
Long Term Prediction of Product Quality in a

Glass Manufacturing Process Using a Kernel

Based Approach

Tobias Jung1, Luis Herrera2, and Bernhard Schoelkopf3

1 Johannes Gutenberg-Universitaet,
Fachbereich Mathematik & Informatik, 55099 Mainz, Germany

2 University of Granada,
Dpt. of Computer Architecture and Technology, 18071 Granada, Spain

3 M.P.I. for Biological Cybernetics, 72076 Tuebingen, Germany

Abstract In this paper we report the results obtained using a kernel-
based approach to predict the temporal development of four response
signals in the process control of a glass melting tank with 16 input pa-
rameters. The data set is a revised version1 from the modelling challenge
in EUNITE-2003. The central difficulties are: large time-delays between
changes in the inputs and the outputs, large number of data, and a gen-
eral lack of knowledge about the relevant variables that intervene in the
process. The methodology proposed here comprises Support Vector Ma-
chines (SVM) and Regularization Networks (RN). We use the idea of
sparse approximation both as a means of regularization and as a means
of reducing the computational complexity. Furthermore, we will use an
incremental approach to add new training examples to the kernel-based
method and efficiently update the current solution. This allows us to use
a sophisticated learning scheme, where we iterate between prediction and
training, with good computational efficiency and satisfactory results.

1 Introduction

In this paper we report on using kernel based methods to predict the temporal
development of four response signals that are quality-related process variables
occurring in the manufacturing of glass. The data, provided by Schott Glass
(Mainz), consists of 16 input values and four output values (each recorded at
15-minute intervals) and is the rescaled operational data of a glass melt obtained
over a period of forty weeks. For the last two weeks, only the 16 input values
are known, i.e. the control targets of the process engineers and the sometimes
unexpected, but measurable external influences (like e.g. outside temperature),
and our goal was to predict the four output values. The real physical meaning
of the data and the manner in which the melting reacts to these inputs was not
given. The central difficulty in forecasting the outputs is the seemingly irregular

1 To obtain the data set cwt 2004, please contact katharina.lankers@schott.com

behavior with random spikes and the unknown delay time between variation of
an input signal and the “response” from the glass melting tank.

Several paradigms and methodologies have been applied for time series pre-
diction problems. Specifically, support vector machines (SVM) and kernel-based
methods (KM) are receiving increasing attention [6,8], due to its remarkable
characteristics such as good generalization performance, the absence of spuri-
ous local minima, the possibility of sparse representation of the solution and
the relative independence of the computational complexity on the number of
input dimensions of the problem [4,7]. Nevertheless, one disadvantage of KMs is
that the computational complexity scales at least quadratically in the number
of training samples. Thus a large amount of computation time will be involved
when KMs are applied for solving large-size problems.

In this paper we present a kernel based approach that makes use of the idea
of the sparse matrix approximation [3] in order to reduce the computational
complexity of the problem and also as a means of regularization. Additionally, the
performance of the model is improved using an iterative process that augments
the original training sequence, by increasingly adding as new input variables
noisy copies of the original data (obtained by learned 1-step predictions). The
results obtained for the long term prediction problem showed that our approach
obtained satisfactory results in comparison to those presented for the EUNITE
2003 competition [1].

The rest of the paper is organized as follows. Section 2 presents the kernel
based learning methodology used in this paper. Section 3 presents the applica-
tion of the methodology to the cwt 2004 data set and the predictions obtained.
Section 4 concludes the work.

2 Methodology, Kernel based Learning

2.1 SVM and RN

Given a data set of ` examples {(xi, yi)}
`
i=1

with xi ∈ X ⊂ R
d being the

inputs and yi ∈ Y ⊂ R being the outputs, the goal is to learn the underlying
model. In this paper, we will consider as the space of candidate functions, the
Reproducing Kernel Hilbert Space (RKHS) H of functions f : X → Y endowed
with reproducing kernel k, where k : X × X → Y is a symmetric, positive
definite function (e.g. think of Gaussian RBF). The underlying function can be
thus reconstructed solving a Tikhonov functional of the following general form

min
f∈H

H [f] =
1

`

∑̀

i=1

c(xi, yi, f(xi)) + Λ ‖f‖
2

H (1)

where the first term measures the error in the approximation and the second
term measures the complexity (i.e. the smoothness) of the current candidate.
The Representer Theorem tells us that any solution to (1) has a representation

in the form: f(·) =
∑`

i=1
βik(xi, ·) (i.e. as a sum of kernels centred on the data)

where βi are the coefficients that need to be determined [4]. The choice of the
cost function c in (1) leads to two different methodologies:

– Quadratic costs c(xi, yi, f(xi)) = 1

2
(yi −f(xi))

2 lead to RN. The coefficients
βi are obtained by solving the linear system

β = (KT K + `ΛK)−1KT y = (K + `ΛI)−1y

with symmetric kernel matrix K. Note that we have to estimate one coeffi-
cient for each data point.

