. (5), we note that;, can also be written as expectation with regard to the
densityp(x'|x, @, ). Assuming that each densip(x’|x, @, ) is of a simple form (e.g. parametric, like a
Gaussian or a mixture of Gaussians) from which we can easaly d/yc samples{icj/,i}, we have

NMC

(9)

1 x |x,d
)

N log & 4
Nve = [Zinlp(xgj,j|x> a;)pj,



10

3.4.3 Example: Gaussian model

As an example consider the case whe(e’|x,d, ) is a multivariate Gaussian (or at least reasonably

well approximated by it) with known mean vectay, = (Nu,h e o, D)T and covariance matrix, =
diag(oZ, ..., 0L ), which in short will be written as
X |x, @y ~ N(p,,, 2,). (10)

Note that here both the mean and covariance will depend oadfiend, and the state. Samplesk],
from Eqg. (10) are easily generated via standard algorithms.

In summary, to compute the empowerméfiix) given statex € X’ and transition model(x’|x, @, ),
we proceed as follows.

1. Input:

(a) Statex whose empowerment we wish to calculate.
(b) For every actiow = 1,..., N, a state transition modelx’|x, @, ), each fully defined by its
meanu, and covariance:,,.
2. Initialize:

(@) po(a,) :=1/N,forv=1,... N,.
(b) Draw Nuc samplest;, ; each, fromp(x'[x, @) = N (p,, E,) forv =1,..., N,,.
(c) Evaluatep(x),;[x,a,) forallv =1,... Ny p=1,...,Ny;i=1,..., Nyc.
3. lterate k = 1,2,... (until |c; — cx—1| < t ol or maximum number of iterations reached)
@) z:=0,¢c,1:=0
(b) Forv =1,..., N,
Lodyj—1:=
P, ;% d)

og — = =
Nwc j=1 25\7:"1 p(X;jJ»‘x, ai)pe—1(d;)

i cp—1 = cp—1 + pr—1(dy) - dy—1
. pk(c_il/) = pk—l(au) : exp{du,k—l}
V. 2z =z + pr(dy)
(c) Forv=1,...,N,
I pk(au) = pk(au) ’ zk_l
4. Output:

(a) Empowermen€’(x) = c,_ (estimated).
(b) Distributionp(@) ~ pi_1(a) achieving the maximum mutual information.

At the end we obtain the estimated empowermépt (x) from c¢;_; with associated distribution
pr—1(@) = (pr—1(@1),...,pe—1(@n,)). The computational cost of this algorithm @(N? - Nuc)
operations per iteration; the memory requiremen©isV2 - Nyc). Thus the overall computational
complexity scales with the square of the numbersttep) actionsy,,.
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4 Model learning

In this section we further reduce our assumptions, and densin environment for which neitherstep

nor 1-step transition probabilities are readily availalitestead, we assume that we could only observe a
number of 1-step transitions which are given as tripletsaies performed action, and resulting successor
state. Using regression on these samples, we first infertepltmnsition model. Proceeding from this
1-step model we can then obtain a more generstep transition model through iteratively predicting
steps ahead in time.

In general, there would be many ways the task of regressialu d®e accomplished. Here we will
use Gaussian process regression (GP) (Rasmussen & Wjllg0@6). GPs are simple and mathemati-
cally elegant, yet very powerful tools that offer some cdesable advantages. One is that GPs directly
produce a predictive distribution over the target valuesictvis exactly what is needed in Eq. (4) for
the computation of empowerment. Furthermore, the predictistribution is Gaussian and hence easy
to draw samples from during the Monte-Carlo approximatieee(Section 3.4.3). Also, GPs are non-
parametric, meaning that a GP model is not restricted totaineriass of functions (such as polynomials),
but instead encompassalt functions sharing the same degree of smoothness. In pFasts are also
very easy to use: the solution can be found analytically anclased form. The Bayesian framework
allows us to nicely address the problem of hyperparametectsan in a principled way, which makes
the process of using GPs virtually fully automated, i.e.haitt having to adjust a single parameter by
hand.

4.1 Learning 1-step system dynamics

To learn the state transition probabilitipx’|x,a = v), i.e. predict the successor statewhen per-
forming 1-step actiorn = v in statex, we combine multiple univariate GPs. Each individga?, ;,
wherej = 1...D andv = 1... N4, predicts thej-th coordinate of successor stateunder action
a = v. Each individualgP,; is trained independently on the subset of the transitionsrevaction
was chosen: the desired target outputs we regress on isdhgeln the state variables (i.e. we predict
the differencex;, 1 — x;). Since both state variables and actions are treated $elyavee need a total of
D - N, independent GPs.

A detailed description of how univariate regression withsG#rk* can be found in (Rasmussen
& Williams, 2006). TrainingGP,; gives us a distributiop(z)|x,a = v) = N(ul,j(x),agj(x)) for
the j-th variable of the successor state, where the exact eqsativ the meanu, ;(x) and variance
agj(x) can be found in (Rasmussen & Williams, 2006). Note that ey, will have its own set
of hyperparameteré, ;, each independently obtained from the associated traidatg via Bayesian
hyperparameter selection. Combining the predictive nwtil all D variables, we obtain the desired
distribution

p(X|x,a = v) = N(p,(x), Zy(x)) (11)
for making a 1-step transition frosunder actioru = v, wherep,,(x) = (p1(x), ... ,MVD(x))T, and
¥, (x) = diag(02,(x),...,02,(x)). See Figure 3 for an illustration of this situation.

