Experiments in Value Function Approximation with Sparse Support Vector Regression

Tobias Jung and Thomas Uthmann {tjung,uthmann}@informatik.uni-mainz.de

Fachbereich Mathematik & Informatik

Johannes Gutenberg-Universität Mainz, Germany

Why SVR?

Why might it be a good idea?

- current state-of-the-art in many benchmark/real-world problems
- less burdened by #dim when compared with grids, tilecoding, etc.
- less unwieldy when compared to Neural Networks (no "'forgetting"', no local minima)
- better generalization when compared to local instance-based methods (e.g. LWR)

Why might it be a bad idea?

- conceptual/implementation issues: SVR is a Batch-learner
- on-line RL needs to
 - add new samples to the current training sequence
 - modify (update) existing ones

Contents

What is this talk about?

1. Value Function Approximation

Reinforcement Learning, Temporal-Difference Learning, Function Approximation and TD(0)

2. Support Vector Regression

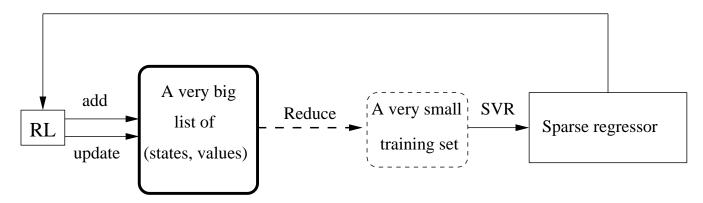
Formulate QP, Sparse Approximation, Reduced Problem, On-line Selection of Subset (based on Engel, Mannor and Meir (2002))

3. Experiments

Gridworld, Mountain Car

4. Summary and Future Ideas

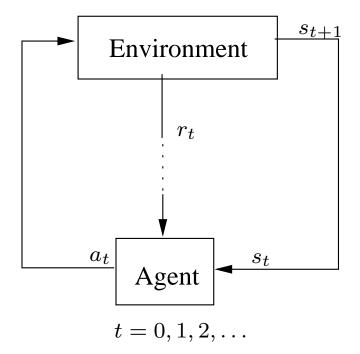
The big plan:



Reinforcement Learning I

A Markov Decision Process consists of

- ullet States $\mathcal{S} = \{s_1, \dots, s_N\}$
- ullet Actions $\mathcal{A} = \{a_1, \dots, a_M\}$
- Rewards model: $R^a(s,s')$
- Transition probabilities (Markov): $P^a(s, s')$



Hitch: Usually delayed reward. In RL learner does not know the model $P^a(s,s'), R^a(s,s')$.

Objective: choose actions to maximize long term reward.

Reinforcement Learning II

Criterion: infinite-horizon expected total discounted reward

How do we get there?

- **Policy**: $\pi: \mathcal{S} \to \mathcal{A}$ (deterministic, stationary)
- Value function: (γ discount rate)

$$V^{\pi}(s) = E^{\pi} \{ \sum_{k=0}^{\infty} \gamma^k r_k \mid s_t = s, \pi \}, \quad \forall s$$

Bellman says:

$$V^{\pi}(s) = \sum_{s'} P^{\pi(s)}(s, s') \left[R^{\pi(s)}(s, s') + \gamma V^{\pi}(s') \right], \quad \forall s'$$

● Goal: optimal policy $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$, optimal value function $V^*(s) = \max_{\pi} V^{\pi}(s)$, $\forall s$

Many ways to solve it:

- Methods based on Policy Iteration (e.g. Optimistic PI, Actor-Critic)
- Methods based on Value Iteration (e.g. Q-learning)

Reinforcement Learning III

Many algorithms perform policy-evaluation:

Dynamic Programming style (model-based, use fixed policy π):

$$V_{t+1}(s) = V_t(s) + \left(\sum_{s'} P^{\pi(s)}(s, s') \left[R^{\pi(s)}(s, s') + \gamma V_t(s') \right] - V_t(s) \right)$$
target

ullet Temporal-Difference style (model-free, use *observed* reward r_t and next state s' using π):

$$V_{t+1}(s) = V_t(s) + \alpha \left(\underbrace{r_t + \gamma V_t(s')}_{\text{target (unbiased estimate)}} - V_t(s) \right)$$

Memory-based function approximation: Basically, works by storing (state, targets) in a list:

- TD-update:
 - add new instance whenever current state is far from rest
 - else update target for nearest state
- Query: Build (local) approximation

Recall SVR ...