– ε-insensitive costs c(xi, yi, f(xi)) = max(0, |yi − f(xi)| − ε) lead to Support
Vector Regression. The coefficients βi are obtained using βi = (α∗

i −αi) and
solving the constrained quadractic programming (QP)

min
α,α∗∈R`

−
1

2
(α∗ − α)T K(α∗ − α) − ε(α∗ + α)T e + (α∗ − α)T y (2)

subject to 0 ≤ α∗ , α ≤ Ce., where α, α∗ ∈ R
` denotes the unknowns,

K ∈ R
`×` the kernel matrix, e = (1, . . . , 1)T and C ∈ R≥0 corresponds

to the regularization parameter. Note that we have to calculate as many
coefficients as we have data.

From a practical point of view, in order to apply these methods we need
to choose (e.g. via cross validation) the kernel k, the tolerance ε and the right
amount of regularization C or Λ.

In both cases the overall computational demand increases (at least) quadrat-
ically in the number of data. Moreover, if we were to incrementally add new sam-
ples and simultaneously needed to predict using the currently available model,
we would constantly have to retrain our solution from scratch. Clearly this is
completely infeasible. The next subsection describes a possible solution to this
problem.

2.2 Sparse Approximation and incremental learning

The technique of sparse approximation allows us to dramatically reduce the
number of variables considered in the optimization problem. It is based on the
observation that the kernel matrix K often has rapidly decaying eigenvalues, and
thus that the data in the feature space spans a rather low-dimensional manifold.
Instead of using all the data, we can restrict us to use only the data points that
compose the basis of this manifold. Therefore, we can approximate the data set
by choosing just a few samples (a suitable basis) and projecting the remaining
ones onto their span [2,3,4,5] (this technique is very common in the context of
Gaussian process regression).

For example let the first m samples be our basis {k(xi, ·)}
m
i=1

(m � `). Then
the remaining ` − m ones can be approximated via linear combination

k(xi, ·) ≈
m

∑

j=1

aijk(xj , ·) , i = m + 1 . . . `. (3)

Since we are dealing with elements in RKHS H, we have to determine coef-
ficients aij such that the distance

di :=

∥

∥

∥

∥

∥

∥

k(xi, ·) −
m

∑

j=1

aijk(xj , ·)

∥

∥

∥

∥

∥

∥

2

H

, i = m + 1 . . . ` (4)

is minimized. Writing (4) in terms of the inner product (and recalling that in H
we have 〈k(xi, ·), k(xj , ·)〉H = k(xi,xj)) and setting its derivate to zero leads to

ai = K̃−1k̃i (5)

where K̃ ∈
�

m×m with [K̃]ij = k(xi,xj) and k̃i ∈
�

m with k̃i=
(

k(x1,xi), . . . ,

k(xm,xi)
)T

. Once we have determined ai corresponding to input xi, we obtain
the corresponding approximation error as

di = kii − k̃T
i ai (6)

This quantity tells us how well the basis {k(xi, ·)}
m
i=1

is able to approximate
a given sample. Now it is very straightforward to use this error as a guide to
(greedily) build up the basis online [9], thus allowing incremental addition of
data: every time a new sample arrives, we check whether it can be approximated
by the current basis well enough. If the error is below some chosen threshold,
we do not need to add the current sample to the basis and can hence discard
it. Only samples that cannot be approximated well are added to the basis. This
incremental approach for building the manifold basis usually reduces the total
number of samples to a small fraction of it.

2.3 Solving a reduced Problem

Thus, we can use the sparse greedy approximation to reduce the computational
workload [3]: instead of solving a QP in ` variables, we only need to consider the
m variables corresponding to the selected basis (usually m � `). Let A ∈ R

`×m

be the matrix consisting of rows ai from (5). Then we approximate the full kernel
matrix K ∈ R

`×` via K ≈ AK̃AT . We define reduced variables α̃, α̃∗ ∈ R
m by

setting α̃ = AT α and α̃∗ = AT α∗. Now instead of solving the full QP (2) we
can formulate a reduced QP: we replace K by AK̃AT and y by ỹ = A†y and
obtain

min
α̃,α̃∗∈Rm

−
1

2
(α̃∗ − α̃)T K̃(α̃∗ − α̃) − ε(α̃∗ + α̃)T A†e + (α̃∗ − α̃)T ỹ (7)

Note that if we solve the reduced problem (7), we obtain the same result as if
we had solved the full problem (2) using only the training samples {xi, ỹi}

m
i=1

in the basis. However, solving the reduced problem only depends on m and is
asymptotically independent of `. A similar reduction to an m-by-m problem is
obtained in the case of regularization networks [5].