“There is also the problem of implementing Géfficientlywhen dealing with a possible large number of data points.
For brevity we will only sketch our particular implementatj see (Quifionero-Candela, Rasmussen, & Williams, 2017)
more detailed information. Our GP implementation is basethe subset of regresso@pproximation. The elements of the
subset are chosen by a stepwise greedy procedure aimediaiznmg the error incurred from using a low rank approxirati
(incomplete Cholesky decomposition). Optimization of likelihood is done on random subsets of the data of fixed Siee.
avoid a degenerate predictive variance, fihgected procesapproximation was used.
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Input: statex = (z1,... ,a:D)T, actiona = v

Output: p(x'|x,a =v) =N (p,(x), X, (x))

Figure 3: Learning state transition probabilitigx’|x,a = v) by combining multiple univariate GPs.
Each individualGP,; predicts thej-th coordinate of successor staté under actiona = v. Each
individual GP,; is trained independently on the corresponding subset ofréinging data and has its
own set of hyperparametef ; (obtained from maximizing the marginal likelihood).

4.2 From 1-step ton-step models

To turn the 1-step model into amstep modeb(x;1,|x;, d@}), wherea} = (a;, 41, ..., Gr4n—1) 1S
a sequence at 1-step actions, we have to integrate over all intermedigiilolitions. Unfortunately,
solving this integral analytically in closed form is not pidde. One simple approach is again to use sam-
pling methods, like the Monte-Carlo approximation, to nuicedly determine the integral. Alternatively,
one could consider a more sophisticated approximate sallidsed on the Laplace approximation, as
was proposed in (Girard, Rasmussen, Quifionero-Canddiéiii®ay-Smith, 2003).

Since, in our experiments, we will only consider very shagdiction horizons (typically: = 3 or
n = 5), we will use the more naive approach of predicting iteedyiv, steps ahead using the learned
1-step model. Given state, we apply Eq. (11) to produce(x;+1|x¢,a:). Instead of considering the
full distribution, we just take its meafy;,; := p,, (x;) as point estimate and use that to predigcts,
applying again the 1-step model Eq. (11) to prodpte;o|X:+1,a:+1). Repeating this procedure un-
til the end of the prediction horizon is reached, we obtateraf stepsp(x;+n|Xi+n—1,@r+n—1) @S an
approximation to the originally soughtstep transition model(x;,|x;,d;). In general, this approx-
imation will tend to underestimate the variance of the mtai and produce a slightly different mean,
since every time we produce an estimatetferi, we ignore the uncertainty in the preceding prediction
fort +4 — 1. In our case, however, the procedure will incur only a négléyror since the prediction
horizon we consider is very short. See (Girard et al., 2008jrfore details.

5 Experiments

We have indicated earlier that empowerment has shown irglyitappealing identification of salient
states in discrete scenarios and we are now ready to studylaemwf more intricate continuous scenar-
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ios. These scenarios are used as benchmark for typicaligaatgorithms (e.g., reinforcement learning
or optimal control). However, it should be noted that in thedr the learning algorithms need to be
instructed about which optimization criterion to use in kbarning process. Here, we will always use
empowerment maximization as the criterion, and demoresthait the resulting behaviors actually match
closely those where optimization of an external qualityecion is requested. The observation that these
behaviors match, is a subtle point and will be discussed irerdetail in the discussion (see Section 6).

As an important side effect, empowerment can also be used(lasugistic) exploration driver in
these scenarios: this is particularly interesting sincdike optimal control algorithms, empowerment
is fundamentally local (limited to the horizon defined by thetions) as opposed to optimal control
algorithms that, for an informed decision, need to have thaiizon extended to encompass information
about the desired target state(s) to a sufficiently acceretnt.

Thus, in the following section, we will demonstrate that

1. empowermentlone can lead to apparently intentional and goal-directed hiehaf an agent
based only on the embodiment of the agent with no externaneggtructure, and

2. how it can furthermore act as a heuristic to guide the &gerploration of the environment.

We consider two scenarios: onéthout model-learningand onewith model-learning The first scenario
will demonstrate that incorporating empowerment into thecpption-action loop of an agent produces
intuitively desirable behavior, by greedily choosing ans in each state that lead to the highest em-
powered states. Our primary intent here is to show that erapuoent itself is a relevant quantity to be
considered and for simplicity we assume that the transjiobabilities of the system are known. In the
second scenario, we will further reduce our assumptionscandider this no longer to be the case. The
agent starts out knowing nothing about the environmentiit.ise will then combine empowerment
with model-learning and exploration: while, as in the figisario, the agent chooses its actions based on
empowerment, the underlying computations are carried singwalearnedmodel for the state transition
probabilities. The model is continually updated (in bag)hfeom the transitions the agent experiences
and thus gets continually better at predicting the effdwsaictions will have, which in turn will produce
more accurate empowerment values. A comparison with commaatel-based reinforcement learning,
RMAX (Brafman & Tennenholtz, 2002), which operates in a amfashion but actively optimizes an
external performance criterion, concludes.

5.1 The domains

As testbeds for our experiments, we consider simulationh@three physical systems described be-
low. We reiterate that, in the literature, systems like ¢hase usually used in the context of control
and learning behavior where a goal (desired target statesyteérnally defined and, by optimizing a
thus determined performance criterion, the system is drigespecifically reach that goal. In contrast,
empowerment used here igganericheuristic (aimed at curiosity-driven learning) where algsanot
explicitly defined and which operates on innate charadiesi®of the system’s dynamic alone. It will
turn out that empowerment intrinsically drives the systetodge) to states which in fact are typically
externally chosen as goal states. However, with empowedrmemlo not enforce this goal through any
external reward but through a generic intrinsic quantigt,tfor each domain, is generated in exactly the
same way. Note that, in a wider sense, all the tasks belongetalass of control problems where the
goal is to choose actions such that the system stays “alit@aehieve this, the agent has to stay in a cer-
tain “stable” goal region. This is a class of problems for efhive believe empowerment is particularly
well-suited.

