
Empowerment for Continuous
Agent-Environment Systems

Department of Computer Science

Technical Report AI-10-03
The University of Texas at Austin

Tobias Jung1

tjung@cs.utexas.edu

Daniel Polani2

d.polani@herts.ac.uk

Peter Stone1

pstone@cs.utexas.edu

1Department of Computer Science
University of Texas at Austin
1616 Guadalupe, Suite 2408
Austin, Texas 78701
USA

2Adaptive Systems and Algorithms Research Groups
School of Computer Science
University of Hertfordshire
1 College Lane
Hatfield AL10 9AB, Herfordshire
United Kingdom

1

Empowerment for Continuous Agent-Environment Systems

Technical Report AI-10-03

Draft September 30, 2010

Abstract

This paper develops generalizations ofempowermentto continuous states. Empowerment is a re-
cently introduced information-theoretic quantity motivated by hypotheses about the efficiency of the
sensorimotor loop in biological organisms, but also from considerations stemming from curiosity-
driven learning. Empowemerment measures, for agent-environment systems with stochastic transi-
tions, how much influence an agent has on its environment, butonly that influence that can be sensed
by the agent sensors. It is an information-theoretic generalization of joint controllability (influence
on environment) and observability (measurement by sensors) of the environment by the agent, both
controllability and observability being usually defined incontrol theory as the dimensionality of the
control/observation spaces. Earlier work has shown that empowerment has various interesting and
relevant properties, e.g., it allows us to identify salientstates using only the dynamics, and it can act
as intrinsic reward without requiring an external reward. However, in this previous work empow-
erment was limited to the case of small-scale and discrete domains and furthermore state transition
probabilities were assumed to be known. The goal of this paper is to extend empowerment to the
significantly more important and relevant case of continuous vector-valued state spaces and initially
unknown state transition probabilities. The continuous state space is addressed by Monte-Carlo ap-
proximation; the unknown transitions are addressed by model learning and prediction for which we
apply Gaussian processes regression with iterated forecasting. In a number of well-known continu-
ous control tasks we examine the dynamics induced by empowerment and include an application to
exploration and online model-learning.

Keywords: Information theory, learning, dynamical systems, self-motivated behavior

Short title: Empowerment for Continuous Agent-Environment Systems

2

1 Introduction

One goal of AI research is to enable artificial agents (eithervirtual or physical ones) to act “intelligently”
in complex and difficult environments. A common view is that intelligent behavior can be “engineered”;
either by fully hand-coding all the necessary rules into theagent, or by relying on various optimization-
based techniques to automatically generate it. For example, in modern control and dynamic programming
a human designer specifies a performance signal which explicitly or implicitly encodes goals of the
agent. By behaving in a way that optimizes this quantity, theagent then does what the programmer
wants it to do. For many applications, this is a perfectly reasonable approach that can lead to impressive
results. However, it typically requires some prior knowledge and sometimes subtle design by the human
developer to achieve sensible or desirable results.

In this paper, we investigate an approach to use the “embodiment” of an agent (i.e., the dynamics of
its coupling to the environment) to generate preferred behaviors without having to resort to specialized,
hand-designed solutions that vary from task to task. Our research embraces the related ideas of self-
organization and self-regulation, where we aim for complexbehavior to derive from simple and generic
internal rules. The philosophy is that seemingly intentional and goal-driven behavior emerges as the
by-product of the agent trying to satisfy universal rules rather than from optimizing externally defined
rewards. Examples of this kind of work includehomeokinesis(Ay, Bertschinger, Der, Güttler, & Olbrich,
2008; Der, Steinmetz, & Pasemann, 1999; Der, 2000, 2001; Zahedi, Ay, & Der, 2010), or the work in
(Still, 2009). The second idea is that of intrinsically motivated behavior and artificial curiosity (Schmid-
huber, 1991), where an agent engages in behavior because it is inherently “interesting” or “enjoyable”,
rather than as a step towards solving a specific (externally defined) goal. Intrinsically motivated behavior
may not directly help in solving a goal, but there are indications that it leads to exploration and allows
an agent to acquire a broad range of abilities which can, oncethe need arises, be easily molded into
goal-directed behavior. Related relevant publications include, for example, (Singh, Barto, & Chentanez,
2005). Other related work can be found in (Lungarella, Pegors, Bulwinkle, & Sporns, 2005; Lungarella
& Sporns, 2005; Sporns & Lungarella, 2006; Lungarella & Sporns, 2006) and (Prokopenko, Gerasimov,
& Tanev, 2006; Steels, 2004; Kaplan & Oudeyer, 2004).

Here we will consider the principle ofempowerment(Klyubin, Polani, & Nehaniv, 2005a, 2008), an
information-theoretic quantity which is defined as the channel capacity between an agent’s actions and
its sensory observations in subsequent time steps. Empowerment can be regarded as “universal utility”
which defines an a priori intrinsic reward or rather, a value/utility for the states in which an agent finds
itself in. Empowerment is fully specified by the dynamics of the agent-environment coupling (namely
the transition probabilities); a reward does not need to be specified. It was hypothesized in (Klyubin et
al., 2005a, 2008) that the greedy maximization of empowerment would direct an agent to “interesting”
states in a variety of scenarios:

• For one, empowerment can be considered a stochastic generalization of the concept ofmobility
(i.e., number of options available to an agent) which is a powerful heuristic in many deterministic
and discrete puzzles and games. Being in a state with high empowerment gives an agent a wide
choice of actions — conversely, if an agent in “default mode”poises itself a priori in a high-
empowerment state, it is best equipped to quickly move from there into a variety of target states
in an emergency (for example, in the game of soccer, a goalkeeper who is about to receive a
penalty kick and has no prior knowledge about the player behavior to expect naturally positions
himself in the middle of the goal). In this regard the quantity of empowerment allows an agent
to automatically (without explicit external human input) identify those states, even in complex
environments.

• In the present paper we show that, for a certain class of continuous control problems, empower-
ment provides a natural utility function which imbues its states with an a priori value, without an

3

explicit specification of a reward. Such problems are typically those where one tries to keep a
system “alive” indefinitely, i.e., in a certain goal region for as long a time as possible. On the other
hand, choosing the wrong actions or doing nothing would instead lead to the “death” of the system
(naturally represented by zero empowerment). A natural example is pole-balancing.1 In this con-
text, we will find the smoothness of the system informs the local empowerment gradients around
the agent’s state of where the most “alive” states are. Choosing actions such that thelocal em-
powerment score is maximized would then lead the agent into those states. In the pole-balancing
example this means that for a wide range of initial conditions, the agent would be made to balance
the pendulum.

Previous studies with empowerment showed promise in various domains but were essentially limited
to the case of small-scale and finite-state domains (the ubiquitous gridworld) and furthermore, state
transition probabilities were assumed to be known a priori.The main contribution of this article is
to extend previous work to the significantly more important case of (1) continuous vector-valued state
spaces and (2) initially unknown state transition probabilities. The first property means that we will be
able to calculate empowerment values only approximately; more specifically, here we will use Monte-
Carlo approximation to evaluate the integral underlying the empowerment computation. The second
property considers the case where the state space is previously unexplored and implies that the agent
has to use some form of online model-learning to estimate transition probabilities fromstate-action-
successor statetriplets it encounters while interacting with the environment. Here, we will approach
model-learning using Gaussian process regression with iterated forecasting.

To summarize, the paper is structured into three parts as follows:

1. The first part, Section 2, gives a first, informal definitionof empowerment and illustrates its general
properties in a well-known finite-state domain.

2. The second part forms the main technical portion. Section3 starts with a formal definition of
empowerment for the continuous case and gives an algorithm for its computation based on Monte-
Carlo approximation of the underlying high-dimensional integrals. Section 4 describes model-
learning using Gaussian process regression (GPs) – however, since this itself is a rather complex
subject matter, for brevity here we cannot go beyond a high-level description.

3. The third part examines empowerment empirically in a number of continuous control tasks well
known in the area of reinforcement learning. The experiments will demonstrate how empowerment
can form a natural utility measure, and how states with high empowerment values coincide with the
natural (and intuitive) choice of a goal state in the respective domain. This way, if we incorporate
empowerment into the perception-action loop of an agent, e.g., by greedily choosing actions that
lead to the highest empowered states, we can obtain a seemingly goal-driven behavior. As an
application of this, we study the problem of exploration andmodel-learning: using empowerment
to guide which parts of the state-space to exlore next, the agent can quickly “discover the goal”
and thus more efficiently explore the environment – without exhaustively sampling the state space.

2 Illustrative example

Although a more formal definition of empowerment will followin the next section, here we will start by
motivating it through a toy example. Informally, empowerment computes for any state of the environment

1Empowerment in the pole-balancing example was first investigated in (Klyubin et al., 2008) with a discretized state space
anda priori known state transition probabilities. Here we will strongly extend this example to the continuous case and online
learning. State transition probabilities are initially not known. Instead, the agent has to learn the transition probabilities while
interacting with the environment.

4

the logarithm of theeffectivenumber of successor states the agent can induce by its actions. Thus
empowerment essentially measures to what extent an agent can influence the environment by its actions:
it is zero if, regardless what the agent does, the outcome will be the same. And it is maximal if every
action will have adistinct2 outcome. Note that empowerment is specifically designed to allow for more
general stochastic environments, of which deterministic transitions are just a special case.

Y

R G

B

As an example, consider the taxi-domain (Dietterich, 1998), a well-known prob-
lem in reinforcement learning with finite state and action space and stochastic tran-
sitions. The environment, shown on the left, consists of a5 × 5 gridworld with four
special locations designated ’R’,’Y’,’G’,’B’. Apart fromthe agent (“the taxi”), there
is a passenger who wants to get from one of the four locations to another (selected
at random). The state of the system is thex, y coordinate of the agent, the loca-
tion of the passenger (one of ’R’,’Y’,’G’,’B’,’in-the-car’) and its destination (one of

’R’,’Y’,’G’,’B’). Overall there are 500 = 5× 5× 5× 4 distinct states. Usually in RL, where the interest
is on abstraction and hierarchical learning, a factored representation of the state is used that explicitly
exploits the structure of the domain. For our purpose, whereidentifying salient states is part of the
problem, we do not assume that the structure of the domain is known and will use a flat representation
instead. The agent has six possible elementary actions: thefirst four (’N’,’S’,E’,’W’) move the agent
in the indicated direction (stochastically, there is a 20% chance for random movement). If the resulting
direction is blocked by a wall, no movement occurs. The agentcan also issue a pick-up and drop-off
action, which require that the taxi is at the correct location and (in the latter case) the passenger is in
the car. Issuing pick-up and drop-off when the conditions are not met does not result in any changes. If
a passenger is successfully delivered, the environment is reset: the agent is placed in the center and a
passenger with new start and destination is generated.