Objective: Given data $\{\mathbf{x}_i, y_i\}_{i=1}^{\ell}$. In ε -SVR we solve (bias absorbed)

$$\min_{\boldsymbol{\alpha}, \boldsymbol{\alpha}^* \in \mathbb{R}^{\ell}} \quad -\frac{1}{2} (\boldsymbol{\alpha}^* - \boldsymbol{\alpha})^T K (\boldsymbol{\alpha}^* - \boldsymbol{\alpha}) - \varepsilon (\boldsymbol{\alpha}^* + \boldsymbol{\alpha})^T \mathbf{e} + (\boldsymbol{\alpha}^* - \boldsymbol{\alpha})^T \mathbf{y}$$
s.t.
$$\mathbf{0} \leq \boldsymbol{\alpha}, \boldsymbol{\alpha}^* \leq C \boldsymbol{e}$$

Final regressor: $f(\mathbf{x}) = (\boldsymbol{\alpha}^* - \boldsymbol{\alpha})^T \boldsymbol{k}(\mathbf{x})$

where
$$k(\cdot,\cdot)$$
 symmetric positive definite function (kernel) $K \in \mathbb{R}^{\ell \times \ell}$ Kernel matrix $[K]_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ $\mathbf{k}(\mathbf{x}) \in \mathbb{R}^{\ell}$ with $\mathbf{k}(\mathbf{x}) = \left(k(\mathbf{x}_1, \mathbf{x}), \dots, k(\mathbf{x}_{\ell}, \mathbf{x})\right)^T$ $C \in \mathbb{R}^{\geq 0}$ Regularization parameter

Our problem: complexity scales superlinearly with # data

Support Vector Regression II

Recall the Representer Theorem: Every solution $f \in \mathcal{H}$ (RKHS) to

$$\min_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i} c(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \Lambda \|f\|_{\mathcal{H}}$$

admits a representation $f(\mathbf{x}) = \sum_{i}^{\ell} \beta_{i} k(\mathbf{x}_{i}, \mathbf{x})$

 \Longrightarrow Solution lies in a subspace spanned by the $k(\mathbf{x}_i,\cdot)$ (the data!)

Observation: K's eigenvalues decay rapidly, many of them are very small

 \implies This subspace can be **approximated** by just picking **some** of the $k(\mathbf{x}_i,\cdot)$

Goal: Reduce the number of coefficients β_i that we have to determine.

Eliminate linear dependence

Assume we have picked the first m samples (for convenience marked by $\tilde{\cdot}$) ...

Approximate: the remaining $\ell - m$ ones (in \mathcal{H})

$$\min_{\boldsymbol{a}_{i} \in \mathbb{R}^{m}} \left\| k(\mathbf{x}_{i}, \cdot) - \sum_{j=1}^{m} a_{ij} k(\tilde{\mathbf{x}}_{j}, \cdot) \right\|_{\mathcal{H}}^{2}, \quad i = m + 1 \dots \ell$$

.... we obtain the coefficients:

$$\boldsymbol{a}_i = \tilde{K}^{-1} \tilde{\boldsymbol{k}}(\mathbf{x}_i)$$

where
$$\tilde{K} \in \mathbb{R}^{m \times m}$$
 Reduced Kernel matrix $[\tilde{K}]_{ij} = k(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j)$ $\tilde{\boldsymbol{k}}(\mathbf{x}_i) \in \mathbb{R}^m$ with $\tilde{\boldsymbol{k}}(\mathbf{x}_i) = \left(k(\tilde{\mathbf{x}}_1, \mathbf{x}_i), \dots, k(\tilde{\mathbf{x}}_m, \mathbf{x}_i)\right)^T$

Define: $A \in \mathbb{R}^{\ell \times m}$ to be the matrix consisting of the rows \boldsymbol{a}_i^T . Then $K \approx A\tilde{K}A^T$.

