
Least Squares SVM for Least Squares TD Learning
Tobias Jung1 and Daniel Polani2

Abstract. We formulate the problem of least squares temporal dif-
ference learning (LSTD) in the framework of least squares SVM
(LS-SVM). To cope with the large amount (and possible sequen-
tial nature) of training data arising in reinforcement learning we em-
ploy a subspace based variant of LS-SVM that sequentially processes
the data and is hence especially suited for online learning. This ap-
proach is adapted from the context of Gaussian process regression
and turns the unwieldy original optimization problem (with compu-
tational complexity being cubic in the number of processed data) into
a reduced problem (with computional complexity being linear in the
number of processed data). We introduce a QR decomposition based
approach to solve the resulting generalized normal equations incre-
mentally that is numerically more stable than existing recursive least
squares based update algorithms. We also allow a forgetting factor
in the updates to track non-stationary target functions (i.e. for the
use with optimistic policy iteration). Experimental comparison with
standard CMAC function approximation indicate that LS-SVMs are
well-suited for online RL.

1 Introduction

Least-squares TD (LSTD) One very important subproblem in
reinforcement learning (RL) is the policy evaluation problem, e.g.
see [13]. The goal is to compute the value function under a
fixed policy π (we assume a deterministic π), which is taken
to be the infinite horizon, discounted sum of rewards V π(x) =
Eπ

{
∑

∞

i=0
γiri |x0 = x

}

for the Markov chain resulting from start-
ing in state x and choosing actions according to policy π after-
wards. Here ri denotes the reward obtained while traversing from
state xi−1 to xi, and γ ∈ [0, 1) denotes a discount factor. The
expectation Eπ is meant wrt. the distribution of complete trajec-
tories. However, the Bellman equation allows us to write V π just
using the distribution of the successor states x′, i.e. V π(x) =
Eπ {rt + γV π(x′) |xt−1 = x}. To compute V π from actual tra-
jectories we can employ temporal difference learning, e.g. TD(0),
which employs incremental updates of the form [r+γV (x′)]−V (x)
for the observed transition from x to x′ as an unbiased estimate
for the true (unknown) expectation. It works well in conjunction
with parametrized function approximation and is usually trained with
(stochastic) gradient descent.

A variant that computes a solution in closed form is LSTD [2, 8],
minimizing the Bellman residuals for all observed transitions in a
least squares sense. This approach is more efficient since it makes
simultaneous use of all transitions seen so far. One disadvantage3

1 University of Mainz, Germany, email: tjung@informatik.uni-mainz.de
2 University of Hertfordshire, UK, email: d.polani@herts.ac.uk
3 Also, if the transitions are stochastic, we need a second independent sample

for each transition [1]. To allow a clearer exposition of our algorithm we
will only consider deterministic transitions. For stochastic MDPs this prob-
lem can be side-stepped by least squares fixed point approximation [2, 8].

of LSTD is that it involves solving (recursively) the corresponding
normal equations which is more costly than mere gradient descent
and has limited its use to parametrized function approximation.

In this paper we aim to exploit the data efficiency of LSTD and the
superior generalization capabilities of kernel-based methods as un-
derlying function approximator. Kernel-based methods (e.g. SVM)
are a flexible and more powerful alternative to parametric methods,
since the solution does not depend on a small number of features cho-
sen beforehand but is expanded in the training data itself. In the past,
kernel-based methods have mostly been used for batch RL [4]. More
recently, based on the online sparsification for Gaussian process re-
gression (GPR) from [3], a GPR approach for online TD learning
was proposed in [5].

Our approach is in some respects similar to theirs (since gener-
ally the predictor obtained from LS-SVM equals the posterior mean
of the GPR and the regularization parameter just corresponds to the
noise estimate). Our contribution lies 1.) in an alternative, elegant
derivation using LS-SVM, 2.) presenting a QR decomposition based
update scheme that is numerically more stable, 3.) including a for-
getting factor to track non-stationary target functions (i.e. for the use
with optimistic policy iteration) and 4.) providing further experimen-
tal evidence that kernel-based learning is well-suited for RL.

