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Why might it be a good idea?
® current state-of-the-art in many benchmark/real-world problems
® less burdened by #dim when compared with grids, tilecoding, etc.
® less unwieldy when compared to Neural Networks (no "‘forgetting"’, no local minima)
o

better generalization when compared to local instance-based methods (e.g. LWR)

Why might it be a bad idea?

® conceptual/implementation issues: SVR is a Batch-learner
® on-line RL needs to

o add new samples to the current training sequence

o modify (update) existing ones




What is this talk about?

1. Value Function Approximation
Reinforcement Learning, Temporal-Difference Learning, Function Approximation and TD(0)

2. Support Vector Regression

Formulate QP, Sparse Approximation, Reduced Problem, On-line Selection of Subset (based
on Engel, Mannor and Meir (2002))

3. Experiments
Gridworld, Mountain Car

4. Summary and Future Ideas

The big plan:
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A Markov Decision Process consists of

® States S ={s1,...,SN} T

® Actions A ={a1,...,an}

® Rewards model: R%(s,s’) ¢

® Transition probabilities (Markov): P%(s, s’ at St

p (Markov): P%(s, ') Agent -
t=0,1,2,...

Hitch: Usually delayed reward. In RL learner does not know the model P%(s,s’), R*(s,s’).

Objective: choose actions to maximize long term reward.




Criterion: infinite-horizon expected total discounted reward

How do we get there?
#® Policy: m: S — A (deterministic, stationary)

® Value function: (v discount rate)
[©.@)
V7T(s) = E“{Z vPry |se = s, ), Vs
k=0

#® Bellman says:

V7T(s) = Z P”(S)(s, s’) [RW(S)(S, s) + 'yVW(s')], Vs

S

#® Goal: optimal policy 7* = argmax_V™, optimal value function V*(s) = max,; V™ (s), Vs
y g n

Many ways to solve it:
® Methods based on Policy lteration (e.g. Optimistic Pl, Actor-Critic)

® Methods based on Value lteration (e.g. Q-learning)




Many algorithms perform policy-evaluation:

® Dynamic Programming style (model-based, use fixed policy 7):

Vir1(s) = Vi(s) + (3 P (s,8) [R™) (s,8') + Vi (s))] — Vi(s))

S

\ J/
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target

#® Temporal-Difference style (model-free, use observed reward r: and next state s’ using 7):

Vit1(s) = Vi(s) + of Tt +7Vt(3/2 — Vi(s))

target (unbiased estimate)

Memory-based function approximation: Basically, works by storing (state,targets) in a list:

#® TD-update:
o add new instance whenever current state is far from rest

o else update target for nearest state

® Query: Build (local) approximation



Objective: Given data {x;,v;}_,. In e-SVR we solve (bias absorbed)

min —%(a* —a)TK(a* —a) —c(a*+a)le+ (o —a)Ty
o,a*cR?
s.t. 0<aa"<(Ce

Final regressor: f(x) = (a* — o) k(x)
where  k(-,-) symmetric positive definite function (kernel)
K € R?*f  Kernel matrix [K];; = k(x;,%;)

k(x) € R with k(x) = (k(x1,%), ..., k(xex))"

C € R=9 Regularization parameter

Our problem: complexity scales superlinearly with # data




Recall the Representer Theorem: Every solution f € H (RKHS) to

min = 3 e(xi,ys, £x:)) + A ]l

fEH ¥ “—

(2
admits a representation f(x) = Zf Bik(x;,X)

—> Solution lies in a subspace spanned by the k(x;,-) (the data!)

Observation: K's eigenvalues decay rapidly, many of them are very small

—> This subspace can be approximated by just picking some of the k(x;, -)

Goal: Reduce the number of coefficients §; that we have to determine.




Assume we have picked the first m samples (for convenience marked by ~ ) ...

Approximate: the remaining £ — m ones (in H)

2
m
airgﬁlm k(xi,-)—Zaijk(xj,-) ,i=m+1...¢
J H
.. we obtain the coefficients:
a; = R_ll;:(xi)

where K ¢ R™MmXm
EZ(XZ) e R™

Reduced Kernel matrix [f(]ij = k(x;,%X;)
with k(x;) = (B(%1,%i), -+, B(Xm, Xi)>T

Define: A € R**X™ to be the matrix consisting of the rows a?. Then K ~ AKAT.

Goal: Want to use the much smaller K instead of the big K in our QP ...




Consider:
® reduced variables & = AT, &* = AT o* (each in R™)
® transformed target values § = Aty

#® solving the QP in the reduced variables &, &* with the reduced set {(&;,y;)}/",

Obtain: the solution to the reduced problem

fO) = D (aF —ay)k(x,-)
1=1
¥4 m ¥4
= ) (o — )Y aijk(X, )~ Y (af —ai)k(xs, ) = f()
i=1 j=1 i=1

which is approximately the one we would have obtained from the full problem.

Consequence: Instead of {(x;,y;)}_, use the reduced data {(%;,§;)}™, (usually m < £).




“How do we obtain the reduced set?

Goal: build {(x;,¥;)}7* in an on-line fashion (adapted from Engel et al. (2002))

Parameter: choose TOL (approximation precision)
Book-keeping: need {(x;,¥;)}" 1, K=, (ATA)~1 ATy

Start with an empty basis
LOOP
Get current sample (x¢, yt)-
Compute distance d; to span of current basis.
IF d¢ < TOL then k(x¢,-) is approximated well enough
Size of basis is unchanged. Recursively update (AT A)~1, AT y.
ELSE

Add x; to basis. Recursively update K—1. Append (AT A)~1 ATy,

How does it scale for large sample sizes?
® Efficient: memory and computational complexity is O(m?)

® m is asymptotically independent of total # data
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Approximating: sin ||x|| / ||x]||, x € [~10,10]2. Training: 500 randomly drawn samples.

RBF-kernel.
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'Experiment 2a: Mountain Car

Goal 1: Test approximation quality in on-line RL (model-based)

Value function (kernel=0.05)
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Goal 2: Compare performance with tilecoding (10 x 10 x 10)

Time—to—goal (smoothed)
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Summary: SVR with on-line RL is made possible by
1. Memorizing states+values as in instance-based architectures (on-line)
2. Building a sparsified training set (on-line)

3. Solving a reduced problem

Future work and some ideas:
® Other learning mechanisms, e.g. policy-iteration (batch updates to value function)
More difficult tasks

Minor (and major?) algorithmic improvements

o o 0

Sparsified training set could also be used in regularization networks or for placement of
basis functions in RBF-networks

°

Convergence?
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