Goal: Want to use the much smaller \tilde{K} instead of the big K in our QP ...

Define a reduced problem

Consider:

- $m{ ilde{m{\rho}}}$ reduced variables $ilde{m{lpha}} = A^Tm{lpha}$, $ilde{m{lpha}}^* = A^Tm{lpha}^*$ (each in \mathbb{R}^m)
- $oldsymbol{ ilde{y}}$ transformed target values $oldsymbol{ ilde{y}}=A^\daggeroldsymbol{y}$
- solving the QP in the reduced variables $\tilde{\alpha}, \tilde{\alpha}^*$ with the reduced set $\{(\tilde{x}_i, \tilde{y}_i)\}_{i=1}^m$

Obtain: the solution to the reduced problem

$$\tilde{f}(\cdot) = \sum_{i=1}^{m} (\tilde{\alpha}_{i}^{*} - \tilde{\alpha}_{i}) k(\tilde{\mathbf{x}}_{i}, \cdot)$$

$$= \sum_{i=1}^{\ell} (\alpha_{i}^{*} - \alpha_{i}) \sum_{j=1}^{m} a_{ij} k(\tilde{\mathbf{x}}_{i}, \cdot) \approx \sum_{i=1}^{\ell} (\alpha_{i}^{*} - \alpha_{i}) k(\mathbf{x}_{i}, \cdot) = f(\cdot)$$

which is approximately the one we would have obtained from the full problem.

Consequence: Instead of $\{(\mathbf{x}_i,y_i)\}_{i=1}^\ell$ use the reduced data $\{(\tilde{\mathbf{x}}_i,\tilde{y}_i)\}_{i=1}^m$ (usually $m \ll \ell$).

How do we obtain the reduced set?

Goal: build $\{(\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^m$ in an on-line fashion (adapted from Engel et al. (2002))

Parameter: choose TOL (approximation precision)

Book-keeping: need $\{(\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^m$, \tilde{K}^{-1} , $(A^TA)^{-1}, A^T\boldsymbol{y}$

Start with an empty basis

LOOP

Get current sample (\mathbf{x}_t, y_t) .

Compute distance d_t to span of current basis.

IF $d_t < exttt{TOL}$ then $k(\mathbf{x}_t, \cdot)$ is approximated well enough

Size of basis is unchanged. Recursively update $(A^TA)^{-1}, A^Ty$.

ELSE

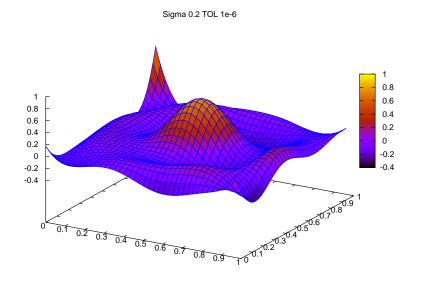
Add \mathbf{x}_t to basis. Recursively update \tilde{K}^{-1} . Append $(A^TA)^{-1}, A^Ty$.

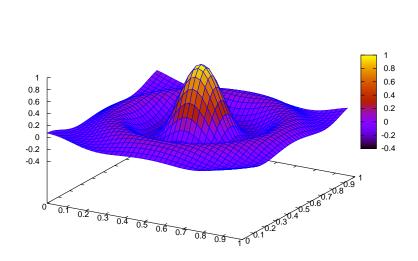
How does it scale for large sample sizes?