LS-SVM for LSTD Assume we have observed the t deterministic
transitions {(xi−1 → xi, ri)}

t
i=1 , xi ∈ X ⊂ R

d, ri ∈ Y ⊂
R. The goal is to find a function V : X → Y which minimizes
the residuals for the given data and generalizes well to unseen data.
We proceed in the usual way: choose the reproducing kernel Hilbert
space (RKHS) H of functions V : X → Y endowed with kernel k,
where k : X × X → Y is a symmetric, positive function (e.g. think
of Gaussian radial basis functions). To learn the unknown function
we solve a Tikhonov functional of the special form

min
V ∈H

1

t

t
∑

i=1

[

(

V (xi−1) − γV (xi)
)

− ri

]2

+
Λ

t
‖V ‖2

H
. (1)

The first term measures the error in the approximation (of tempo-
ral differences) and the second term penalizes the complexity (i.e.
the roughness) of the candidate V . The regularization parameter Λ/t
controls the trade-off between them. The Representer theorem tells
us that every solution to (1) is the sum of kernels centered on the
data: i.e. V (·) =

∑t
i=1

αik(xi, ·) where α =
(

α1, . . . , αt

)T
are

the coefficients that we need to determine. Define a t× (t + 1) band
matrix D by setting dii = 1 and di,i+1 = −γ. Replacing V in
(1) by its expansion and using that in RKHS we have the property
〈k(xi, ·), k(xj , ·)〉H = k(xi,xj), we then arrive at

min
α∈

�
t

1

t
‖DKttα − r‖2 +

Λ

t
α

T
Kttα (2)

with Ktt being the t × t kernel matrix [Ktt]ij = k(xi, xj) and
r =

(

r1, . . . , rt

)T
being the sequence of observed rewards. Solving

for α we obtain

(

H
T
ttHtt + ΛKtt

)

α = H
T
ttr . (3)

where the t × t matrix Htt is defined as Htt =def DKtt.
The central difficulty when using a non-parametric approach like

(1) is that the computational and memory complexity scales badly in
the data: the kernel matrix is dense and requires O(t2) storage, solv-
ing the generalized normal equations (3) requires O(t3) operations
and even every single prediction using the learned model requires
O(t) operations. Clearly, this would be completely infeasable when
used in conjunction with RL. In the next section we review sparse
approximation as means to overcome this problem.

2 Background: Projection on a subset of kernels

The technique of sparse approximation attempts to approximate the
kernel matrix using only a small subset of the data and avoids explicit
use and storage of the full t × t kernel matrix. In the subsequent
computations it allows us to consider a greatly reduced number of
variables. It is a very common technique in the context of Gaussian
process regression [3, 5, 11, 14].

Sparse approximation Sparse approximation is based on the ob-
servation that the kernel matrix often has rapidly decaying eigen-
values. Vanishing eigenvalues indicate that the data spans – approx-
imately – a rather low dimensional manifold in the feature space.
Thus, instead of using all the data points we can restrict ourselves
to use only those composing a basis of this manifold and project the
remaining ones onto their span. Let this basis be {k(x̃i, ·)}

m
i=1 for a

subset of m chosen data points4 (m ≤ t). Now, for arbitrary xi ker-
nel k(xi, ·) is approximated using only the m chosen basis elements

k(xi, ·) ≈

m
∑

j=1

aijk(x̃j , ·) i = 1 . . . t. (4)

In particular ai becomes the j−th unit vector if xi equals basis
element x̃j for some index j, so that the m data points constitut-
ing the basis are represented exactly in the feature space. The re-
maining t − m ones are represented only approximately. To obtain
the coefficients aij we minimize in RKHS H the distance di :=
∥

∥

∥
k(xi, ·) −

∑m
j=1

aijk(x̃j , ·)
∥

∥

∥

2

H

.Writing this in terms of the inner

product and setting its derivative to zero we arrive at

ai = K
−1
mmki (5)

where Kmm is the m × m kernel matrix corresponding to
the basis elements with [Kmm]ij = k(x̃i, x̃j) and ki =
(

k(x̃1, xi), . . . , k(x̃m, xi)
)T

. Once we have determined ai for in-
put xi, we obtain the corresponding approximation error as

di = kii − k
T
i ai (6)

where kii = k(xi,xi). This quantity tells us how well the basis is
able to approximate the i-th data point.