Using these state transition dynamics, we compute the3-step empowerment, i.e., theeffectivenumber
of successor states reachable over an action horizon of3 steps (meaning we consider compound actions
of a sequence of three elementary actions) for every state ofthe system. Figure 1 shows some of the
results: the values are ordered such that every subplot shows the empowerment values that correspond
to a specific slice of the state space. For example, the top left subplot shows the empowerment value
of all x, y locations if the passenger is waiting at ’Y’ and its destination is ’G’, which with our labeling
of the states corresponds to states 376-400. Inspecting theplots, two things become apparent: for one,
in general, locations in the center have high empowerment (because the agent has freedom to move
wherever it wants); locations in the corners have low empowerment (because the agent has only limited
choices of what it can do). More interesting is the empowerment value at the designated locations: if
a passenger is waiting at a certain location, its empowerment, and that of its neighbors2 steps away,
increases. Similarly, if a passenger is in the car, the empowerment of the destination, and that of its
neighbors2 steps away, increases. The reason is that in both situationsthe agent now has additional,
previously unavailable, ways of affecting the environment(plot (c) and (d) have a higher relative gain
in empowerment, because they result in the end of an episode,which teleports the agent to the center).
Thus these states stand out as being “interesting” under theheuristic of empowerment. Incidentally,
these are also exactly the subgoal states if the agent’s taskwere to transport the passenger from source
to destination. Note that here we did not have to specify external reward or goals, as empowerment is
intrinsically computed from the transition dynamics alone.

Empowerment essentially “discovers” states where additional degrees of freedom are available, and
creates a basin of attraction around them, indicating salient features of the environment of interest to
the agent. It is not difficult to imagine an agent that uses empowerment as a guiding principle for
exploration; e.g., by choosing in each state greedily the action that leads to the successor state with the
highest empowerment. We expect that such an agent would traverse the state space in a far more sensible

2Meaning that for discrete state spaces, the sets of successor states are disjoint for differerent actions; for continuous state
spaces, the domains of the underlying pdfs are non-overlapping.

5

Y

R

B

G

P=Y, Dest=G, (#376 − #400)

(a) P waiting at ’Y’

Y

R

B

G

P=R, Dest=G, (#401 − #425)

(b) P waiting at ’R’

Y

R

B

G

P=Car, Dest=G, (#476 − #500)

(c) P in car, going to ’G’

Y

R

B

G

P=Car, Dest=B, (#351 − #375)

(d) P in car, going to ’B’

Figure 1: Plottingempowermentfor a subset of states (here locations) for the taxi domain. For clarity,
every plot shows the mean-subtracted empowerment (3-step)of a certain slice of the state space, where
white corresponds to low empowerment (1.55 nats), and blackcorresponds to high empowerment (2.75
nats).

way than blind random exploration, as following the trail ofincreasing empowerment would quickly lead
to the discovery of the salient states in the environment. Inthe remainder of the paper, we will develop
methods for carrying over this idea into the continuum and demonstrate how empowerment supersedes
typical hand-designed rewards in a number of established benchmark domains.

3 Computation of empowerment

This section defines empowerment formally and gives an algorithm for its computation.

3.1 General definition of empowerment

Empowerment (Klyubin et al., 2005a) is defined for stochastic dynamic systems where transitions arise
as the result of making a decision, e.g. such as an agent interacting with an environment. Here we
will assume a vector-valued state spaceX ⊂ R

D and (for simplicity) a discrete action spaceA =
{1, . . . , NA}. The transition function is given in terms of a density3 p(xt+1|xt, at) which denotes the
probability of going from statext to xt+1 when making decisionat. While we assume the system is
fully defined in terms of these1-step interactions, we will also be interested in more general n-step
interactions. Thus, forn ≥ 1, we consider the sequence~an

t = (at, . . . , at+n−1) of n single-step actions
and the induced probability densityp(xt+n|xt,~a

n
t) of making the correspondingn-step transition.

For notational convenience we can assume that, without lossof generality,1-step andn-step actions
are equivalent: let the set of possiblen-step actions be formed through exhaustive enumeration of all
possible combinations of1-step actions. IfNA is the number of possible1-step actions in every state,
the number ofn-step actions is thenNn := (NA)n. With this approach, we can consider the system as
evolving at the time-scale ofn-step actions, so thatn-step actions can be regarded as1-step actions at a
higher level of decision making. This abstraction allows usto treat1-step andn-step actions on equal
footing, which we will use to simplify the notation and drop references to the time index. Instead of
writing p(xt+n|xt,~a

n
t) we will now just writep(x′|x,~a) to denote the transition fromx to x′ under~a,

irrespective of whether~a is ann-step action or1-step action. Furthermore we will use the symbolν to
loop over actions~a.

LetX ′ denote the random variable associated withx′ givenx. Assume that the choice of a particular
action~a is also random and modeled by random variableA. The empowermentC(x) of a statex

3Note that we have to consider stochastic transitions in the continuum. Otherwise if, for every action, the resulting successor
states are distinct, empowerment always attains the maximum value. In practice this will usually be the case when simulating
continuous control tasks with deterministic dynamics. In this case we artificially add some zero mean Gaussian noise with
small variance (see Section 5.2). This can be interpreted asmodeling limited action or sensoric resolution, dependingon the
take. It is also a natural assumption for a robot realized in hardware.

6

#1

#2

#3

A D

.9

.8

.1
.2

1

1

1

D

DA

A

1

p(x′ =?|x =?, a = A)

x|x′ #1 #2 #3

#1 .9 .1 0
#2 0 1 0
#3 0 0 1

p(x′ =?|x =?, a = D)

x|x′ #1 #2 #3

#1 0 .8 .2
#2 0 0 1
#3 0 0 1

1-step transitions (2 actions)

p(x′ =?|x =?, a = (AA))

x|x′ #1 #2 #3

#1 .81 .19 0
#2 0 1 0
#3 0 0 1

p(x′ =?|x =?, a = (AD))

x|x′ #1 #2 #3

#1 0 .72 .28
#2 0 0 1
#3 0 0 1

p(x′ =?|x =?, a = (DA))

x|x′ #1 #2 #3

#1 0 .8 .2
#2 0 0 1
#3 0 0 1

p(x′ =?|x =?, a = (DD))

x|x′ #1 #2 #3

#1 0 0 1
#2 0 0 1
#3 0 0 1

2-step transitions (4 actions)

Figure 2: Transition probabilities for a concrete numerical example (see text)

(more precisely, then-step empowerment) is then defined as the Shannon channel capacity (using the
differential entropy) betweenA, the choice of an action sequence, andX ′, the resulting successor state:

C(x) := max
p(~a)

I(X ′;A |x)

= max
p(~a)

{

H(X ′ |x) − H(X ′ | A,x)
}

. (1)

The maximization of the mutual information is with respect to all possible distributions overA, which in
our case means vectors of lengthNn of probabilities. The entropy and conditional entropy are given by

H(X ′|x) := −

∫

X

p(x′|x) log p(x′|x)dx′ (2)

H(X ′|A,x) :=

Nn
∑

ν=1

p(~aν)H(X ′|A = ~aν ,x)

= −
Nn
∑

ν=1

p(~aν)

∫

X

p(x′|x,~aν) · log p(x′|x,~aν)dx′. (3)

Strictly speaking, the entropies in Eqs. (2) and (3) are differential entropies (which could be negative)
and the probabilities are to be read as probability densities. However, as we always end up using the
mutual information, i.e. the difference between the entropies, we end up with well-defined non-negative
information values which are always finite due to the limitedresolution/noise assumed above. Using
p(x′|x) =

∑Nn

i=1 p(x′|x,~ai)p(~ai) in Eqs. (2) and (3), Eq. (1) can thus be written as

C(x) := max
p(~a)

Nn
∑

ν=1

p(~aν)

∫

X

p(x′|x,~aν) · log

{

p(x′|x,~aν)
∑Nn

i=1 p(x′|x,~ai)p(~ai)

}

dx′ (4)

Hence, given the densityp(x′|x,~aν) for makingn-step transitions,empowermentis a functionC :
X → R≥0 that maps an arbitrary statex to its empowermentC(x).

3.2 A concrete numerical example

Before we proceed, let us make the previous definition more concrete by looking at a numerical example.
To simplify the exposition, the example will be discrete (thus integration over the domain is replaced

7

by summation). We consider an agent in an environment with three states, labeled #1,#2,#3, and two
possible actions, denotedA or D. The dynamics of the environment is fully described by the1-step
transitions shown in Figure 2(left). The right side of the figure shows the corresponding2-step transitions
which are derived from the1-step transitions; for example, the entryp(x′ = #1|x = #1, a = (AA)) is
obtained by

p(x′ = #1|x = #1, a = (AA)) =

#3
∑

i=#1

p(x′ = #1|x = i, a = A) · p(x′ = i|x = 1, a = A)

= (.9 × .9) + (.1 × 0) + (0 × 0) = .81.

Let us now assume we want to calculate the2-step empowerment valueC(#1) for statex = #1.
First, consider the2-step mutual information,I(X ′;A|x = #1), for statex = #1. According to Eq. (1),
we have

I(X ′;A|x = #1) = p(AA) ·

#3
∑

i=#1

p(x′ = i|x = #1, a = AA) log

{

p(x′ = i|x = #1, a = AA)

p(x′ = i|x = #1)

}

+ p(AD) ·

#3
∑

i=#1

p(x′ = i|x = #1, a = AD) log

{

p(x′ = i|x = #1, a = AD)

p(x′ = i|x = #1)

}

+ p(DA) ·

#3
∑

i=#1

p(x′ = i|x = #1, a = DA) log

{

p(x′ = i|x = #1, a = DA)

p(x′ = i|x = #1)

}

+ p(DD) ·

#3
∑

i=#1

p(x′ = i|x = #1, a = DD) log

{

p(x′ = i|x = #1, a = DD)

p(x′ = i|x = #1)

}

.