- ullet Efficient: memory and computational complexity is $\mathcal{O}(m^2)$
- ullet m is asymptotically independent of total # data

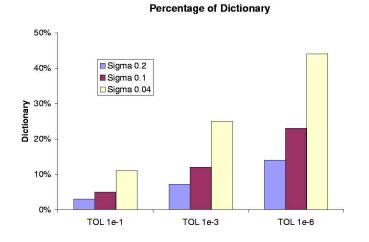
Toy Example: Sombrero

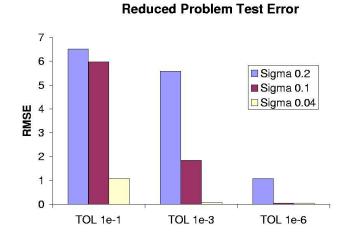
Approximating: $\sin \|\mathbf{x}\| / \|\mathbf{x}\|$, $\mathbf{x} \in [-10, 10]^2$. Training: 500 randomly drawn samples. RBF-kernel.



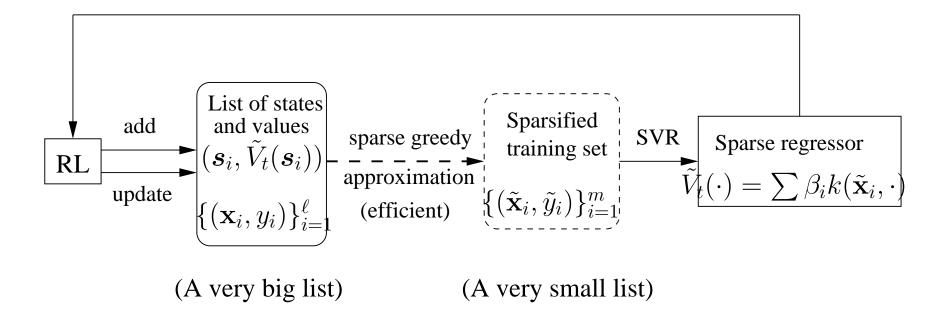


Sigma 0.04 TOL 1e-6



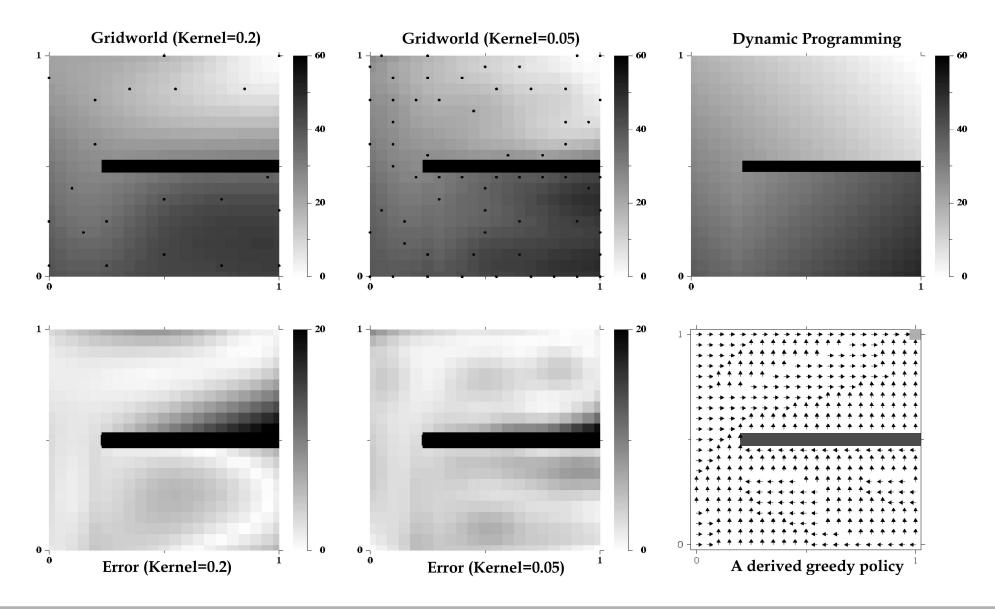


Putting everything together ...