4 To avoid using cumbersome index sets we just mark data points selected
into the basis by a tilde

Online selection of the subset Next we need to deal with the se-
lection of the subset {x̃i}

m
i=1 which is going to make up our basis.

Possibilities include a greedy and iterative approach, adding the el-
ement to the basis that best represents all remaining non-basis el-
ements [12], the incomplete Cholesky factorization [7] or just ran-
dom selection [14]. However, all methods but the latter are unsuitable
when the data arrives incrementally. For this particular purpose, [3]
and later [6] have proposed a greedy online scheme that builds up the
basis incrementally and expands it whenever it becomes necessary.
We will apply their method in our approach without modification:
assume the data arrives sequentially at t = 1, 2, . . . and that we can
examine every data point once but cannot revise our decision later.
We maintain a list of currently chosen basis-elements Dm (the dictio-
nary), the inverse K−1

mm and assume that after seeing t − 1 samples
dictionary Dm contains m elements. When a new example xt ar-
rives we compute how well it can be approximated using Dm, i.e.
we compute (6). If this distance is below some chosen threshold ν,
the current basis represents xt well enough and we do not need to
consider it further. If the distance exceeds the chosen tolerance, we
add k(xt, ·) to the basis: expand Dm+1 = Dm ∪ {xt} and update
K−1

mm. Since the change to Kmm just involves appending kt the new
inverse can be obtained recursively either using the partitioned ma-
trix inversion formula or the Cholesky factorization. Computational
cost and storage is O(m2).

It can be shown [6] that for threshold ν > 0 the number m of
selected elements is bound by Const ·ν−d, where d is the dimension-
ality of the input domain X ⊂ R

d. Hence, for a continuous stream of
data {xt}

∞
t=1 the dictionary remains finite. For any reasonable choice

of ν (e.g. ν = 10−2) the number of selected elements m is usually
only a fraction of the number t of observed data points and further
stops increasing during the later stages of learning.

Solving a reduced problem Distinguish between batch and online
selection of the subset. First consider the batch case, where we com-
pute the ai after we have determined the m basis elements. Define a
t × m matrix A with rows aT

i from (5). Then we can write

A
T = K

−1
mmK

T
tm (7)

with Ktm being the m columns of the full kernel matrix corre-
sponding to the m indices of the basis elements. We obtain that
K̂tt =def AKmmAT = KtmK−1

mmKT
tmis a low-rank approxima-

tion of the full kernel matrix Ktt. To benefit from this approximation
[12] suggest the following: solve the regularized risk functional (1)
using all data points, but allow only the coefficients of the m points
constituting the basis to have non-zero values. This leads to a modi-
fied problem (c.f. the original problem (2)):

min
α∈

�
m

1

t
‖DKtmα − r‖2 +

Λ

t
α

T
Kmmα (8)

and to the system of linear equations
(

H
T
tmHtm + ΛKmm

)

α = H
T
tmr (9)

where the t×m matrix Htm is defined as Htm = DKtm. Thus we
end up solving the m × m system (9) rather than the t × t system
(3), which reduces computational and storage costs to manageable
O(m3) and O(m2) respectively.

If we assume online selection of the basis elements, to compute the
ai we can use only the basis elements found up to the current time
step (whereas in the batch case we would use the complete basis).
Indices in ai corresponding to elements added in future are set to

zero. Instead of (7) we obtain that K̃tm =def AKmm is only an
approximition of the true submatrix Ktm. To indicate this difference,
we will use the notation H̃tm instead of Htm in (9).