The denominator in the logarithm is calculated for anyi via:

p(x′ = i|x = #1) = p(x′ = i|x = #1, a = AA) · p(AA)

+ p(x′ = i|x = #1, a = AD) · p(AD)

+ p(x′ = i|x = #1, a = DA) · p(DA)

+ p(x′ = i|x = #1, a = DD) · p(DD)

As we can see, the resulting value forI(X ′;A|x = #1) will only depend on the individual prob-
abilities of the actions,p(AA), p(AD), p(DA), p(DD), but not on the transition probabilities as these
are fixed for a given environment. One natural choice for the action probabilities could be the uniform
distribution. However, for empowerment we try to find an assignment of action probabilities such that
the resultingI(X ′;A) value is maximimized among all possible assignments (an algorithm for this will
be given in the next section). Below we have calculated the empowerment values MI (taking uniform
distribution over actions) and Em (taking the maximizing distribution over actions) in our example for
various time horizons, i.e.,1-step,2-step, etc. Note that, while empowerment values are logarithmic, for
the purpose of illustration the results are given in terms ofexp(I(X ′;A)):

1-step 2-step 3-step 4-step 5-step
State MI Em MI Em MI Em MI Em MI Em

x = #1 1.70 1.71 1.93 2.17 1.81 2.10 1.58 2.05 1.38 2.02
x = #2 2 2 1.75 2 1.45 2 1.26 2 1.14 2
x = #3 1 1 1 1 1 1 1 1 1 1

8

The first column,1-step, illustrates the full range of possible empowerment values. Empowerment
in state #3 is zero (here,1 = exp(0)), because all actions in #3 have the same outcome. Empowerment
in state #2 is maximal (here2, corresponding to the two possible1-step actions), because each action in
#2 has a different outcome. In state #1 the set of successor states overlap, thus the empowerment value
is in between the two extremes.

As the time horizon increases, we can make the following observations. One is that the empowerment
value of #3 always stays at zero, because no matter what the agent does, the outcome will be the same
(thus absorbing states are “dead” states). Two, the MI valueof #2 goes down, whereas its Em value stays
constant (this in fact is an important observation). The reason is that, as the time horizon increases, so
does the number of possible (n-step) actions, e.g.,32 = 25 for 5 steps. However, a large number of these
actions will bring the agent into #3 from which it cannot escape. Therefore, if all actions contribute in
equal parts to the result (which they do in MI, where we assumea uniform distribution), those that lead
to zero empowerment will dominate and thus also the end result will be close to zero. On the other hand,
the maximization in Em will suppress the effect of indistinguishable actions (assigning zero probability
to actions having the same outcome and high probabilities toactions having distinct outcomes) and thus
ensure that the two distinct choices in #2 are always correctly identified.

3.3 Empowerment or mutual information?

Let us summarize. Empowerment measures to what extent an agent can influence the environment by
its actions. It specifically works for stochastic systems (where state transitions are given in terms of
probabilities), but can also apply to deterministic systems (which are just a special case of stochastic
systems). Empowerment is zero if, regardless what the agentdoes, the outcome will be the same (i.e.,
the outcome distribution for a given successor statex′ is independent of the action). And it is maximal if
every action will have a distinct outcome (i.e., the probability that a single outcome is produced by two
different actions is zero).

Let us now briefly discuss why the related information-theoretic quantity mutual information, which
would largely have the same properties and would be easier tocompute, is not as powerful as channel
capacity at identifying interesting states of the environment.

21

...

a1 a2 a99

a100

First, let us comment that to use the idea of modeling the influence of the action
channel, one has to define some kind of distribution on the actions. As we are consid-
ering only an agent’s embodiment, but have not defined a controller, there is no default
action distribution that one could use. Therefore, one has to distinguish particular action
distributions for which the action channel is to be measured. The main natural choices

are the choice of an action distribution that is equally distributed, not singling out any particular action,
and that one which maximizesI(X ′;A), i.e. the one that achieves channel capacity. As we have seen
in the last section, the equidistribution of actions can fail to resolve important properties of the action
channel which the optimal distribution does detect. The most obvious situation is one where one has a
large number of equivalent actions. If mutual information assumes a uniform distribution over actions, it
will be mislead by large numbers of actions that lead to the same outcome. As another example, consider
the following situation. Assume an agent has100 different actions available and is in a state where every
action has the same effect (empowerment and mutual information both zero). Now let us assume the
agent enters a new state, as shown on the left side, where actionsa1 to a99 still have the same outcome
(state 1), but one actiona100 leads to a different state (state 2). In this case, use of mutual information
with equidistributed would still be close to zero (≈ 0.05 nats), indicating that all actions roughly have
the same effect, whereas empowerment correctly identifies two distinct choices (≈ 0.69 = log(2) nats)
since it will redistribute the actions in a way that highlights the additional degrees of freedom attained
by a100.

9

3.4 Computing empowerment when a model is available

Next we describe the Blahut-Arimoto algorithm for computing the channel capacity given in Eq. (4). For
now we assume that the (n-step) transition probabilitiesp(x′|x,~aν) are known for all actions~aν , ν =
1, . . . , Nn.

3.4.1 Blahut-Arimoto algorithm

The Blahut-Arimoto algorithm (Blahut, 1972) is an EM-like algorithm that iterates over distributions
pk(~a), wherek denotes thek-th iteration step, to produce the distributionp∗(~a) that achieves the maxi-
mum in Eq. (4). Since we consider a discrete action domain,pk(~a) is represented by a vectorpk(~a) ≡
(

p1
k, . . . , p

Nn

k

)

. To avoid cluttered notation, we define

dν,k :=

∫

X

p(x′|x,~aν) log

[

p(x′|x,~aν)
∑Nn

i=1 p(x′|x,~ai)pi
k

]

dx′. (5)

We start with an initial distributionp0(~a) which is chosen using the uniform distribution, that is
pν
0 := 1/Nn for ν = 1, . . . , Nn. At each iterationk ≥ 1, the probability distributionpk(~a) is then

obtained frompk−1(~a) as

pν
k := z−1

k pν
k−1 exp(dν,k−1) ν = 1, . . . , Nn (6)

wherezk is a normalization ensuring that the new probabilities sum to one, i.e.

zk =

Nn
∑

ν=1

pν
k−1 exp(dν,k−1). (7)

Oncepk(~a) ≡
(

p1
k, . . . , p

Nn

k

)

is computed for iterationk, we can use it to obtain an estimateCk(x) for
the empowermentC(x) given in Eq. (4) via

Ck(x) =

Nn
∑

ν=1

pν
k · dν,k. (8)

The algorithm in Eqs. (6)-(8) can either be carried out for a fixed number of iterations, or it can be
stopped once the change|Ck(x) − Ck−1(x)| < ε drops below a chosen threshold and henceCk(x) is
reasonably close toC(x).

One problem still remains, which is the evaluation of the high-dimensional integral over the state
space indν,k.

3.4.2 Monte-Carlo integration

Taking a closer look at Eq. (5), we note thatdν,k can also be written as expectation with regard to the
densityp(x′|x,~aν). Assuming that each densityp(x′|x,~aν) is of a simple form (e.g. parametric, like a
Gaussian or a mixture of Gaussians) from which we can easily drawNMC samples{x̃′

ν,i}, we have

∀ν : dν,k ≈
1

NMC

NMC
∑

j=1

log

[

p(x̃′
ν,j |x,~aν)

∑Nn

i=1 p(x̃′
ν,j |x,~ai)pi

k

]

(9)

10

3.4.3 Example: Gaussian model

As an example consider the case wherep(x′|x,~aν) is a multivariate Gaussian (or at least reasonably

well approximated by it) with known mean vectorµν =
(

µν,1, . . . , µν,D

)T
and covariance matrixΣν =

diag
(

σ2
ν,1, . . . , σ

2
ν,D

)

, which in short will be written as

x′|x,~aν ∼ N (µν ,Σν). (10)

Note that here both the mean and covariance will depend on theaction~aν and the statex. Samples̃x′
ν

from Eq. (10) are easily generated via standard algorithms.
In summary, to compute the empowermentC(x) given statex ∈ X and transition modelp(x′|x,~aν),

we proceed as follows.

1. Input:

(a) Statex whose empowerment we wish to calculate.

(b) For every actionν = 1, . . . , Nn a state transition modelp(x′|x,~aν), each fully defined by its
meanµν and covarianceΣν .

2. Initialize:

(a) p0(~aν) := 1/Nn for ν = 1, . . . , Nn.

(b) DrawNMC samples̃x′
ν,i each, fromp(x′|x,~aν) = N (µν ,Σν) for ν = 1, . . . , Nn.

(c) Evaluatep(x̃′
ν,i|x,~aµ) for all ν = 1, . . . , Nn; µ = 1, . . . , Nn; i = 1, . . . , NMC.

3. Iterate k = 1, 2, . . . (until |ck − ck−1| < tol or maximum number of iterations reached)

(a) zk := 0, ck−1 := 0

(b) Forν = 1, . . . , Nn

i. dν,k−1 :=

1

NMC

NMC
∑

j=1

log

[

p(x̃′
ν,j |x,~aν)

∑Nn

i=1 p(x̃′
ν,j|x,~ai)pk−1(~ai)

]

ii. ck−1 := ck−1 + pk−1(~aν) · dν,k−1

iii. pk(~aν) := pk−1(~aν) · exp{dν,k−1}

iv. zk := zk + pk(~aν)

(c) Forν = 1, . . . , Nn

i. pk(~aν) := pk(~aν) · z−1
k

4. Output:

(a) EmpowermentC(x) ≈ ck−1 (estimated).

(b) Distributionp(~a) ≈ pk−1(~a) achieving the maximum mutual information.

At the end we obtain the estimated empowermentCk−1(x) from ck−1 with associated distribution
pk−1(~a) ≡

(

pk−1(~a1), . . . , pk−1(~aNn)
)

. The computational cost of this algorithm isO(N2
n · NMC)

operations per iteration; the memory requirement isO(N2
n · NMC). Thus the overall computational

complexity scales with the square of the number of (n-step) actionsNn.

11

4 Model learning

In this section we further reduce our assumptions, and consider an environment for which neithern-step
nor 1-step transition probabilities are readily available. Instead, we assume that we could only observe a
number of 1-step transitions which are given as triplets of state, performed action, and resulting successor
state. Using regression on these samples, we first infer a 1-step transition model. Proceeding from this
1-step model we can then obtain a more generaln-step transition model through iteratively predictingn
steps ahead in time.

In general, there would be many ways the task of regression could be accomplished. Here we will
use Gaussian process regression (GP) (Rasmussen & Williams, 2006). GPs are simple and mathemati-
cally elegant, yet very powerful tools that offer some considerable advantages. One is that GPs directly
produce a predictive distribution over the target values, which is exactly what is needed in Eq. (4) for
the computation of empowerment. Furthermore, the predictive distribution is Gaussian and hence easy
to draw samples from during the Monte-Carlo approximation (see Section 3.4.3). Also, GPs are non-
parametric, meaning that a GP model is not restricted to a certain class of functions (such as polynomials),
but instead encompassesall functions sharing the same degree of smoothness. In practice GPs are also
very easy to use: the solution can be found analytically and in closed form. The Bayesian framework
allows us to nicely address the problem of hyperparameter selection in a principled way, which makes
the process of using GPs virtually fully automated, i.e. without having to adjust a single parameter by
hand.