Inverted pendulum: The first system consists of a single pole attached at one eceadntotor, as
depicted in Figure 4. If force is applied, the pole will freedwing in thexy plane. More detailed
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dynamic equations of the system are given in the appendno fbrce is applied, the stable equilibrium
of the system is when the pole hangs vertically down. Letgtage be the initial condition. The goal is
to swing up and stabilize the pole in the inverted positioowidver, the motor does not provide enough
torque to do so directly in a single rotation. Instead, thedodum needs to be swung back and forth to
gather energy, before being pushed up and balanced. Thiesr@ somewhat difficult, nonlinear control
problem. The state space dsdimensional,¢ € [—, ] being the angle¢ € [~10,10] the angular
velocity. Since our empowerment model only deals with adinitmber ofl -step anch-step actions, the
control force is discretized to € {—5,—0.25,0,0,40.25,40.5}.

Riding a bicycle: The second domain we want to apply empowerment to is a moodvew one: we
consider the bicycle riding task described in (Lagoudaki®&r, 2003; Ernst, Geurts, & Wehenkel,
2005) and depicted in Figure 4. In this task, a bicycle-rglgtem (modeled as a simplified mechanical
system) moves at a constant speed on a horizontal surfaeebidycle is not self-stabilizing and has to
be actively stabilized to be prevented from falling. Thelg®#o keep the bicycle stable such that it con-
tinues to move forward indefinitely. A detailed descriptmiithe dynamics of the system is given in the
appendix. The problem ik-dimensional: state variables are the roll angle [—127/180, 127/180],

roll ratew € [—2m,27], angle of the handlebar € [-807/180,807/180], and the angular velocity
& € [—2m,2w]. The control space is inherentdsdimensional:u;, the horizontal displacement of the
bicycle-rider system from the vertical plane, angl turning the handlebar from the neutral position.
Since empowerment can only deal with a finite numbei -step andn-step actions, we considér
possible action vectorgu, ug) € {(—0.02,0), (0,0), (0.02,0), (0, —2), (0,2)}.

Acrobot:  The third domain is the acrobot proposed in (Spong, 1995¢. ddnobot can be imagined as
a gymnast swinging up above a high bar by bending at the higsleficted in Figure 4, the acrobot is a
two-link robot, which freely swings around the first joinhéthands grasping the bar) and can exert force
only at the second joint (the hips). Controlling the acroiscd very challenging problem in nonlinear
control; it is underactuated, meaning that the dimensignaf the state space is higher than that of the
actuators, or, informally, that it has more degrees of foeedhan actuators (in robotics, many systems
are underactuated, including manipulator arms on spatea@n-rigid body systems, and balancing
systems such as dynamically stable legged robots). Uswadlftasks are considered for the acrobot in
the literature: the first and easier one is to swing the tip {det) of the lower link over the bar at the
height of the upper link. The second task is significantly endifficult: as in the first task, the goal is
to swing up the lower link; however, this time the acrobot taeeach the inverted handstand position
with close to zero velocity, and then to actively balance sdoaremain in this highly unstable state
for as long as possible. A detailed description of the dycarof the system is given in the appendix.
The initial state of the acrobot is the stable equilibriunthaboth links hanging vertically down. The
state space ig-dimensional:0, € [, 7|, §; € [—4m,47], 0y € [—m, 7], O, € [-97,9x]. Since, as
before, empowerment can deal with only a finite humbet-sfep andn-step actions, the continuous
control was discretized ta € {—1,+1}. However, while these two actions alone are sufficient to
solve the swing-up task, they are not sufficient for the itaekibalance, since for this case, control
values between the two extremed and +1 must be chosen. Therefore, we include a third, non-
primitive 'balance’ action, which chooses control valuesiged from an LQR controller obtained from
linearizing the system dynamics about the handstand pogi§ee appendix). Note that this 'balance’
action produces meaningful (i.e., actually useful) owparly very close to the handstand state which
means that it cannot be naively used to direct the acroboslembe from an arbitrary point of the state
space.
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Figure 4. From left to right: the inverted pendulum task, tliing a bicycle task, and the acrobot
handstand task.

5.2 First scenario: model-based

In our first series of experiments, the agent chooses acgjoeedily to maximize empowerment. For
all domains, we assume that the state transition prohabilgre known. The control loop becomes the
following: every time step the agent observes the current stgteUsing the state transition function, we
determine thd-step successor states under each of the posisistiep actions. For each of these states,
we compute the empowerment value as described in Sectidy 8singNyc = 200, TOL = 10~° and
MAX I TER = 150, and adding Gaussian white noise with (state-independergriance to “smear out”
the otherwise deterministic state transitions. The adesr £xecutes the action corresponding to the
successor state with the highest empowerment value (empmmégreedy action selection), advancing
the time and producing the next statg ;.

Note that in practice, for empowerment values to be meauningfe usually require an increased
look-ahead horizon into the future than just a single sitmastep; thus, instead dfstep empower-
ment, we usually need to examinestep empowerment for values ofgreater than one. Here we form
the n-step actions through exhaustive enumeration; thugfis the number of possiblé-actions the
agent has available, the numh€gy, of n-step actions we have to consider during the computatiomef e
powerment isV,, = (N4)". For each experiment performed, we informally determiredrhinimum
time horizon of lookahead necessary to achieve the dedifect.eEspecially for small simulation steps
(such asA = 0.01), the numberm of 1-step actions needed to fill a given time horizon could grda-re
tively large, which in turn would then lead to a large numbkenetep actions, rendering computational
costs prohibitive. To reduce the numberektep actions while still maintaining the same lookahead,
eachl-step action in an action sequence was held constant fortanded amount of time, a multiple of
the simulation steg\. An alternative would be to intelligently compress and grtime lookahead tree,
as suggested in (Anthony, Polani, & Nehaniv, 2009) for disescenarios, which there allows to extend
the horizon by more than an order of magnitude at similar dexiy. Here, however, we are going to
demonstrate that even the locally informed empowermett s¥ibrt lookahead horizons is sufficient to
treat aforementioned scenarios.