3 Time recursive solution using the QR method

The usual way to solve the normal equations (9) incrementally for
each observed transition (xt−1 → xt, rt) is to employ recursive least
squares methods. Our approach is different though, we present a QR
based solution adapted from the adaptive filtering literature, e.g. [10],
which comes at the same cost of O(m2) operations per step but has
increased numerical stability.

Concerning notation: the first subscript t will denote the current
number of transitions and the second subscript m will denote the
current number of basis elements. Substituting in (9) the m × m
cross-product matrix by Φtm = (H̃T

tmH̃tm + ΛKmm), and the rhs
by m × 1 vector stm = H̃T

tmr eq. (9) becomes

Φtmαt = stm (10)

Next we introduce the Cholesky factorization Φtm = Φ
1/2

tm Φ
T/2

tm

and an auxiliary m × 1 vector qtm. To solve (10) we first solve
Φ

1/2

tm qtm = stm and then Φ
T/2

tm αt = qtm.
Assume we have observed t − 1 transitions and selected m basis

functions. Each update t now proceeds as follows: we check if xt

is represented by the current basis well enough or if we will need
to augment the basis. The involved quantities {Φ

1/2

tm ,qtm, K
1/2
mm}

are then updated accordingly. At the end we just solve Φ
T/2

tm αt =
qtm to obtain the desired αt. Below we sketch the derivation of the
central steps (see Fig. 1 for the complete algorithm).

Step 1: Processing new data without augmenting the basis: xt

is approximately represented by the current dictionary, therefore we
only add the row vector hT

t = (kt−1 − γkt)
T to the designmatrix.

Thus,

Φtm =

[

H̃t−1,m

hT
t

]T [

H̃t−1,m

hT
t

]

+ ΛKmm

= Φt−1,m + hth
T
t

and hence

Φtmqtm = Φt−1,mqt−1,m + rtht.

To carry out this update we employ the array notation from [10]: we
start by arranging the quantities {Φ

1/2

t−1,m,qt−1,m} from the pre-
vious step and the newly obtained information {ht, rt} in a clever
way. If we then generate a orthogonal transformation Θt to lower
triangulize the resulting (m + 1) × (m + 1) array

[

Φ
1/2

t−1,m ht

qt−1,m rt

]

Θt =

[

Φ
1/2

tm 0

qtm ∗

]

(11)

we can directly read off the desired quantities {Φ1/2

tm ,qtm} from the
right hand side5 of (11) due to the norm and inner product preserving
properties of orthogonal transformations. To determine Θt we can,
for example, apply m Givens rotations to successively annihilate the
rightmost column ht in (11).

5 The ∗ denotes a scalar quantity that is not relevant for us.

Step 2: Processing new data and augmenting the basis: xt is
not approximately represented by the current dictionary. Now we ac-
tually have to perform two substeps. The first substep is to account
for the change when adding a new example (which adds the new row
hT

t = (kt−1 − γkt)
T to the designmatrix and is step 1 from above)

and the second substep is to account for the change when adding a
new basis function (which adds the new column H̃t−1,mat to the
designmatrix). Setting htt = k(xt−1,xt) − γk(xt,xt) we obtain
the recursion

Φt,m+1 =

[

H̃t−1,m H̃t−1,mat

ht htt

]T [

H̃t−1,m H̃t−1,mat

ht htt

]

+Λ

[

Kmm kt

kT
t ktt

]

=

[

Φtm Φt−1,mat + httht

aT
t ΦT

t−1,m + htth
T
t ζ

]

where ζ is short for ζ = aT
t Φt−1,mat + h2

tt + Λ(ktt − aT
t kt).