4.1 Learning 1-step system dynamics

To learn the state transition probabilitiesp(x′|x, a = ν), i.e. predict the successor statex′ when per-
forming 1-step actiona = ν in statex, we combine multiple univariate GPs. Each individualGPνj ,
wherej = 1 . . . D andν = 1 . . . NA, predicts thej-th coordinate of successor statex′ under action
a = ν. Each individualGPνj is trained independently on the subset of the transitions where actionν
was chosen: the desired target outputs we regress on is the change in the state variables (i.e. we predict
the differencext+1 −xt). Since both state variables and actions are treated separately, we need a total of
D · NA independent GPs.

A detailed description of how univariate regression with GPs work4 can be found in (Rasmussen
& Williams, 2006). TrainingGPνj gives us a distributionp(x′

j|x, a = ν) = N (µνj(x), σ2
νj(x)) for

the j-th variable of the successor state, where the exact equations for the meanµνj(x) and variance
σ2

νj(x) can be found in (Rasmussen & Williams, 2006). Note that everyGPνj will have its own set
of hyperparametersθνj , each independently obtained from the associated trainingdata via Bayesian
hyperparameter selection. Combining the predictive models for all D variables, we obtain the desired
distribution

p(x′|x, a = ν) = N (µν(x),Σν(x)) (11)

for making a 1-step transition fromx under actiona = ν, whereµν(x) =
(

µν1(x), . . . , µνD(x)
)T

, and
Σν(x) = diag

(

σ2
ν1(x), . . . , σ2

νD(x)
)

. See Figure 3 for an illustration of this situation.

4There is also the problem of implementing GPsefficientlywhen dealing with a possible large number of data points.
For brevity we will only sketch our particular implementation, see (Quiñonero-Candela, Rasmussen, & Williams, 2007)for
more detailed information. Our GP implementation is based on thesubset of regressorsapproximation. The elements of the
subset are chosen by a stepwise greedy procedure aimed at minimizing the error incurred from using a low rank approximation
(incomplete Cholesky decomposition). Optimization of thelikelihood is done on random subsets of the data of fixed size.To
avoid a degenerate predictive variance, theprojected processapproximation was used.

12

.

.

.

.

.

.

.

.

.

insert invisible horizontal space

x1

x2

xD

GPν1

GPν2

GPνD

x x′

x′
1

x′
2

x′
D

N
(

µν1(x), σ2
ν1(x)

)

N
(

µν2(x), σ2
ν2(x)

)

N
(

µνD(x), σ2
νD(x)

)

Input: statex =
(

x1, . . . , xD

)T
, actiona = ν

Output: p(x′|x, a = ν) = N
(

µν(x),Σν(x)
)

N
(

µν(x),Σν(x)
)

Figure 3: Learning state transition probabilitiesp(x′|x, a = ν) by combining multiple univariate GPs.
Each individualGPνj predicts thej-th coordinate of successor statex′ under actiona = ν. Each
individual GPνj is trained independently on the corresponding subset of thetraining data and has its
own set of hyperparametersθνj (obtained from maximizing the marginal likelihood).

4.2 From 1-step ton-step models

To turn the 1-step model into ann-step modelp(xt+n|xt,~a
n
t), where~an

t = (at, at+1, . . . , at+n−1) is
a sequence ofn 1-step actions, we have to integrate over all intermediate distributions. Unfortunately,
solving this integral analytically in closed form is not possible. One simple approach is again to use sam-
pling methods, like the Monte-Carlo approximation, to numerically determine the integral. Alternatively,
one could consider a more sophisticated approximate solution based on the Laplace approximation, as
was proposed in (Girard, Rasmussen, Quiñonero-Candela, &Murray-Smith, 2003).

Since, in our experiments, we will only consider very short prediction horizons (typicallyn = 3 or
n = 5), we will use the more naive approach of predicting iteratively n steps ahead using the learned
1-step model. Given statext, we apply Eq. (11) to producep(xt+1|xt, at). Instead of considering the
full distribution, we just take its mean̂xt+1 := µat

(xt) as point estimate and use that to predictxt+2,
applying again the 1-step model Eq. (11) to producep(xt+2|x̂t+1, at+1). Repeating this procedure un-
til the end of the prediction horizon is reached, we obtain after n stepsp(xt+n|x̂t+n−1, at+n−1) as an
approximation to the originally soughtn-step transition modelp(xt+n|xt,~a

n
t). In general, this approx-

imation will tend to underestimate the variance of the prediction and produce a slightly different mean,
since every time we produce an estimate fort + i, we ignore the uncertainty in the preceding prediction
for t + i − 1. In our case, however, the procedure will incur only a neglible error since the prediction
horizon we consider is very short. See (Girard et al., 2003) for more details.

5 Experiments

We have indicated earlier that empowerment has shown intuitively appealing identification of salient
states in discrete scenarios and we are now ready to study a number of more intricate continuous scenar-

13

ios. These scenarios are used as benchmark for typical learning algorithms (e.g., reinforcement learning
or optimal control). However, it should be noted that in the latter the learning algorithms need to be
instructed about which optimization criterion to use in thelearning process. Here, we will always use
empowerment maximization as the criterion, and demonstrate that the resulting behaviors actually match
closely those where optimization of an external quality criterion is requested. The observation that these
behaviors match, is a subtle point and will be discussed in more detail in the discussion (see Section 6).

As an important side effect, empowerment can also be used as a(heuristic) exploration driver in
these scenarios: this is particularly interesting since, unlike optimal control algorithms, empowerment
is fundamentally local (limited to the horizon defined by theactions) as opposed to optimal control
algorithms that, for an informed decision, need to have their horizon extended to encompass information
about the desired target state(s) to a sufficiently accurateextent.

Thus, in the following section, we will demonstrate that

1. empowermentalone can lead to apparently intentional and goal-directed behavior of an agent
based only on the embodiment of the agent with no external reward structure, and

2. how it can furthermore act as a heuristic to guide the agent’s exploration of the environment.

We consider two scenarios: onewithout model-learning, and onewith model-learning. The first scenario
will demonstrate that incorporating empowerment into the perception-action loop of an agent produces
intuitively desirable behavior, by greedily choosing actions in each state that lead to the highest em-
powered states. Our primary intent here is to show that empowerment itself is a relevant quantity to be
considered and for simplicity we assume that the transitionprobabilities of the system are known. In the
second scenario, we will further reduce our assumptions andconsider this no longer to be the case. The
agent starts out knowing nothing about the environment it isin. We will then combine empowerment
with model-learning and exploration: while, as in the first scenario, the agent chooses its actions based on
empowerment, the underlying computations are carried out using alearnedmodel for the state transition
probabilities. The model is continually updated (in batches) from the transitions the agent experiences
and thus gets continually better at predicting the effects the actions will have, which in turn will produce
more accurate empowerment values. A comparison with commonmodel-based reinforcement learning,
RMAX (Brafman & Tennenholtz, 2002), which operates in a similar fashion but actively optimizes an
external performance criterion, concludes.

5.1 The domains

As testbeds for our experiments, we consider simulations ofthe three physical systems described be-
low. We reiterate that, in the literature, systems like these are usually used in the context of control
and learning behavior where a goal (desired target states) is externallydefined and, by optimizing a
thus determined performance criterion, the system is driven to specifically reach that goal. In contrast,
empowerment used here is agenericheuristic (aimed at curiosity-driven learning) where a goal is not
explicitly defined and which operates on innate characteristics of the system’s dynamic alone. It will
turn out that empowerment intrinsically drives the system (close) to states which in fact are typically
externally chosen as goal states. However, with empowerment we do not enforce this goal through any
external reward but through a generic intrinsic quantity that, for each domain, is generated in exactly the
same way. Note that, in a wider sense, all the tasks belong to the class of control problems where the
goal is to choose actions such that the system stays “alive” –to achieve this, the agent has to stay in a cer-
tain “stable” goal region. This is a class of problems for which we believe empowerment is particularly
well-suited.

Inverted pendulum: The first system consists of a single pole attached at one end to a motor, as
depicted in Figure 4. If force is applied, the pole will freely swing in thexy plane. More detailed

14

dynamic equations of the system are given in the appendix. Ifno force is applied, the stable equilibrium
of the system is when the pole hangs vertically down. Let thisstate be the initial condition. The goal is
to swing up and stabilize the pole in the inverted position. However, the motor does not provide enough
torque to do so directly in a single rotation. Instead, the pendulum needs to be swung back and forth to
gather energy, before being pushed up and balanced. This creates a somewhat difficult, nonlinear control
problem. The state space is2-dimensional,φ ∈ [−π, π] being the angle,̇φ ∈ [−10, 10] the angular
velocity. Since our empowerment model only deals with a finite number of1-step andn-step actions, the
control force is discretized toa ∈ {−5,−0.25, 0, 0,+0.25,+0.5}.

Riding a bicycle: The second domain we want to apply empowerment to is a more involved one: we
consider the bicycle riding task described in (Lagoudakis &Parr, 2003; Ernst, Geurts, & Wehenkel,
2005) and depicted in Figure 4. In this task, a bicycle-ridersystem (modeled as a simplified mechanical
system) moves at a constant speed on a horizontal surface. The bicycle is not self-stabilizing and has to
be actively stabilized to be prevented from falling. The goal is to keep the bicycle stable such that it con-
tinues to move forward indefinitely. A detailed descriptionof the dynamics of the system is given in the
appendix. The problem is4-dimensional: state variables are the roll angleω ∈ [−12π/180, 12π/180],
roll rate ω̇ ∈ [−2π, 2π], angle of the handlebarα ∈ [−80π/180, 80π/180], and the angular velocity
α̇ ∈ [−2π, 2π]. The control space is inherently2-dimensional:u1, the horizontal displacement of the
bicycle-rider system from the vertical plane, andu2, turning the handlebar from the neutral position.
Since empowerment can only deal with a finite number of1-step andn-step actions, we consider5
possible action vectors:(u1, u2) ∈ {(−0.02, 0), (0, 0), (0.02, 0), (0,−2), (0, 2)}.