Results for inverted pendulum: Figure 5 (top row) shows a phase plot of the behavior thatlteesu
from starting in the initial condition (pole hanging vesily down) and following3-step empowerment
(and thusN,, = 5 x 5 x 5 n-step actions) for a period of 20 seconds with state tramsitioise> =
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0.01T5o (Wherel,, ,, denotes the x n identity matrix). The plot demonstrates that: (1) empowamtn
alone makes the agent drive up the pendulum and succesbhlliyice it indefinitely; (2) the agent
accomplishes the goal without being explicitly “told” to do; and (3) the trajectory shows that this
happens in a straight and direct way, without wasting tinmel @nsistently so). Note that empowerment
only “illuminates” the local potential future of the curitestate and has no access to the global value of
the trajectory as opposed to optimal control methods whepdigitly global information about the goal
states must be propagated back throughout the system noodleéfcontroller to take the right decision.

To compare these results with a different angle, we refaateulhe problem as a minimum-time
optimal control task: as opposed to before, we now assunighbaagent has an explicit, externally
specified goal (swinging up the pendulum as fast as possitilesaccessfully balancing it afterwards).
A step-wise cost function which implements this goal is gibg

—lIxel® i x| < 0.1
= 12
e ) {—1 otherwise (12)

Since the dimensionality of the state space is low, we carmdysamic programming (value iteration
with grid-based interpolation) to directly determine th@imal behavioral policy, where optimal means
choosing actions such that the accumulated costs from By .af& minimized among all possible be-
haviors (Sutton & Barto, 1998). Comparing the results inuFég5 (bottom row) from using dynamic
programming as opposed to using the empowerment heunigtigure 5 (top row) shows the remarkable
result that with empowerment we achieve nearly the samevimrhas with optimal control. The result

is remarkable because, unlike the optimal value functidmnicivthrough the underlying cost function is
tied to a particular goal, empowerment is a generic hearitit operates on the innate characteristics of
the dynamics of the system alone.

5 5 5
- ; SR
5 10 15 20

t[s] ts] t[s]

@[rad]
o
¢ [rad]
u [Nm]

]

) 5 10 15 2 ) 5 10 15 2 o 5 10 15 20
ts] ts] ts]

@[rad]
o

¢ [rad]
o

u [Nm]
o
—
[

Figure 5: Inverted pendulum: phase plotdaf and controlu when following the greedy policy with
respect to: empowerment (top row); dynamic programmingt@bo row).

Results for bicycle: For the more complex bicycle domain, the goal is to keep thgcke going for-
ward by preventing it from falling over to one side or the athehen the angle from the vertical axis,
w, deviates too much from zero (that is, is greater tEl@gn) the bicycle is considered to have fallen.
Whenever this happens, the bicycle stops moving forwarm nammatter what action the agent takes, the
successor state will be the same for all future time stepsoflding state), and consequently empower-
ment will be zero.

Here we examine the behavior of empowerment for differatialrconditions of the bicycle: we ran

: ; H ; H —10r —8=w +8t +107w ot H
cilgfot;:-rrer_g;;lals b{Q\éirlerr;(_O:]ﬂthe angl@ in thg m_tervalTo_, T80+ 180 180 @ndw in the interval
180 Tg0 - 180 180 s @ andd were initially zero in all cases. We empldystep empowerment

(and thusN,, = 5 x 5 x 5 possiblen-step actions) where eadhstep action in an action sequence is
held constant fod simulation steps, and state transition nase= 0.00114.4. Figure 6 (right) shows
that empowerment is able to keep the bicycle stable for a veidge of initial conditions; dots indicate
that the bicycle successfully kept going forward forseconds, stars indicate that it did not. Note that
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in many cases of failure, it would actually have been phyisiéanpossible to prevent the bicylce from
falling; for example, when the bicycle already is strongdaning to the left and further has velocity
pointing to the left. Also note that the column correspogdia zero angle shows an outfemwhile
empowerment was able to balance the bicycleifor =27 it was not forw = £2X°. Figure 6 (left)
shows a phase plot when starting from the initial conditioa: 1%; as we can see, empowerment keeps
the bicycle stable and brings the system close to the g0irit 0, 0), from where it can be kept stable

indefinitely.
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Figure 6: Bicycle: (left side) phase plot of state variakles) (upper panel)q, & (middle panel), and
controlsuy, us (lower panel) when starting from sta( <50, 0, 0) and following the empowerment-
based policy; (right side) shows how empowerment is ablec¢oessfully balance the bicycle for a large
variety of initial conditions; the black vertical bars igdte failure states; that is, the value of angle

from which failure can no longer be avoided.

Results for acrobot: For the highly challenging acrobot we require a deeper Ibe&d: here we con-
sider 5-step empowerment (and thi§, = 3 x 3 x 3 x 3 x 3 possiblen-step actions), where each
1-step action in an action sequence is held constant fmulation steps, and state transition noise
3 = 0.011444. The phase plot in Figure 8 demonstrates that empowermentléads to a successful
swing-up behavior, approaches the unstable equilibriund,ia particular makes the agent actually bal-
ance in the inverted handstand position. Figure 7 illusgrditow these numbers translate into the real
physical system. Figure 8 (bottom right) shows the corredjpg empowerment, that is, it shows for
every time step the empowerment value of the state the agemt while empowerment does not in-
crease monotonically in every single time step, it increaseer the time and reaches the maximum in
the handstand position. The vertical bar in the figure ind&she point where the 'balance’ action was
chosen for the first time as the action with highest empowatnterom this point on, just choosing the
‘balance’ would have been sufficient; however, the phaseqgblthe control variable reveals that during
this phase, the balance action was not always the one withigfieest empowermefit.Note that the
‘balance’ action (see Eg. (16) in the appendix) producesegln the interval—1, +1] only for states

The outlier is a result of inaccuracy produced from MontekCapproximation. Repeating the experiment with a larger
number of samples showed that indeed the bicycle can bedealdrom both initial conditions. However, note that thesgal
conditions were already close to the boundary from wherarzathg becomes impossible, regardless of how many samges a
used.