After computing ζ (where we need Φt−1,m) we perform Step 1
(above) to obtain Φtm. Then we update the Cholesky factor Φ

1/2

tm

by solving Φ
1/2

tm u = Φt−1,mat + httht for u and setting
scalar β =

√

ζ − uT u. Finally we obtain the desired quantities

{Φ
1/2

t,m+1,qt,m+1} via

Φ
1/2

t,m+1 =

[

Φ
1/2

tm 0

uT β

]

qt,m+1 =

[

qtm

(aT
t Φ

1/2

t−1,mqt−1,m + httrt − uT qtm)/β

]

Exponential forgetting Our contribution to track a non-stationary
target function (e.g. when using this approach for optimistic policy
iteration and slowly changing policies π) is to include a forgetting
factor 0 � λ < 1 (e.g. λ = 0.999) that puts exponentially less
emphasis on past experiences. Instead of (9) we solve a modified
problem with Σt =def diag(λt−1, . . . , λ, 1)

(

H̃
T
tmΣtH̃tm + Λλt

Kmm

)

α = H̃
T
tmΣtr

The derivation is similar to above, and the resulting updates are sum-
marized in the complete algorithm in Fig. 1.

4 Experiments

Here we use simulation experiments both for policy evaluation (of-
fline learning) and optimal control (online learning) to examine if
our approach indeed benefits from better generalization when com-
pared with two standard parametric methods: (1) grid-based tilecod-
ing (CMAC) and (2) radial basis function networks.

Policy evaluation The first experiment is a puddle-world consist-
ing of 101x101 cells (scaled to [0,1]). Possible actions are moving
into one of the four adjacent cells. The goal state is the cell in the up-
per right corner. Each step not leading into the goal yields the reward
r = −0.1. Three overlapping ”puddles” (Gaussians) are placed at
random and incur an additional penalty proportional to their activa-
tion. The location and spread of the puddles is depicted in Fig. 3. We
computed the optimal value function and policy for this domain and
generated transitions for 500 different episodes, each starting from a
randomly chosen state and following the optimal policy to the goal
(resulting in a training set of ∼50,000 observed transitions). We then

Algorithm Online policy evaluation with sparse LS-SVM and exponential forgetting

Store: Dictionary Dm = {x̃i}mi=1
,Φ

1/2

tm ,qtm,K
1/2
mm, current number of basis functions m

Parameter: Accuracy ν, regularization Λ, discount factor γ, forgetting factor λ
Output: Weights αt for the approximated value function V (·) =

∑m
i=1 αtk(x̃i, ·)

For t = 1, 2, . . . observe transition (xt−1 → xt, rt) under (fixed) policy π

1. Sparse approximation for xt

Compute kt,ht, ktt, htt

Obtain p from K
1/2
mmp = kt and at from K

T/2
mmat = p

If ktt − aT
t kt > ν

Add xt to the dictionary, K1/2
mm ← [K

1/2
mm,0;pT ,

√

ktt − pT p], Goto 3.
Else goto 2.

2. Add data point but do not augment basis ({Φ1/2

t−1,m,qt−1,m} 7→ {Φ
1/2

tm ,qtm}):
Generate Θt to lower triangularize the array

[

λ1/2Φ
1/2

t−1,m ht

λ1/2qt−1,m rt

]

Θt =

[

Φ
1/2

tm 0
qtm ∗

]

and read Φ
1/2

tm ,qtm from the rhs. Solve Φ
T/2

tm αt = qtm if necessary.

3. Add data point and augment basis ({Φ1/2

t−1,m,qt−1,m} 7→ {Φ
1/2

t,m+1
,qt,m+1}):

Compute c = Φ
T/2

t−1,mat and d = cT qt−1,m . Then get Φ1/2

tm ,qtm from 2.

Obtain u from Φ
1/2

tm u = λΦ
1/2

t−1,mc + httht

Compute β =
√

λcT c + h2
tt + Λλt(ktt − aT

t kt)− uT u

Update

Φ
1/2

t,m+1
=

[

Φ
1/2

tm 0

uT β

]

, qt,m+1 =

[

qtm

(λd + httrt − uT qtm)/β

]

and solve Φ
T/2

t,m+1
αt = qt,m+1 if necessary.