Acrobot: The third domain is the acrobot proposed in (Spong, 1995). The acrobot can be imagined as
a gymnast swinging up above a high bar by bending at the hips. As depicted in Figure 4, the acrobot is a
two-link robot, which freely swings around the first joint (the hands grasping the bar) and can exert force
only at the second joint (the hips). Controlling the acrobotis a very challenging problem in nonlinear
control; it is underactuated, meaning that the dimensionality of the state space is higher than that of the
actuators, or, informally, that it has more degrees of freedom than actuators (in robotics, many systems
are underactuated, including manipulator arms on spacecraft, non-rigid body systems, and balancing
systems such as dynamically stable legged robots). Usuallytwo tasks are considered for the acrobot in
the literature: the first and easier one is to swing the tip (the feet) of the lower link over the bar at the
height of the upper link. The second task is significantly more difficult: as in the first task, the goal is
to swing up the lower link; however, this time the acrobot hasto reach the inverted handstand position
with close to zero velocity, and then to actively balance so as to remain in this highly unstable state
for as long as possible. A detailed description of the dynamics of the system is given in the appendix.
The initial state of the acrobot is the stable equilibrium with both links hanging vertically down. The
state space is4-dimensional:θ1 ∈ [−π, π], θ̇1 ∈ [−4π, 4π], θ2 ∈ [−π, π], θ̇2 ∈ [−9π, 9π]. Since, as
before, empowerment can deal with only a finite number of1-step andn-step actions, the continuous
control was discretized toa ∈ {−1,+1}. However, while these two actions alone are sufficient to
solve the swing-up task, they are not sufficient for the inverted balance, since for this case, control
values between the two extremes−1 and +1 must be chosen. Therefore, we include a third, non-
primitive ’balance’ action, which chooses control values derived from an LQR controller obtained from
linearizing the system dynamics about the handstand position (see appendix). Note that this ’balance’
action produces meaningful (i.e., actually useful) outputs only very close to the handstand state which
means that it cannot be naively used to direct the acrobot to balance from an arbitrary point of the state
space.

15

Goal:

Motor φ

φ̇

Displacement

of rider

(Back view)

ω̇

ω

(Side view)

r Mc

Mr

Md

l

dCM

Turning

handlebar

(Top view)

α

α̇

Goal:

upright balance

Motor

θ1

θ2

θ̇1

θ̇2

Figure 4: From left to right: the inverted pendulum task, theriding a bicycle task, and the acrobot
handstand task.

5.2 First scenario: model-based

In our first series of experiments, the agent chooses actionsgreedily to maximize empowerment. For
all domains, we assume that the state transition probabilities are known. The control loop becomes the
following: every time stept the agent observes the current statext. Using the state transition function, we
determine the1-step successor states under each of the possible1-step actions. For each of these states,
we compute the empowerment value as described in Section 3.4.3, usingNMC = 200, TOL = 10−5 and
MAX ITER = 150, and adding Gaussian white noise with (state-independent)covariance to “smear out”
the otherwise deterministic state transitions. The agent then executes the action corresponding to the
successor state with the highest empowerment value (empowerment-greedy action selection), advancing
the time and producing the next statext+1.

Note that in practice, for empowerment values to be meaningful, we usually require an increased
look-ahead horizon into the future than just a single simulation step; thus, instead of1-step empower-
ment, we usually need to examinen-step empowerment for values ofn greater than one. Here we form
then-step actions through exhaustive enumeration; thus ifNA is the number of possible1-actions the
agent has available, the numberNn of n-step actions we have to consider during the computation of em-
powerment isNn = (NA)n. For each experiment performed, we informally determined the minimum
time horizon of lookahead necessary to achieve the desired effect. Especially for small simulation steps
(such as∆ = 0.01), the numbern of 1-step actions needed to fill a given time horizon could grow rela-
tively large, which in turn would then lead to a large number of n-step actions, rendering computational
costs prohibitive. To reduce the number ofn-step actions while still maintaining the same lookahead,
each1-step action in an action sequence was held constant for an extended amount of time, a multiple of
the simulation step∆. An alternative would be to intelligently compress and prune the lookahead tree,
as suggested in (Anthony, Polani, & Nehaniv, 2009) for discrete scenarios, which there allows to extend
the horizon by more than an order of magnitude at similar complexity. Here, however, we are going to
demonstrate that even the locally informed empowerment with short lookahead horizons is sufficient to
treat aforementioned scenarios.

Results for inverted pendulum: Figure 5 (top row) shows a phase plot of the behavior that results
from starting in the initial condition (pole hanging vertically down) and following3-step empowerment
(and thusNn = 5 × 5 × 5 n-step actions) for a period of 20 seconds with state transition noiseΣ =

16

0.01I2×2 (whereIn×n denotes then×n identity matrix). The plot demonstrates that: (1) empowerment
alone makes the agent drive up the pendulum and successfullybalance it indefinitely; (2) the agent
accomplishes the goal without being explicitly “told” to doso; and (3) the trajectory shows that this
happens in a straight and direct way, without wasting time (and consistently so). Note that empowerment
only “illuminates” the local potential future of the current state and has no access to the global value of
the trajectory as opposed to optimal control methods where implicitly global information about the goal
states must be propagated back throughout the system model for the controller to take the right decision.

To compare these results with a different angle, we reformulate the problem as a minimum-time
optimal control task: as opposed to before, we now assume that the agent has an explicit, externally
specified goal (swinging up the pendulum as fast as possible and successfully balancing it afterwards).
A step-wise cost function which implements this goal is given by

g(xt, ut) =

{

−‖xt‖
2 if ‖xt‖ < 0.1

−1 otherwise
(12)

Since the dimensionality of the state space is low, we can usedynamic programming (value iteration
with grid-based interpolation) to directly determine theoptimalbehavioral policy, where optimal means
choosing actions such that the accumulated costs from Eq. (12) are minimized among all possible be-
haviors (Sutton & Barto, 1998). Comparing the results in Figure 5 (bottom row) from using dynamic
programming as opposed to using the empowerment heuristic in Figure 5 (top row) shows the remarkable
result that with empowerment we achieve nearly the same behavior as with optimal control. The result
is remarkable because, unlike the optimal value function, which through the underlying cost function is
tied to a particular goal, empowerment is a generic heuristic that operates on the innate characteristics of
the dynamics of the system alone.

0 5 10 15 20
−5

0

5

t [s]

φ
[r

ad
]

0 5 10 15 20
−5

0

5

t [s]

φ’
 [r

ad
]

0 5 10 15 20
−5

0

5

t [s]

u
[N

m
]

0 5 10 15 20
−5

0

5

t [s]

φ
[r

ad
]

0 5 10 15 20
−5

0

5

t [s]

φ’
 [r

ad
]

0 5 10 15 20
−5

0

5

t [s]

u
[N

m
]

Figure 5: Inverted pendulum: phase plot ofφ, φ̇ and controlu when following the greedy policy with
respect to: empowerment (top row); dynamic programming (bottom row).

Results for bicycle: For the more complex bicycle domain, the goal is to keep the bicycle going for-
ward by preventing it from falling over to one side or the other; when the angle from the vertical axis,
ω, deviates too much from zero (that is, is greater than12π

180) the bicycle is considered to have fallen.
Whenever this happens, the bicycle stops moving forward, and no matter what action the agent takes, the
successor state will be the same for all future time steps (absorbing state), and consequently empower-
ment will be zero.

Here we examine the behavior of empowerment for different initial conditions of the bicycle: we ran
different trials by varying the angleω in the interval−10π

180 , −8π
180 , . . . , +8π

180 , +10π
180 , and ω̇ in the interval

−30π
180 , −25π

180 , . . . , +25π
180 , +30π

180 ; α andα̇ were initially zero in all cases. We employ3-step empowerment
(and thusNn = 5 × 5 × 5 possiblen-step actions) where each1-step action in an action sequence is
held constant for4 simulation steps, and state transition noiseΣ = 0.001I4×4. Figure 6 (right) shows
that empowerment is able to keep the bicycle stable for a widerange of initial conditions; dots indicate
that the bicycle successfully kept going forward for20 seconds, stars indicate that it did not. Note that

17

in many cases of failure, it would actually have been physically impossible to prevent the bicylce from
falling; for example, when the bicycle already is strongly leaning to the left and further has velocity
pointing to the left. Also note that the column corresponding to zero angle shows an outlier5; while
empowerment was able to balance the bicycle forω̇ = −20π

180 , it was not forω̇ = +20π
180 . Figure 6 (left)

shows a phase plot when starting from the initial conditionω = 8π
180 ; as we can see, empowerment keeps

the bicycle stable and brings the system close to the point(0, 0, 0, 0), from where it can be kept stable
indefinitely.

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

t [sec]

ω
, ω

’ [
ra

d/
se

c]

ω
ω’

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

t [sec]

α,
 α

’ [
ra

d/
se

c]

α
α’

0 1 2 3 4 5 6 7 8 9 10
−0.03

−0.02

−0.01

0

0.01

0.02

t [sec]

C
on

tr
ol

 u
1, u

2

u
1

u
2
/100 −10 −8 −6 −4 −2 0 2 4 6 8 10

−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

ω [deg]

ω
’ [

de
g/

s]

Figure 6: Bicycle: (left side) phase plot of state variablesω, ω̇ (upper panel),α, α̇ (middle panel), and
controlsu1, u2 (lower panel) when starting from state

(

8π
180 , 0, 0, 0

)

and following the empowerment-
based policy; (right side) shows how empowerment is able to successfully balance the bicycle for a large
variety of initial conditions; the black vertical bars indicate failure states; that is, the value of angleω
from which failure can no longer be avoided.

Results for acrobot: For the highly challenging acrobot we require a deeper lookahead: here we con-
sider5-step empowerment (and thusNn = 3 × 3 × 3 × 3 × 3 possiblen-step actions), where each
1-step action in an action sequence is held constant for4 simulation steps, and state transition noise
Σ = 0.01I4×4. The phase plot in Figure 8 demonstrates that empowerment then leads to a successful
swing-up behavior, approaches the unstable equilibrium, and in particular makes the agent actually bal-
ance in the inverted handstand position. Figure 7 illustrates how these numbers translate into the real
physical system. Figure 8 (bottom right) shows the corresponding empowerment, that is, it shows for
every time step the empowerment value of the state the agent is in; while empowerment does not in-
crease monotonically in every single time step, it increases over the time and reaches the maximum in
the handstand position. The vertical bar in the figure indicates the point where the ’balance’ action was
chosen for the first time as the action with highest empowerment. From this point on, just choosing the
’balance’ would have been sufficient; however, the phase plot of the control variable reveals that during
this phase, the balance action was not always the one with thehighest empowerment.6 Note that the
’balance’ action (see Eq. (16) in the appendix) produces values in the interval[−1,+1] only for states

5The outlier is a result of inaccuracy produced from Monte-Carlo approximation. Repeating the experiment with a larger
number of samples showed that indeed the bicycle can be balanced from both initial conditions. However, note that these initial
conditions were already close to the boundary from where balancing becomes impossible, regardless of how many samples are
used.

6This observation was not due to inaccuracies because of Monte-Carlo approximation. However, while empowerment does
not exactly produce the sequence of minimal-time optimal controls, its qualitative behavior is close.

18

0 5 10 15 20 25 30

−2

−1

0

1

2

t [sec]

Figure 7: Empowerment alone makes the acrobot swing up, approach the unstable equilibrium, and
balance in the inverted handstand position indefinitely.

very close to the handstand position and, because of saturation, behaves like the two other actions+1 or
−1 otherwise.