This observation was not due to inaccuracies because oféMoatlo approximation. However, while empowerment does
not exactly produce the sequence of minimal-time optimatrads, its qualitative behavior is close.
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Figure 7: Empowerment alone makes the acrobot swing upoapprthe unstable equilibrium, and
balance in the inverted handstand position indefinitely.

very close to the handstand position and, because of daturaehaves like the two other actiomngd or
—1 otherwise.

5.3 Second scenario: model-learning and exploration

In the second experiment we will discuss a scenarion for @mpnent which extends its potential appli-
cability; here we are interested in model-learning andgusimpowerment to extrapolate “intelligently”
which part of the state space to explore next. In particular will consider the case afnline model
learning; i.e., learning the state transition probalkeiitirom the samples an agent experiences while inter-
acting with the environment (which is more challenging sintgeneral we cannot generate transitions
at arbitrary points in the state space and have to make dotletstates encountered during a specific
— and realistically achievable — run). The key idea here lvélto show that with empowerment we can
avoid sampling the state space exhaustively, and instealam the target behavior from only very few
system-agent interactions.

5.3.1 Overview of the learning architecture

An overview of the learning architecture is depicted in F&gf. The agent consists of two components.
One is the model learnet1,, which stores a history of all transitior3; = {x;, a;,x,}!_; seen up to
the current time and which implements multiple GPs to provitlstep prediction®(x;+1|x¢, a;, M)
(Section 4.1) anch-step prediction®(x;1, |x:, a;, M;) (Section 4.2). The second component is the
action selector. Given the current state of the environmeeffirst determine the successor states under
each of the possiblé-step actions using the mean of the predictions frleth For each successor state,
we then determine their empowerment value (Section 3.4&iB)gu.-step predictions from\ ;. Since

the predicted successor states depend on the accurady,afie adjust their empowerment scores by the
uncertainty of the associatddstep prediction. This uncertainty is taken to be the sunhefindividual
uncertainties of the state components in Eqg. (11). We emplust is calledoptimism in the face of
uncertainty the less certain the system is, the more we want it to perorraxploratory action. Here,
we linearly interpolate between the two extremes maximugedainty (where we assidog N,,, the
upper bound on empowerment) and minimum uncertainty (wheressign the actual empowerment
score). The concrete value of the maximum uncertaifity> 0, and minimum uncertaintyy > 0,
depend on the hyperparameters of the GPs implementingfor details see (Rasmussen & Williams,
2006). At the end, the agent executes the highest rankezhadibserves the outcome and updates the
model M; accordingly (for performance reasons only ev&ngteps). A summary of the control loop is
shown below:

1. Initialize:

(a) Generate initial transitiori8.
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Figure 8: Acrobot: phase plot when following the empowertdgased policy. The bottom right panel
shows the associated empowerment values. The verticahbasghe first time the 'balance’ action was
chosen and produced values between the extreme conttasid+-1.
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Figure 9: A framework for model-learning and empowermesdedal exploration.

(b) Learn initial modelM,.
2. Loop:t=1,2,...

(a) Observe current statg
(b) For eachl-step action =1,...,N,
i. Computel-step successor underusing M, (Section 4.1)

Pt [xe, ae = v, My) = N (g, (1), 2 (x¢))

ii. Computen-step empowermemt := c(u, (x;)) (Section 3.4.3) using-step predictions
provided by M, (Section 4.2).

iii. Adjust empowerment scores according to the scalar dargy tr 3, (x;) of the 1-step
prediction inx,, linearly interpolating betweelvg IV,, (max uncertainty) and; (min
uncertainty):

tr¥,(x) —
f—a (

wherea and s are the min and max uncertainty values of the predictiongsgde on the

hyperparameters o%1;)

(c) Find best actiom; := argmax,,_;_y, ¢/

& =+ log Ny, — ¢f)

(d) Executes,. Observex; ;. Store transitiorD; 1 = D, U {x¢, a;, X¢+1}-
(e) EveryK steps: update modelt; usingD;.

5.3.2 Results

For this experiment, we will only consider the inverted pandh domain for which it will be compar-
atively easy, because of low dimensionality, to computeréispective optimal behavior. The dynamics
of the domain is modified to obtain an episodic learning taskery 500 steps, the state of the system
is reset to the initial conditiotir, 0), and a new episode starts. The action selector computesnempo
erment using the same parameters as in the previous segitbnthe difference that novi-step and
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n-step successor states are predicted by the current motiel.mbdel-learner is updated (re-trained)
every K = 10 samples; for the GPs we employ the ARD kernel (Rasmussen &awi#, 2006) with
automatic selection of hyperparameters.

For comparison, we consider RMAX (Brafman & Tennenholt2)2Q a common model-based rein-
forcement learning algorithm, which also combines expiora model learning and control, and oper-
ates not unlike the learning framework we have describecerti@ 5.3.1. The main difference is that
RMAX is derived from dynamic programming and value iterat@nd finds agent behavior that opti-
mizes a given performance criterion. The performanceraiie as before, is the explicit cost function
Eqg. (12), which makes the agent want to reach the goal asdastssible. For RMAX we have to learn a
model both for the transitions of the environment and thé toxtion. While the former could be done
with GPs (same as with empowerment), the latter can not be OgrGPs. The reason is that the cost
function is flat in every part of the state space except forg small region about the goal. Since all the
initial samples the agent experiences will be from the flgiae, a GP would rapidly conclude that the
whole cost function is flat; since the uncertainty of the miguiédes exploration, the GP would predict a
—1 cost for all states with very high confidence, and thus thetageuld miss the goal for a long time
(creating a “needle-in-a-haystack” situation).