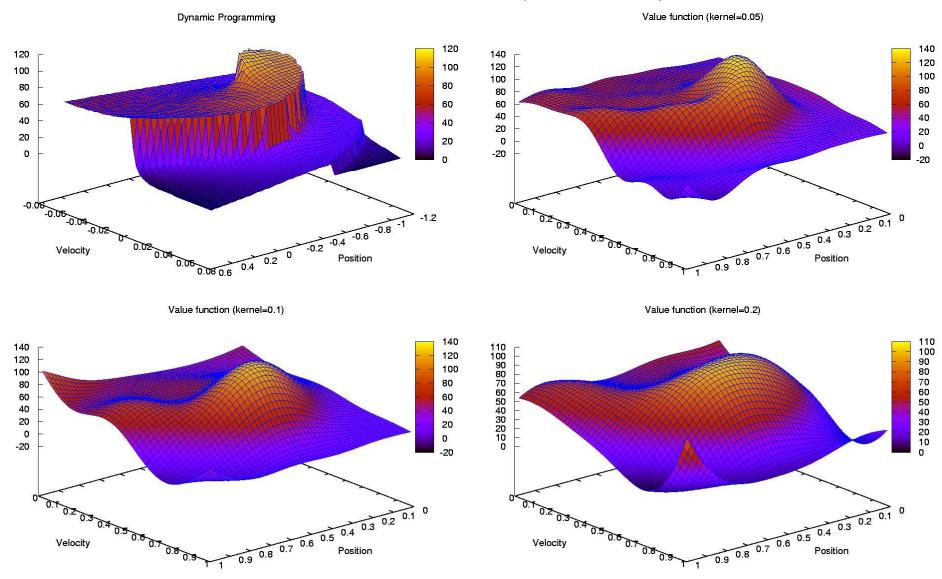
Experiment 1: Gridworld

Goal: Test approximation quality in on-line RL (model-based)



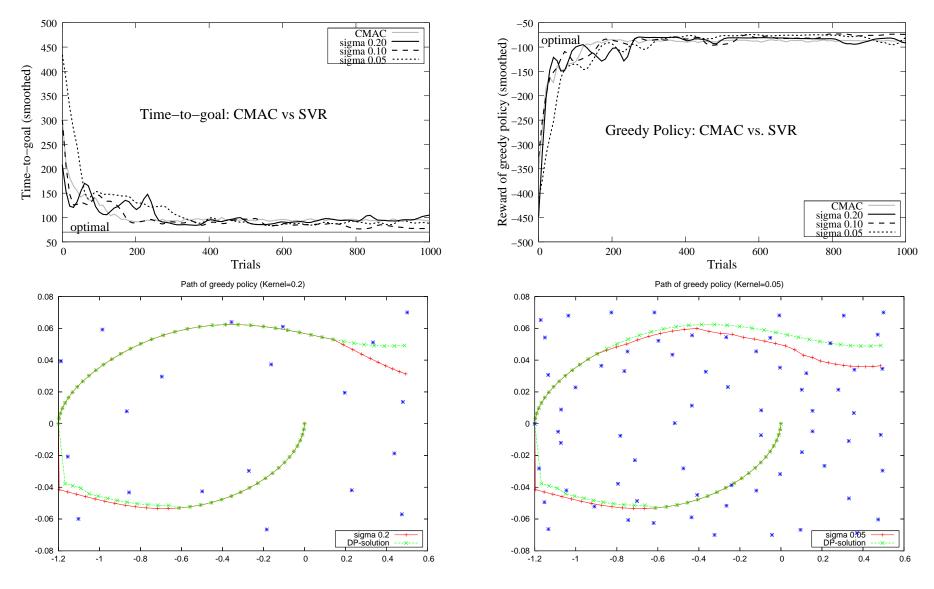
Experiment 2a: Mountain Car

Goal 1: Test approximation quality in on-line RL (model-based)



Experiment 2b: Mountain Car

Goal 2: Compare performance with tilecoding ($10 \times 10 \times 10$)



Conclusions

Summary: SVR with on-line RL is made possible by

- 1. Memorizing states+values as in instance-based architectures (on-line)
- 2. Building a sparsified training set (on-line)
- 3. Solving a reduced problem

Future work and some ideas:

- Other learning mechanisms, e.g. policy-iteration (batch updates to value function)
- More difficult tasks
- Minor (and major?) algorithmic improvements
- Sparsified training set could also be used in regularization networks or for placement of basis functions in RBF-networks
- Convergence?