5.3 Second scenario: model-learning and exploration

In the second experiment we will discuss a scenarion for empowerment which extends its potential appli-
cability; here we are interested in model-learning and using empowerment to extrapolate “intelligently”
which part of the state space to explore next. In particular,we will consider the case ofonline model
learning; i.e., learning the state transition probabilities from the samples an agent experiences while inter-
acting with the environment (which is more challenging since in general we cannot generate transitions
at arbitrary points in the state space and have to make do withthe states encountered during a specific
– and realistically achievable – run). The key idea here willbe to show that with empowerment we can
avoid sampling the state space exhaustively, and instead can learn the target behavior from only very few
system-agent interactions.

5.3.1 Overview of the learning architecture

An overview of the learning architecture is depicted in Figure 9. The agent consists of two components.
One is the model learnerMt, which stores a history of all transitionsDt = {xi, ai,x

′
i}

t
i=1 seen up to

the current timet and which implements multiple GPs to provide1-step predictionsp(xt+1|xt, at,Mt)
(Section 4.1) andn-step predictionsp(xt+n|xt,~a

n
t ,Mt) (Section 4.2). The second component is the

action selector. Given the current state of the environment, we first determine the successor states under
each of the possible1-step actions using the mean of the predictions fromMt. For each successor state,
we then determine their empowerment value (Section 3.4.3) using n-step predictions fromMt. Since
the predicted successor states depend on the accuracy ofMt, we adjust their empowerment scores by the
uncertainty of the associated1-step prediction. This uncertainty is taken to be the sum of the individual
uncertainties of the state components in Eq. (11). We employwhat is calledoptimism in the face of
uncertainty: the less certain the system is, the more we want it to performan exploratory action. Here,
we linearly interpolate between the two extremes maximum uncertainty (where we assignlog Nn, the
upper bound on empowerment) and minimum uncertainty (wherewe assign the actual empowerment
score). The concrete value of the maximum uncertainty,β > 0, and minimum uncertainty,α ≥ 0,
depend on the hyperparameters of the GPs implementingMt, for details see (Rasmussen & Williams,
2006). At the end, the agent executes the highest ranked action, observes the outcome and updates the
modelMt accordingly (for performance reasons only everyK steps). A summary of the control loop is
shown below:

1. Initialize:

(a) Generate initial transitionsD0.

19

0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

1

2

3

4

5

t [sec]

φ 1

0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

1

2

3

4

5

t [sec]

φ 1’

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

t [sec]

C
on

tr
ol

 u

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

t [sec]
φ 2

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2

4

6

8

10

t [sec]

φ 2’

0 5 10 15 20 25 30
2

2.5

3

3.5

t [sec]

E
m

po
w

er
m

en
t o

f c
ur

re
nt

 s
ta

te

Figure 8: Acrobot: phase plot when following the empowerment-based policy. The bottom right panel
shows the associated empowerment values. The vertical bar shows the first time the ’balance’ action was
chosen and produced values between the extreme controls−1 and+1.

20

Environment

Agent

get action

for state

observe state perform action

update model

of environment

queries

predict successor

state for 1−step and

n−step action

Model Action selector:

Empowerment

xt+1

xt

xt at

(xt, at, xt+1)

Mt

Figure 9: A framework for model-learning and empowerment-based exploration.

(b) Learn initial modelM0.

2. Loop: t = 1, 2, . . .

(a) Observe current statext

(b) For each1-step actionν = 1, . . . , Na

i. Compute1-step successor underν usingMt (Section 4.1)

p(xν
t+1|xt, at = ν,Mt) = N (µν(xt),Σν(xt))

ii. Computen-step empowermentcν
t := c(µν(xt)) (Section 3.4.3) usingn-step predictions

provided byMt (Section 4.2).

iii. Adjust empowerment scores according to the scalar uncertainty trΣν(xt) of the1-step
prediction inxt, linearly interpolating betweenlog Nn (max uncertainty) andcν

t (min
uncertainty):

c̃ν
t := cν

t +
trΣν(xt) − α

β − α
(log Nn − cν

t)

whereα andβ are the min and max uncertainty values of the predictions (depend on the
hyperparameters ofMt)

(c) Find best actionat := argmaxν=1...Na
c̃ν
t

(d) Executeat. Observext+1. Store transitionDt+1 = Dt ∪ {xt, at,xt+1}.

(e) EveryK steps: update modelMt usingDt.

5.3.2 Results

For this experiment, we will only consider the inverted pendulum domain for which it will be compar-
atively easy, because of low dimensionality, to compute therespective optimal behavior. The dynamics
of the domain is modified to obtain an episodic learning task:every500 steps, the state of the system
is reset to the initial condition(π, 0), and a new episode starts. The action selector computes empow-
erment using the same parameters as in the previous section,with the difference that now1-step and

21

n-step successor states are predicted by the current model. The model-learner is updated (re-trained)
everyK = 10 samples; for the GPs we employ the ARD kernel (Rasmussen & Williams, 2006) with
automatic selection of hyperparameters.

For comparison, we consider RMAX (Brafman & Tennenholtz, 2002), a common model-based rein-
forcement learning algorithm, which also combines exploration, model learning and control, and oper-
ates not unlike the learning framework we have described in Section 5.3.1. The main difference is that
RMAX is derived from dynamic programming and value iteration and finds agent behavior that opti-
mizes a given performance criterion. The performance criterion, as before, is the explicit cost function
Eq. (12), which makes the agent want to reach the goal as fast as possible. For RMAX we have to learn a
model both for the transitions of the environment and the cost function. While the former could be done
with GPs (same as with empowerment), the latter can not be done by GPs. The reason is that the cost
function is flat in every part of the state space except for a very small region about the goal. Since all the
initial samples the agent experiences will be from the flat region, a GP would rapidly conclude that the
whole cost function is flat; since the uncertainty of the model guides exploration, the GP would predict a
−1 cost for all states with very high confidence, and thus the agent would miss the goal for a long time
(creating a “needle-in-a-haystack” situation).

As it is usually done for RMAX, we therefore use a grid-based discretization to estimate costs and
transitions.7 Uncertainty of a prediction then depends on whether or not the underlying grid-cell has
been visited before. Since in RMAX unvisited states are moreattractive than reaching the goal, the agent
tends to explore the environment exhaustively before it canbehave optimally.

In Figure 10 we compare our empowerment-based exploration with RMAX for various spacings of
the underlying grid: we examine division into25, 50, 75, 100 cells. Every curve shows the cumulative
costs (under cost function Eq. (12)) as a function of episode. Thus every curve has two parts: a tran-
sient one where the agent is still learning and acting non-optimally, and a steady-state one where the
agent is acting optimally with respect to its underlying bias which is either maximizing empowerment or
minimization of costs.

The graph shows two things: (1) the finer the resolution of thegrid, the longer it takes RMAX to
act optimally. For a grid of size 25, the agent reaches optimal performance after 23 episodes; for a grid
of size 50 it needs 60 episodes; for a grid of size 75 it needs 117 episodes; and for a grid of size 100 it
needs 165 episodes. On the other hand, empowerment only needs 3 episodes until steady-state behavior
is reached. (2) The steady-state performance of empowerment is somewhat worse than that of RMAX,
about56 versus78. However, this is not at all surprising. Empowerment does not at all consider the
externally defined cost function when making decisions, whereas RMAX specifically optimizes agent
behavior such that performance with respect to this particular cost function is maximized. Still, behavior
under empowerment is close to what we would achieve by explicitly optimizing a cost function; however,
with empowerment, the agent can learn this behavior much faster since it does not have to exhaustively
explore the state space (it only has to explore the state space to the extent of learning an accurate model
for state transitions).

Figure 11 shows in more detail how empowerment drives the agent to visit only the relevant part
of the state space. The figure compares, for empowerment and RMAX with grid spacing 25, what
state-action pairs are visited during learning at various points in time (note that in both cases the model
learner treats actions independently from each other and does not generalize between them). The plots
show that, for the empowerment-based agent, the GP-based model-learner can accurately predict state
transitions after having seen only few very samples. As the accuracy of predictions goes up, uncertainty
of predictions goes down, as the GP becomes more confident about what it does. Low uncertainty in turn
means that the agent no longer takes exploratory actions, but instead chooses the one with the highest
empowerment. If the learned model is accurate enough, this is as good as knowing the true transitions

7The value iteration part of RMAX is also carried out with interpolation on a high-resolution grid. However, the details of
this step are of no concern in this paper, and the performace comparison we make is unaffected by it.

22

0 50 100 150 200 250 300 350 400 450 500
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

−56.9 steady state

−53.2 steady state

−63.8 steady state

−59.6 steady state

−78.3 steady state

3 episodes

23 episodes

60 episodes

117 episodes

165 episodes

Episodes (sample complexity)

C
um

ul
at

iv
e

to
ta

l c
os

ts
 (

pe
rf

or
m

an
ce

)

Figure 10: Exploration and model-based learning in the inverted pendulum domain. The plot compares
both the sample efficieny and ultimate performance of the learned behavior for empowerment with GPs
(top curve) and RMAX with different levels of discretization: grid sizes25, 50, 75, 100 (bottom curves).

function and the agent behaves accordingly (compare with model-based results in Section 5.2). As the
plot shows, here this happens very soon, right within the first episode. RMAX on the other hand has to
exhaustively sample the state-action space and essentially visit every grid-cell under each action. Thus it
takes much longer to even reach the goal region and then learnthe desired behavior.

6 Discussion

A central question that we need to address is: why does empowerment actually carry out intuitively
desirable behaviour? In previous work, it has been shown that this property is not spurious, but actually
reappears in a number of disparate scenarios (Klyubin et al., 2005a; Klyubin, Polani, & Nehaniv, 2005b;
Klyubin et al., 2008; Anthony, Polani, & Nehaniv, 2008; Anthony et al., 2009).

On the other hand, one can clearly create a scenario where empowerment will fail to match the
externally imposed goal: imagine for instance the invertedpendulum task, where the target state is
some oblique angleφ 6= 0, different from the upright position. Even if the position is sustainable (we
remind the reader that the task was underactuated), that position would clearly not match the state an
empowerment maximization strategy will try to attain. Nevertheless, the task of placing the pole in an
arbitrary oblique positionφ 6= 0 strikes one as unnatural if nothing else is specified in the task. In
other words, balancing the inverted pendulum seems to be themost unbiased, natural task to do in that
scenario.