As it is usually done for RMAX, we therefore use a grid-basestmtization to estimate costs and
transitions’ Uncertainty of a prediction then depends on whether or metutiderlying grid-cell has
been visited before. Since in RMAX unvisited states are mtiractive than reaching the goal, the agent
tends to explore the environment exhaustively before itterave optimally.

In Figure 10 we compare our empowerment-based exploratithRMAX for various spacings of
the underlying grid: we examine division inf%, 50, 75, 100 cells. Every curve shows the cumulative
costs (under cost function Eq. (12)) as a function of episotieus every curve has two parts: a tran-
sient one where the agent is still learning and acting ndmraghly, and a steady-state one where the
agent is acting optimally with respect to its underlyingsbighich is either maximizing empowerment or
minimization of costs.

The graph shows two things: (1) the finer the resolution ofgtid, the longer it takes RMAX to
act optimally. For a grid of size 25, the agent reaches opfpradormance after 23 episodes; for a grid
of size 50 it needs 60 episodes; for a grid of size 75 it needsepisodes; and for a grid of size 100 it
needs 165 episodes. On the other hand, empowerment only Begmisodes until steady-state behavior
is reached. (2) The steady-state performance of empowgimsaomewhat worse than that of RMAX,
about56 versus78. However, this is not at all surprising. Empowerment doasat@ll consider the
externally defined cost function when making decisions, r@age RMAX specifically optimizes agent
behavior such that performance with respect to this paatiaost function is maximized. Still, behavior
under empowerment is close to what we would achieve by attplaptimizing a cost function; however,
with empowerment, the agent can learn this behavior muchrfagice it does not have to exhaustively
explore the state space (it only has to explore the stateedpabe extent of learning an accurate model
for state transitions).

Figure 11 shows in more detail how empowerment drives thatagevisit only the relevant part
of the state space. The figure compares, for empowerment BAXRvith grid spacing 25, what
state-action pairs are visited during learning at varicnistg in time (note that in both cases the model
learner treats actions independently from each other aad dot generalize between them). The plots
show that, for the empowerment-based agent, the GP-baséel4fearner can accurately predict state
transitions after having seen only few very samples. As ticairacy of predictions goes up, uncertainty
of predictions goes down, as the GP becomes more confideat wbat it does. Low uncertainty in turn
means that the agent no longer takes exploratory actionspétead chooses the one with the highest
empowerment. If the learned model is accurate enough,dtds good as knowing the true transitions

"The value iteration part of RMAX is also carried out with ingelation on a high-resolution grid. However, the detafls o
this step are of no concern in this paper, and the performamwgarison we make is unaffected by it.
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Figure 10: Exploration and model-based learning in thertiegependulum domain. The plot compares
both the sample efficieny and ultimate performance of theneshbehavior for empowerment with GPs
(top curve) and RMAX with different levels of discretizatiogrid size25, 50, 75, 100 (bottom curves).

function and the agent behaves accordingly (compare witthetiisased results in Section 5.2). As the
plot shows, here this happens very soon, right within thé djpssode. RMAX on the other hand has to
exhaustively sample the state-action space and essgnigtlevery grid-cell under each action. Thus it
takes much longer to even reach the goal region and thentleadesired behavior.

6 Discussion

A central question that we need to address is: why does empmme actually carry out intuitively
desirable behaviour? In previous work, it has been showirthiproperty is not spurious, but actually
reappears in a number of disparate scenarios (Klyubin,&t@5a; Klyubin, Polani, & Nehaniv, 2005b;
Klyubin et al., 2008; Anthony, Polani, & Nehaniv, 2008; Aatty et al., 2009).

On the other hand, one can clearly create a scenario wherewampent will fail to match the
externally imposed goal: imagine for instance the invepeddulum task, where the target state is
some oblique anglé # 0, different from the upright position. Even if the position sustainable (we
remind the reader that the task was underactuated), thaioposould clearly not match the state an
empowerment maximization strategy will try to attain. Nekieless, the task of placing the pole in an
arbitrary oblique positionp # 0 strikes one as unnatural if nothing else is specified in tBk.tdn
other words, balancing the inverted pendulum seems to bets¢ unbiased, natural task to do in that
scenario.

However, of course, there are scenarios where preferresbimets do not naturally arise from the
system dynamics. The most obvious examples are, e.g., nadeEae one needs to reach a particular
goal state. This goal state can obviously be arbitrary, atected independently from the actual dy-
namics/topology of the system. Even in such scenarios, empoent still mimics/approximates the
graph-theoretic notion afentrality (Anthony et al., 2008); this means that empowerment mastiun
will place the agent (approximately) at a location in the idrom which the expected distance to a
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Figure 11: Distribution of visited state-action pairs fangowerment and RMAX. Empowerment reaches
the goal region around the poifit, 0) after about 250 transitions right in the very first episodbereas
RMAX needs more than ten times as long. With empowermentagjfemt only has to explore limited
parts of the state-action space until the model is learnedetURMAX, in order to also learn the external
cost function, the state-action space needs to be sampted gvely.

randomly specified goal state will be minimal. In other worilss “the best guess” where the agent
should place itself in expectation of a yet unknown goaluassg one wishes to minimize the number
of steps to the go&l

However, the performance in our scenarios is even betterttia in that the natural goals that one
would impose a priori here seem to be anticipated by what @mapuent is trying to maximize. Now,
all the considered scenarios have one thing in common: tleesuavival-type scenarios. The agent aims
to stay “alive” and to move away from “death” states as far@ssjble (we adopt here an argument that
is related to Friston’s free energy model of cognition whias been brought up in (Friston, Kilner, &
Harrison, 2006; Friston, 2009)).