Figure 1. Online policy evalution with sparse LS-SVM at O(m2) operations per step, m being the number of basis functions

wished to examine how fast learning occurs when coupling LSTD
with different types of function approximation. The transitions were
fed successively into the algorithm and the error between approxima-
tion and true value function was measured. Function approximators
were: (1) our sparsified LS-SVM (Gaussian kernel, σ = 0.02 with
ν = 0.1 and ν = 0.01, Λ = 10−3), (2) a CMAC (resolution 7x7x7
and 10x10x10), and (3) a RBF-net with fixed centers (spread uni-
formly on a 12 x 12 grid, σ = 0.02). The results are shown in Fig. 3
and indicate that our approach is in fact superior as far as general-
ization is concerned. Also compare the required resources: CMAC
uses 343 and 1000 weights, the RBF-net uses 144 weights and our
LS-SVM uses 122 and 202 weights. 6

Optimal control In the second experiment we examine online
learning and pit our LSTD-LSSVM against iterative sarsa(λ) with
CMAC, which is the standard setup in RL and works well for many
problems. To use LSTD for optimal control we employ optimistic
policy iteration, and hence include a forgetting factor λ = 0.999
in the LS-SVM to cope with the non-stationarity of the value func-
tion due to the changing policy. The remaining parameters for LS-
SVM were unchanged. Since we only consider learning value func-
tions, we supply a generative model for policy improvement. The
sarsa(λ) (λ = 0.5) setup was appropriately modified. As testbed we
used the puddle-world from above and the puck-on-hill task from

6 Unfortunately we cannot directly compare CPU-time, since our algorithm
is implemented in C whereas the other two run in Matlab. Some numbers:
our algorithm processes 10,000 training examples with 122 weights in ∼2
secs. Dominating this cost with O(m2) is the number of weights m.

[9]. Both tasks are episodic with designated terminal states: each
episode starts from a random state and proceeds until either a ter-
minal state is reached or the number of steps exceeds a fixed limit of
500 steps. Various performance criteria were considered, see Fig. 2
for the results. In both cases LS-SVM outperforms CMAC in terms
of generalization, i.e. number of observed transitions to achieve good
performance. Again sparse LS-SVM requires far less weights to
achieve this level of accuracy, to obtain satisfactory results with the
CMAC in the puddle-world we even needed to double the resolution
(20x20x10). Fig. 3 illustrate the general benefit when using LSTD-
LSSVM policy evaluation instead of iterative TD: just after running
20 trials and visiting only a small fraction of the state space the ap-
proximated value function has the same overall shape as the true
value function.

5 Summary and future work

We formulated the problem of estimating the value function from
actual trajectories in a regularization framework using least-squares
SVM. The key contribution is a QR-based solution algorithm that is
fully incremental, i.e. solves the resulting normal equations indepen-
dent of the number of observed transitions and can hence be applied
to online RL. In the future we wish to extend the scope of our work
to the full RL problem. Among other things, we will address the is-
sue of exploration, stochasticity in transitions, model-free learning
through Q-values, and more comprehensive experiments with high-
dimensional control tasks. We also aim to explore other criteria for
the subset selection mechanism in sparse approximation (e.g. taking

0 200 400 600 800 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Trials

T
o

ta
l r

ew
ar

d
 p

er
 t

ri
al

(s

m
o

o
th

ed
 a

ve
ra

g
e

o
f

10
0

ru
n

s) LSSVM−LSTD (nu=0.01,sigma=1/50)

online sarsa(lambda) CMAC 10x10x10

online sarsa(lambda) CMAC 7x7x7

Puck−on−hill OPI

0 500 1000 1500 2000
−160

−140

−120

−100

−80

−60

−40

−20

0

Trials

T
o

ta
l r

ew
ar

d
 p

er
 t

ri
al

(s

m
o

o
th

ed
 a

ve
ra

g
e

o
f

10
0

ru
n

s)