However, of course, there are scenarios where preferred outcomes do not naturally arise from the
system dynamics. The most obvious examples are, e.g., mazeswhere one needs to reach a particular
goal state. This goal state can obviously be arbitrary, and selected independently from the actual dy-
namics/topology of the system. Even in such scenarios, empowerment still mimics/approximates the
graph-theoretic notion ofcentrality (Anthony et al., 2008); this means that empowerment maximization
will place the agent (approximately) at a location in the world from which the expected distance to a

23

−pi −pi/2 0 pi/2 pi
−6

−4

−2

0

2

4

6
Empowerment−based Exploration

φ [rad]

φ’
 [r

ad
/s

]

Action 0

Action 1

Action 2

Action 3

Action 4

(a) Empowerment: 250 transitions

−pi −pi/2 0 pi/2 pi
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
RMAX−based Exploration

φ [rad]

φ’
 [r

ad
/s

]

Action 0

Action 1

Action 2

Action 3

Action 4

(b) RMAX: 250 transitions

−pi −pi/2 0 pi/2 pi
−10

−8

−6

−4

−2

0

2

4

6
RMAX−based Exploration

φ [rad]

φ’
 [r

ad
/s

]

Action 0

Action 1

Action 2

Action 3

Action 4

(c) RMAX: 2500 transitions

−pi −pi/2 0 pi/2 pi
−10

−8

−6

−4

−2

0

2

4

6

8

10
RMAX−based Exploration

φ [rad]

φ’
 [r

ad
/s

]

Action 0
Action 1
Action 2
Action 3
Action 4

(d) RMAX: 10000 transitions

Figure 11: Distribution of visited state-action pairs for empowerment and RMAX. Empowerment reaches
the goal region around the point(0, 0) after about 250 transitions right in the very first episode, whereas
RMAX needs more than ten times as long. With empowerment, theagent only has to explore limited
parts of the state-action space until the model is learned. Under RMAX, in order to also learn the external
cost function, the state-action space needs to be sampled exhaustively.

randomly specified goal state will be minimal. In other words, it is “the best guess” where the agent
should place itself in expectation of a yet unknown goal, assuming one wishes to minimize the number
of steps to the goal8.

However, the performance in our scenarios is even better than that in that the natural goals that one
would impose a priori here seem to be anticipated by what empowerment is trying to maximize. Now,
all the considered scenarios have one thing in common: they are survival-type scenarios. The agent aims
to stay “alive” and to move away from “death” states as far as possible (we adopt here an argument that
is related to Friston’s free energy model of cognition whichhas been brought up in (Friston, Kilner, &
Harrison, 2006; Friston, 2009)).

What makes this particularly interesting in the context of continuous systems which are our point
of concern in the present paper is that the smoothness of the system informs the local empowerment
gradients around the agent’s state of where the most “alive”states are (and many dynamical systems
have this property). But even discrete transition graphs display — in somewhat structured scenarios like
grid-worlds or small-world networks (Anthony et al., 2008)— this property that the attraction basins of
global or good local empowerment optima are visible from some distance. This is particularly striking

8We completely omit the discussion of the case when differentactions have different costs for different states — this
obviously forces one to resort to the full-fledged dynamic programming formalism. However, this is clearly a case where the
specification of environmental structure and dynamics are not sufficient for the characterization of the task and the reward
structure needs to be explicitly specified. The issues of balancing explicit rewards and the information-theoretic costs of
decision making are intricate and are discussed in detail elsewhere (Tishby & Polani, 2010).

24

since empowerment seems to correlate well with measures fordominating states in graphs which have
been hand-crafted for that purpose (Anthony et al., 2008).

Where empowerment maximization coincides with the “natural” optimal control task, it computes
local gradients towards the right direction as opposed to optimalcontrol/dynamic programming which
implicitly require a global picture of where the goal statesare. It is an open question what properties
are required from a system to provide these relatively largeattraction basins of empowerment maxima
that are visible in local empowerment gradients. This property seems to be present in continuous en-
vironments and in environments with some degree of globallyhomogeneous structures (Anthony et al.,
2008).

Different from that are, however, novel degrees of freedom which form “gateways” in the state space
in that they are particular locations in the world that grantaccess to new subregions in the state space
(implying novel ways of interacting with the environment) that are otherwise inaccessable from the
majority of states. A prime example is the taxi domain from Section 2, where the actions of picking
up and dropping off a passenger open new degrees of freedom, but only at specific locations in the
maze (another example is the “box pushing” scenario where anagent’s empowerment increases close
to a pushable box due to the increased number of options (Klyubin et al., 2005a)). Such gateways are
usually irregular occurences in the state space and will typically only be detected by empowerment if
they are in reach of the action horizon. Still, intelligent action sequence extension algorithms such as
suggested in (Anthony et al., 2009) may provide recourse andlarger effective action horizons even in
these cases. However, the examples studied in this paper do not involve any such gateways and all
require only relatively short horizons by virtue of their smooth structure. This suggests that for the
significant class of dynamic control problems empowerment may provide a purely local exploration and
behaviour heuristic which identifies and moves towards particularly “interesting” areas; the present paper
furthermore demonstrates how this can be implemented in an efficient on-line fashion.

7 Summary

This paper has discussed empowerment, an information-theoretic quantity that measures, for any agent-
environment system with stochastic transitions, the extent to which the agent can influence the envi-
ronment by its actions. While earlier work with empowermenthas already shown its various uses in a
number of different domains, empowerment calculation was previously limited to the case of small-scale
and discrete domains where state transition probabilitieswere assumed to be known by the agent. The
main contribution of this paper is to relax both assumptions. First, this paper extends calculation of
empowerment to the case of continuous vector-valued state spaces. Second, we discuss an application
of empowerment to exploration and online model-learning where we no longer assume that the precise
state transition probabilities are a priori known to the agent. Instead, the agent has to learn them through
interacting with the environment.

By addressing vector-valued state-spaces and model-learning, this paper already significantly ad-
vances the applicability of empowerment to real-world scenarios. Still, from a computational point of
view, open questions remain. One question in particular is how to best deal with continuous, vector-
valued action spaces – so far we assumed in this paper that theaction space could be discretized.
However, for higher dimensional action spaces (which are common in robotic applications), a naive
discretization will soon become infeasible.

Acknowledgments

This work has partly taken place in the Learning Agents Research Group (LARG) at the Artificial Intel-
ligence Laboratory, The University of Texas at Austin, which is supported by grants from the National

25

Table 1: Physical parameters of the inverted pendulum domain
Symbol Value Meaning
g 9.81 [m/s2] gravitation
m 1 [kg] mass of link
l 1 [m] length of link
µ 0.05 coefficient of friction

Science Foundation (IIS-0917122), ONR (N00014-09-1-0658), DARPA (FA8650-08-C-7812), and the
Federal Highway Administration (DTFH61-07-H-00030). This research was partially supported by the
European Commission as part of the FEELIX GROWING project (http://www.feelix-growing.org) under
contract FP6 IST-045169. The views expressed in this paper are those of the authors, and not necessarily
those of the consortium.

A Dynamic model of the inverted pendulum

Refer to the schematic representation of the inverted pendulum given in Figure 4. The state variables are
the angle measured from the vertical axis,φ(t) [rad], and the angular velocitẏφ(t) [rad/s]. The control
variable is the torqueu(t) [Nm] applied, which is restricted to the interval[−5, 5]. The motion of the
pendulum is described by the differential equation:

φ̈(t) =
1

ml2

(

−µφ̇(t) + mgl sin φ(t) + u(t)
)

. (13)

The angular velocity is restricted via saturation to the interval φ̇ ∈ [−10, 10]. The values and meaning of
the physical parameters are given in Table 1.

The solution to the continuous-time dynamic equation in Eq.(13) is obained using a Runge-Kutta
solver. The time step of the simulation is 0.2 sec, during which the applied control is kept constant. The 2-
dimensional state vector isx(t) =

(

φ(t), φ̇(t))T , the scalar control variable isu(t). Since our algorithm
in Section 3.4.3 allows us to compute empowerment only for a finite set of possible1-step actions, we
discretized the continuous control space into5 discrete action choicesa ∈ {−5,−2.5, 0, 2.5, 5}.

B Dynamic model of the acrobot

Refer to the schematic representation of the acrobot domaingiven in Figure 4. The state variables are the
angle of the first link measured from the horizontal axis,θ1(t) [rad], the angular velocitẏθ1(t) [rad/s],
the angle between the second link and the first linkθ2(t) [rad], and its angular velocitẏθ2(t) [rad/s]. The
control variable is the torqueτ(t) [Nm] applied at the second joint. The dynamic model of the acrobot
system is (Spong, 1995):

θ̈1(t) = −
1

d1(t)

(

d2(t)θ̈2(t) + φ1(t)
)

(14)

θ̈2(t) =
1

m2l
2
c2 + I2 −

d2(t)2

d1(t)

(

τ(t) +
d2(t)

d1(t)
φ1(t) − m2l1lc2θ̇1(t)

2 sin θ2(t) − φ2(t)
)

(15)

26

Table 2: Physical parameters of the acrobot domain
Symbol Value Meaning
g 9.8 [m/s2] gravitation
mi 1 [kg] mass of linki
li 1 [m] length of linki
lci 0.5 [m] length to center of mass of linki
Ii 1 [kg · m2] moment of inertia of linki

where

d1(t) :=m1l
2
c1 + m2

(

l21 + l2c2 + 2l1lc2 cos θ2(t)
)

+ I1 + I2

d2(t) :=m2

(

l2c2 + l1lc2 cos θ2(t)
)

+ I2

φ1(t) := − m2l1lc2θ̇2(t)
2 sin θ2(t) − 2m2l1lc2θ̇2(t)θ̇1(t) sin θ2(t) +

(

m1lc1 + m2l1
)

g cos θ1(t) + φ2(t)

φ2(t) :=m2lc2g cos
(

θ1(t) + θ2(t)
)

.

The angular velocities are restricted via saturation to theinterval θ1 ∈ [−4π, 4π], andθ2 ∈ [−9π, 9π].
The values and meaning of the physical parameters are given in Table 2; we used the same parameters
as in (Sutton & Barto, 1998).

The solution to the continuous-time dynamic equations in Eqs. (14)-(15) is obained using a Runge-
Kutta solver. The time step of the simulation is 0.2 sec, during which the applied control is kept constant.
The 4-dimensional state vector isx(t) =

(

θ1(t), θ2(t), θ̇1(t), θ̇2(t)
)T

, the scalar control variable isτ(t).
The motor was allowed to produce torquesτ in the range[−1, 1]. Since our algorithm in Section 3.4.3

allows us to compute empowerment only for a finite set of possible 1-step actions, we discretized the
continuous control space. Here we use three actions: the first two correspond to a bang-bang control
and take on the extreme values−1 and+1. However, a bang-bang control alone does not allow us to
keep the acrobot in the inverted handstand position, which is an unstable equilibrium. As a third action,
we therefore introduce a more complex balance-action, which is derived via LQR. First, we linearize the
acrobot’s equation of motion about the unstable equilibrium (−π/2, 0, 0, 0), yielding:

ẋ(t) = Ax(t) + Bu(t),

where, after plugging in the physical parameters of Table 2,

A =









0 0 1 0
0 0 0 1

6.21 −0.95 0 0
−4.78 5.25 0 0









, B =









0
0

−0.68
1.75









, x(t) =









θ1(t) − π/2
θ2(t)

θ̇1(t)

θ̇2(t)









u(t) = τ(t).