What makes this particularly interesting in the context ofitimuous systems which are our point
of concern in the present paper is that the smoothness ofy#itens informs the local empowerment
gradients around the agent’s state of where the most “alitefes are (and many dynamical systems
have this property). But even discrete transition grapbpldy — in somewhat structured scenarios like
grid-worlds or small-world networks (Anthony et al., 2088) this property that the attraction basins of
global or good local empowerment optima are visible from sahistance. This is particularly striking

8We completely omit the discussion of the case when diffesatibns have different costs for different states — this
obviously forces one to resort to the full-fledged dynamicgoamming formalism. However, this is clearly a case whbee t
specification of environmental structure and dynamics atesnfficient for the characterization of the task and thearelw
structure needs to be explicitly specified. The issues ddrizahg explicit rewards and the information-theoretictsasf
decision making are intricate and are discussed in detshdlere (Tishby & Polani, 2010).
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since empowerment seems to correlate well with measuredofoinating states in graphs which have
been hand-crafted for that purpose (Anthony et al., 2008).

Where empowerment maximization coincides with the “ndtusptimal control task, it computes
local gradients towards the right direction as opposed to optouoatrol/dynamic programming which
implicitly require a global picture of where the goal staées. It is an open question what properties
are required from a system to provide these relatively lattraction basins of empowerment maxima
that are visible in local empowerment gradients. This prigpgeems to be present in continuous en-
vironments and in environments with some degree of globfaiyogeneous structures (Anthony et al.,
2008).

Different from that are, however, novel degrees of freeddmcivform “gateways” in the state space
in that they are particular locations in the world that gractess to new subregions in the state space
(implying novel ways of interacting with the environment)at are otherwise inaccessable from the
majority of states. A prime example is the taxi domain fronct®® 2, where the actions of picking
up and dropping off a passenger open new degrees of freedarmanly at specific locations in the
maze (another example is the “box pushing” scenario wherageant's empowerment increases close
to a pushable box due to the increased number of options iyt al., 2005a)). Such gateways are
usually irregular occurences in the state space and wiltéyly only be detected by empowerment if
they are in reach of the action horizon. Still, intelligetian sequence extension algorithms such as
suggested in (Anthony et al., 2009) may provide recourselager effective action horizons even in
these cases. However, the examples studied in this papeotdovolve any such gateways and all
require only relatively short horizons by virtue of their @oth structure. This suggests that for the
significant class of dynamic control problems empowermeay provide a purely local exploration and
behaviour heuristic which identifies and moves towardd@aerly “interesting” areas; the present paper
furthermore demonstrates how this can be implemented iffiareat on-line fashion.

7 Summary

This paper has discussed empowerment, an informatiometieguantity that measures, for any agent-
environment system with stochastic transitions, the éxienvhich the agent can influence the envi-
ronment by its actions. While earlier work with empowermbkas already shown its various uses in a
number of different domains, empowerment calculation wasipusly limited to the case of small-scale
and discrete domains where state transition probabiltiee assumed to be known by the agent. The
main contribution of this paper is to relax both assumptiokgst, this paper extends calculation of
empowerment to the case of continuous vector-valued spaiees. Second, we discuss an application
of empowerment to exploration and online model-learningmhwe no longer assume that the precise
state transition probabilities are a priori known to therdgistead, the agent has to learn them through
interacting with the environment.

By addressing vector-valued state-spaces and modeldgarthis paper already significantly ad-
vances the applicability of empowerment to real-world sees. Still, from a computational point of
view, open questions remain. One question in particulawois to best deal with continuous, vector-
valued action spaces — so far we assumed in this paper thatction space could be discretized.
However, for higher dimensional action spaces (which ararmon in robotic applications), a naive
discretization will soon become infeasible.
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Table 1: Physical parameters of the inverted pendulum domai

Symbol Value Meaning

g 9.81 [m/s?] gravitation

m 1 [kg] mass of link

l 1 [m] length of link

" 0.05 coefficient of friction
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A Dynamic model of the inverted pendulum

Refer to the schematic representation of the inverted pendgiven in Figure 4. The state variables are
the angle measured from the vertical axig;) [rad], and the angular velocity(t) [rad/s]. The control
variable is the torque(t) [Nm] applied, which is restricted to the intervgt5,5]. The motion of the
pendulum is described by the differential equation:

3(t) = —oy (~d(t) + molsin 6(1) +u()). (13)

The angular velocity is restricted via saturation to therivl ¢ € [—10, 10]. The values and meaning of
the physical parameters are given in Table 1.

The solution to the continuous-time dynamic equation in #8) is obained using a Runge-Kutta
solver. The time step of the simulation is 0.2 sec, duringcivitie applied control is kept constant. The 2-
dimensional state vector igt) = (¢(t), $(t))T, the scalar control variable igt). Since our algorithm
in Section 3.4.3 allows us to compute empowerment only fonigefset of possiblé-step actions, we
discretized the continuous control space ihdiscrete action choicese {—5, —2.5,0,2.5,5}.