Puddleworld OPI

online sarsa(lambda) CMAC 20x20x10

LSSVM−LSTD (nu=0.01,sigma=1/50)

0 500 1000 1500 2000
0

5

10

15

20

25

30

Trials

M
ea

n
 a

p
p

ro
xi

m
at

io
n

 e
rr

o
r

|V
* −V

t| p
er

 t
ri

al

Puddleworld OPI

online sarsa(lambda) CMAC 20x20x10

LSSVM−LSTD (nu=0.01,sigma=1/50)

Figure 2. Online learning for optimal control with LS-SVM via optimistic policy iteration (OPI) for two toy problems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Goal

A optimal Trajectory

Puddleworld
(101x101 cells)

0 100 200 300 400 500

0

5

10

15

20

25

30

Trials

M
ea

n
 a

p
p

ro
xi

m
at

io
n

 e
rr

o
r

p
er

 t
ri

al Puddleworld
LSTD Policy
Evaluation

CMAC 10x10x10

RBFnet 12x12

LSSVM (nu=0.1, sigma=1/50)

LSSVM (nu=0.01, sigma=1/50)

Figure 3. LS-SVM in policy evaluation (left) and OPI (right) for the puddle-world domain

into account the decrease of the error for the final predictor).
We believe that kernel-based methods are very well-suited for RL,

since they are data-oriented and thus more flexible than traditional
parametric methods: they place parameters where they are needed
and when new data arrives and do not waste resources on parts of
the state-space that are never visited. Though there is yet not much
experimental evidence we believe that this approach could help to
tackle high-dimensional control tasks that are yet unsolvable.

REFERENCES

[1] L. C. Baird, ‘Residual algorithms: Reinforcement learning with func-
tion approximation’, in Proc. of ICML 12, pp. 30–37, (1995).

[2] S. J. Bradtke and A. Barto, ‘Linear least-squares algorithms for tempo-
ral difference learning’, Machine Learning, 22, 33–57, (1996).

[3] L. Csató and M. Opper, ‘Sparse representation for Gaussian process
models’, in Advances in NIPS 13, pp. 444–450, (2001).

[4] T. Dietterich and X. Wang, ‘Batch value function approximation via
support vectors’, in Advances in NIPS 14, pp. 1491–1498, (2002).

[5] Y. Engel, S. Mannor, and R. Meir, ‘Bayes meets Bellman: The Gaussian

process approach to temporal difference learning’, in Proc. of ICML 20,
pp. 154–161, (2003).

[6] Y. Engel, S. Mannor, and R. Meir, ‘The kernel recursive least squares
algorithm’, IEEE Trans. on Sig. Proc., 52(8), 2275–2285, (2004).

[7] S. Fine and K. Scheinberg, ‘Efficient SVM training using low-rank ker-
nel representation’, JMLR, 2, 243–264, (2001).

[8] M. G. Lagoudakis and R. Parr, ‘Least-squares policy iteration’, JMLR,
4, 1107–1149, (2003).

[9] A. W. Moore and C. G. Atkeson, ‘The parti-game algorithm for variable
resolution reinforcement learning in multi-dimensional state-spaces’,
Machine Learning, 21(3), 199–233, (1995).

[10] A. Sayed, Fundamentals of Adaptive Filtering, Wiley Interscience,
2003.

[11] A. J. Smola and P. L. Bartlett, ‘Sparse greedy Gaussian process regres-
sion’, in Advances in NIPS 13, pp. 619–625, (2001).

[12] A. J. Smola and B. Schölkopf, ‘Sparse greedy matrix approximation for
machine learning’, in Proc. of ICML 17, pp. 911–918, (2000).

[13] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT
Press, 1998.

[14] C. Williams and M. Seeger, ‘Using the Nyström method to speed up
kernel machines’, in Advances in NIPS 13, pp. 682–688, (2001).