Using MATLAB, an LQR controller was then computed for the cost matricesQ = I4×4 andR = 1,
yielding the state feedback law

u(t) = −Kx(t), (16)

with constant gain matrixK = [−189.28,−47.46,−89.38,−29.19]. The values resulting from Eq. (16)
were truncated to stay inside the valid range[−1, 1]. Note that the LQR controller works as intended
and produces meaningful results only when the state is already in a close neighborhood of the handstand
state; in particular, it is incapable of swinging up and balancing the acrobot on its own from the initial
state(0, 0, 0, 0).

27

Table 3: Physical parameters of the bicycle domain
Symbol Value Meaning
g 9.81 [m/s2] gravitation
v 10/3.6 [m/s] constant speed of the bicycle
h 0.94 [m] height from ground of the common bicycle-rider center of mass
l 1.11 [m] distance between front and back tire at the point where they touch

the ground
r 0.34 [m] radius of a tire
dCM 0.3 [m] vertical distance between the bicycle’s and rider’s centerof mass
c 0.66 [m] horizontal distance between front tire and common center ofmass
Mc 15 [kg] mass of the bicycle
Md 1.7 [kg] mass of a tire
Mr 60 [kg] mass of the rider

C Dynamic model of the bicycle

Refer to the schematic representation of the bicycle domaingiven in Figure 4. The state variables are the
roll angle of the bicycle measured from the vertical axis,ω(t) [rad], the roll rateω̇(t) [rad/s], the angle
of the handlebarα(t) [rad] (measured from the longitudal axis of the bicycle), and its angular velocity
α̇(t) [rad/s]. The control variables are the displacementδ(t) [m] of the bicycle-rider common center of
mass perpendicular to the plane of the bicycle, and the torque τ(t) [Nm] applied to the handlebar. The
dynamic model of the bicycle system is (Ernst et al., 2005):

ω̈(t) =
1

Ibc

{

sin(β(t))(Mc + Mr)gh

− cos(β(t))
[Idcv

r
α̇(t) + sign(α(t))v2

(Mdr

l

(

| sin(α(t))| + | tan(α(t))|
)

+
(Mc + Mr)h

rCM (t)

)]}

(17)

α̈(t) =

{

1
Idl

(

τ(t) − Idv

r
ω̇(t)

)

if |α(t)| ≤ 80π
180

0 otherwise
(18)

where

β(t) := ω(t) + atan
δ(t) + ω(t)

h
,

1

rCM (t)
:=











1
r

(l−c)2+ l2

sin2(α(t)2)

if α(t) 6= 0

0 otherwise
.

The steering angleα is restricted to the interval[−80π
180 , 80π

180], and whenever this bound is reached the
angular velocityα̇ is set to0. The moments of inertia are computed as:

Ibc =
13

3
Mch

2 + Mr(h + dCM)2 Idc = Mdr
2

Idv =
3

2
Mdr

2 Idl =
1

2
M2

d

The values and meaning of the remaining physical parametersare given in Table 3.
Roll rateω̇ and angular velocitẏα are kept in the interval[−2π, 2π] via saturation; roll angleω is

restricted to[−12π
180 , 12π

180]. Whenever the roll angle is larger than12π
180 in either direction, the bicycle is

supposed to have fallen. This state is treated as a terminal state by defining all outgoing transitions as

28

self-transitions, that is, once a terminal state is reached, the system stays there indefinitely, no matter
what control is performed. Thus, to keep the bicycle going forward, the bicycle has to be prevented from
falling.

The solution to the continuous-time dynamic equations in Eqs. (17)-(18) is obained using a Runge-
Kutta solver. The time step of the simulation is 0.2 sec, during which the applied control is kept constant.
The 4-dimensional state vector isx(t) =

(

ω(t), ω̇(t), α(t), α̇(t)
)T

, the 2-dimensional control vector is

u(t) =
(

δ(t), u(t)
)T

. Control variableδ was allowed to vary in[−0.02, 0.02], α was allowed to vary in
[−2, 2]. Since our algorithm in Section 3.4.3 allows us to compute empowerment only for a finite set of
possible1-step actions, we discretized the continuous control space. As in (Lagoudakis & Parr, 2003),
we only consider the following 5 discrete actions:a1 = (−0.02, 0), a2 = (0, 0), a3 = (0.02, 0), a4 =
(0,−2), a5 = (0, 2).

29

References

Anthony, T., Polani, D., & Nehaniv, C. (2009). Impoverishedempowerment: ‘meaningful’ action
sequence generation through bandwidth limitation. In G. Kampis & E. Szathmry (Eds.),Proc.
european conference on artificial life 2009, budapest.Springer.

Anthony, T., Polani, D., & Nehaniv, C. L. (2008). On preferred states of agents: how global structure is
reflected in local structure. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.),Artificial
life xi: Proceedings of the eleventh international conference on the simulation and synthesis of
living systems, winchester 5–8. aug.(pp. 25–32). MIT Press, Cambridge, MA.

Ay, N., Bertschinger, N., Der, R., Güttler, F., & Olbrich, E. (2008). Predictive information and explorative
behavior of autonomous robots.European Physical Journal B – Condensed Matter and Complex
Systems, 63, 329–339.

Blahut, R. (1972). Computation of channel capacity and ratedistortion functions. IEEE Trans on
Information Theory, 18(4), 460–473.

Brafman, R., & Tennenholtz, M. (2002). R-MAX, a general polynomial time algorithm for near-optimal
reinforcement learning.JMLR, 3, 213–231.

Der, R. (2000). Selforganized robot behavior from the principle of homeokinesis. In H.-M. Groß,
K. Debes, & H.-J. Böhme (Eds.),Proc. workhop soave ’2000 (selbstorganisation von adaptivem
verhalten)(Vol. 643, p. 39-46). Ilmenau: VDI Verlag.

Der, R. (2001). Self-organized acqusition of situated behavior. Theory Biosci., 120, 1-9.
Der, R., Steinmetz, U., & Pasemann, F. (1999). Homeokinesis– a new principle to back up evolution

with learning. In M. Mohammadian (Ed.),Computational intelligence for modelling, control, and
automation(Vol. 55, p. 43-47). IOS Press.

Dietterich, T. G. (1998). The MAXQ method for hierarchical reinforcement learning. InProc. of 15th
icml.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforcement learning.JMLR, 6,
503–556.

Friston, K. (2009). The free-energy principle: a rough guide to the brain?Trends Cogn. Sci., 13(7),
293-301.

Friston, K., Kilner, J., & Harrison, L. (2006). A free energyprinciple for the brain.Journal of Physiology-
Paris, 100, 70-87.

Girard, A., Rasmussen, C. E., Quiñonero-Candela, J., & Murray-Smith, R. (2003). Gaussian process
priors with uncertain inputs: Application to multiple-step ahead time series forecasting. InNips
15.

Kaplan, F., & Oudeyer, P.-Y. (2004). Maximizing learning progress: an internal reward system for de-
velopment. In F. Iida, R. Pfeifer, L. Steels, & Y. Kuniyoshi (Eds.),Embodied artificial intelligence
(Vol. 3139, p. 259-270). Springer.

Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2005a). All elsebeing equal be empowered. InAdvances in
artificial life, european conference on artificial life (ecal 2005) (Vol. 3630, p. 744-753). Springer.

Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2005b). Empowerment: A universal agent-centric measure
of control. InProc. ieee congress on evolutionary computation, 2-5 september 2005, edinburgh,
scotland (cec 2005)(p. 128-135).

Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2008). Keep youroptions open: An information-based
driving principle for sensorimotor systems.PLoS ONE.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration.JMLR, 4, 1107–1149.
Lungarella, M., Pegors, T., Bulwinkle, D., & Sporns, O. (2005). Methods for quantifying the information

structure of sensory and motor data.Neuroinformatics, 3(3), 243-262.
Lungarella, M., & Sporns, O. (2005). Information self-structuring: Key principle for learning and

30

development. InProceedings of 4th ieee international conference on development and learning
(p. 25-30).

Lungarella, M., & Sporns, O. (2006). Mapping information flow in sensorimotor networks.PLoS
Computational Biology, 2(10).

Prokopenko, M., Gerasimov, V., & Tanev, I. (2006). Evolvingspatiotemporal coordination in a modular
robotic system. In S. Nolfi et al. (Eds.),From animals to animats 9: 9th international conference
on the simulation of adaptive behavior (sab 2006), rome, italy (Vol. 4095, p. 558-569). Berlin,
Heidelberg: Springer.

Quiñonero-Candela, J., Rasmussen, C. E., & Williams, C. K.I. (2007). Approximation methods for
gaussian process regression. In L. Bottou, O. Chapelle, D. DeCoste, & J. Weston (Eds.),Large
scale learning machines(pp. 203–223). MIT Press.

Rasmussen, C. E., & Williams, C. K. I. (2006).Gaussian processes for machine learning. MIT Press.
Schmidhuber, J. (1991). A possibility for implementing curiosity and boredom in model-building neural

controllers. InProc. int. conf. simulation of adap behavior: From animals to animats.
Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically motivated reinforcement learning. InNips

17.
Spong, M. (1995). The swing up control problem for the acrobot. IEEE Control Systems Magazine, 15,

49–55.
Sporns, O., & Lungarella, M. (2006). Evolving coordinated behavior by maximizing information struc-

ture. In L. M. Rocha, M. Bedau, D. Floreano, R. Goldstone, A. Vespignani, & L. Yaeger (Eds.),
Proc. artificial life x (pp. 323–329).

Steels, L. (2004). The autotelic principle. In F. Iida, R. Pfeifer, L. Steels, & Y. Kuniyoshi (Eds.),
Embodied artificial intelligence: Dagstuhl castle, Germany, July 7-11, 2003(Vol. 3139, pp. 231–
242). Berlin: Springer Verlag.

Still, S. (2009). Information theoretic approach to interactive learning.EPL, 85, 28005.
Sutton, R., & Barto, A. (1998).Reinforcement learning: An introduction. MIT Press.
Tishby, N., & Polani, D. (2010). Information theory of decisions and actions. In V. Cutsuridis, A. Hus-

sain, & J. Taylor (Eds.),Perception-action cycle: Models, architecture and hardware. Springer.
(In Press)

Zahedi, K., Ay, N., & Der, R. (2010). Higher coordination with less control — a result of information
maximization in the sensorimotor loop.Adaptive Behaviours, 18(3-4), 338-355.