B Dynamic model of the acrobot

Refer to the schematic representation of the acrobot doginaen in Figure 4. The state variables are the
angle of the first link measured from the horizontal a#ig}) [rad], the angular velocity; (¢) [rad/s],
the angle between the second link and the firstéigk) [rad], and its angular veIocith(t) [rad/s]. The
control variable is the torque(t) [Nm] applied at the second joint. The dynamic model of thevhot
system is (Spong, 1995):

1

b1 (t) = — N0 (da(£)62(t) + é1 (1)) (14)
.. 1 dy(t) . )
fa(t) ~ETLC e (T(t) n %(t)m(t) — malileoby (1) sin fa(t) — @(t)) (15)
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Table 2: Physical parameters of the acrobot domain

Symbol Value Meaning

g 9.8 [m/s?] gravitation

m; 1 [kg] mass of linki

l; 1 [m] length of links

lei 0.5 [m] length to center of mass of link
I 1 [kg-m?] moment of inertia of link
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The angular velocities are restricted via saturation tanterval 6, € [—4r, 47|, andfy € [—9m, 9.
The values and meaning of the physical parameters are givéable 2; we used the same parameters
as in (Sutton & Barto, 1998).

The solution to the continuous-time dynamic equations ia. Et¢@)-(15) is obained using a Runge-
Kutta solver. The time step of the simulation is 0.2 sec,rduvhich the applied control is kept constant.
The 4-dimensional state vectonist) = (6 (t), 62 (t), 1 (), 62(t)) ", the scalar control variable igt).

The motor was allowed to produce torqueis the range—1, 1]. Since our algorithm in Section 3.4.3
allows us to compute empowerment only for a finite set of fbsdi-step actions, we discretized the
continuous control space. Here we use three actions: theviioscorrespond to a bang-bang control
and take on the extreme valued and-+1. However, a bang-bang control alone does not allow us to
keep the acrobot in the inverted handstand position, wisiemiunstable equilibrium. As a third action,
we therefore introduce a more complex balance-action, wikiderived via LQR. First, we linearize the
acrobot’s equation of motion about the unstable equiliriy-7/2, 0, 0,0), yielding:

x(t) = Ax(t) + Bu(t),

where, after plugging in the physical parameters of Table 2,

0 0 10 0 01(t) — /2
| o 0 01 | o G B
A=1l621 —095 0 o> B~ |—oes|> *XO= 01(1) u(t) =7(t).
—4.78 525 0 0 1.75 Os(t)

Using MATLAB, an LQR controller was then computed for the tcomtricesQ = I,«4 andR = 1,
yielding the state feedback law
u(t) = —Kx(t), (16)

with constant gain matriK = [—189.28, —47.46, —89.38, —29.19]. The values resulting from Eg. (16)
were truncated to stay inside the valid rarjgd, 1]. Note that the LQR controller works as intended
and produces meaningful results only when the state isthirigea close neighborhood of the handstand
state; in particular, it is incapable of swinging up and balag the acrobot on its own from the initial
state(0, 0, 0,0).
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Table 3: Physical parameters of the bicycle domain

Symbol Value Meaning

g 9.81 [m/s?]  gravitation

v 10/3.6 [m/s] constant speed of the bicycle

h 0.94 [m] height from ground of the common bicycle-rider center of snas

l 1.11 [m] distance between front and back tire at the point where thaght
the ground

r 0.34 [m] radius of a tire

dom 0.3 [m] vertical distance between the bicycle’s and rider’s ceotenass

c 0.66 [m] horizontal distance between front tire and common centerass

M. 15 [kg] mass of the bicycle

My 1.7 [kg] mass of a tire

M, 60 [kg] mass of the rider

C Dynamic model of the bicycle

Refer to the schematic representation of the bicycle dogigen in Figure 4. The state variables are the
roll angle of the bicycle measured from the vertical axi§&;) [rad], the roll rateo(t) [rad/s], the angle
of the handlebar(¢) [rad] (measured from the longitudal axis of the bicycle) &s angular velocity
a(t) [rad/s]. The control variables are the displacem&nt [m] of the bicycle-rider common center of
mass perpendicular to the plane of the bicycle, and the ¢éorgy [Nm] applied to the handlebar. The
dynamic model of the bicycle system is (Ernst et al., 2005):

(1) = {sin(B(0)) (M. + My )gh

Ibc
 cos(B(0) [ M 0) + sen(a ()2 (2 snfa(e)] + | tantale)]) + ST}
(17)
a(t) = {%u(f(t) — Leg(n) i () < 32 .
0 otherwise
where
: it a(t) # 0
6(t) +w(t) 1 — 2 !
B(t) := w(t) + atan , — \/(l P+ sz
" rom(?) 0 otherwise

The steering angle is restricted to the interval=32*, 297], and whenever this bound is reached the
angular velocityy is set to0. The moments of inertia are computed as:

1

I, = %wch2 + M, (h+ dcy)? Iy = Mygr?
3 1

Iy, = §Md7"2 Iy = 5]\/[3

The values and meaning of the remaining physical paramatergiven in Table 3.

Roll ratew and angular velocityy are kept in the interval-27, 27| via saturation; roll angle is
restricted to[ 2%, 127]. Whenever the roll angle is larger tha# in either direction, the bicycle is
supposed to have fallen. This state is treated as a ternmatal lsy defining all outgoing transitions as
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self-transitions, that is, once a terminal state is reaches system stays there indefinitely, no matter
what control is performed. Thus, to keep the bicycle goimgvérd, the bicycle has to be prevented from
falling.

The solution to the continuous-time dynamic equations is. E4j7)-(18) is obained using a Runge-
Kutta solver. The time step of the simulation is 0.2 sec,rduvhich the applied control is kept constant.
The 4-dimensional state vectorsi§t) = (w(t),w(t), a(t), d(t))T, the 2-dimensional control vector is

u(t) = (0(¢), u(t))T. Control variabled was allowed to vary in—0.02,0.02], o was allowed to vary in
[—2,2]. Since our algorithm in Section 3.4.3 allows us to computp@smerment only for a finite set of
possiblel-step actions, we discretized the continuous control spAsan (Lagoudakis & Parr, 2003),
we only consider the following 5 discrete actions: = (—0.02,0),a2 = (0,0),a3 = (0.02,0),a4 =
(0,-2),a5 = (0,2).
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