3 Predicting the Schott data cwt 2004

The data set cwt 2004 consists of 20 measurements obtained in regular intervals
(once every 15 minutes) from a glass melting process. Each row contains 20
observations from one time step. The first 16 observations (denoted by in1–
in16) are measurements that could have an influence on the targets (like e.g.
room temperature). The remaining 4 observations out1–out4 are the targets that
we want to predict. The task in the EUNITE-2003 challenge was the following:
use the given values for time steps 1-16000 to learn a model that predicts out1–
out4 for the next 1568 steps.

3.1 Preprocessing

The given data set cwt 2004 consisted of raw measurements. We used the follow-
ing steps during preprocessing of the data: replace missing values by an estimate
(linear interpolation), remove outliers, apply data smoothing (rolling mean), nor-
malize inputs and de-trend (remove increasing trend in first output, that often
can not be implicitly considered by traditional learning methodologies).

3.2 Timeseries prediction as supervised learning

To obtain a model suitable for future predictions we use the supervised learning
framework with 1-step predictions as targets and λ past observations as inputs.
Thus our training samples {(xt, yt)}t were given by

xt =
(

outt−1, . . . , outt−λ, inp1t, . . . , inp1t−λ , . . . , inp16t, . . . , inp16t−λ

)T

yt = outt

We used lag λ = 40. Each of the 4 outputs is treated independently, that is
we train 4 different models. Instead of using the usual approach of feeding the
training examples once to the function approximator, we used a more compli-
cated, iterated training procedure adapted from [2] (dropping the inp to avoid
cluttered notation):

1. Iteration: using {(xi, yi)}
`
i=λ we obtain the model f1. With f1 we can com-

pute the 1-step predictions for the known time steps i = λ + 1 . . . ` to obtain
ŷ1

i = f1(xi). Now we assemble the modified training samples {(x1

i , yi)}
`
i=λ

with
x1

i =
(

ŷ1

i−1
, yi−2, yi−3, . . . , yi−λ, . . .

)T

and add them to the current training set.
2. Iteration: using {(xi, yi)}

`
i=λ ∪ {(x1

i , yi)}
`
i=λ we obtain model f2. With f2

we can compute the 1-step predictions for the known time steps i = λ +
1 . . . ` to obtain ŷ2

i = f2(xi). Now we assemble the modified training samples
{(x2

i , yi)}
`
i=λ with

x2

i =
(

ŷ2

i−1
, ŷ2

i−2
, yi−3, . . . , yi−λ, . . .

)T

and add them to the current training set.

3. Iteration etc.

Thus, in the kth iteration we build our model using the training sequence

{(xi, yi)}
`
i=λ ∪ {(x1

i , yi)}
`
i=λ ∪ . . . ∪ {(xk

i , yi)}
`
i=λ .

Note that this iterated training procedure greatly benefits from sparse approx-

imation which drastically reduces the computational complexity. In the simu-
lations performed, using repeated training resulted in much better predictions
when compared with the results obtained using just one iteration. Thus we could
observe that augmenting the original training sequence by increasingly ”noisy”
copies of the original data (where the ”noise” is obtained by the learned 1-step
predictions) is very helpful in getting good forecasts.

3.3 Results

In this section we compare the resulting predictions obtained from RN and
SVM using sparse approximation in both cases and Gaussian RBF kernels. To
determine the parameters, we used the following four validation sets: (1) train
1-13500 predict 13 501-14500 (2) train 1-14000 predict 14 001-15000 (3) train 1-
14 500 predict 14 501-15500 (4) train 1-15000 predict 15 001-16000. The optimal
parameters that led to the best (averaged) prediction error during validation were
then used to obtain the final model. These parameters are: (output1) TOL=0.01,
σ = 0.015 (output2) TOL=0.011, σ = 0.005 (output3) TOL=0.01, σ = 0.013
(output3) TOL=0.009, σ = 0.013. The parameters governing regularization (C =
500, Λ = 0.1) and tolerance (ε = 0.1) were determined outside the validation
loop.

Forecasting the global trend of the outputs is more important than the mod-
elling of high-frequency variations. To this end a custom error measure TubeERR
was devised, that does not penalize small deviations. Also an emphasize is done
in that forecasts into the far future are less reliable. Thus the TubeErr measure
is defined as

TubeERR(i) = max
(

0, |yi − f(xi)| − (3 + 0.003 ∗ i)
)

, i = 0, 1, . . .1568− 1

Thus, to evaluate the quality of the predictions, we use MSE and the TubeERR
error measure provided by Schott. Using these two measures, the optimal number
of iterations in the iterated learning scheme was calculated using pre-tests on
the validation sets. The achieved error is summarized in Table 1. Figure 1 shows
the resulting predictions using SVM; see how for the four outputs, the prediction
obtained follows the main variations and is inside the TubeERR region most of
the 1568 time steps.

4 Conclusions

In this paper we have reported the use of a kernel-based method to predict the
long term time series used in the data modelling competition EUNITE-2003. We

16.001 16.201 16.401 16.601 16.801 17.001 17.201 17.401 17.568
210

220

230

240

250

260

270

Time step

Tolerance
True continuation
SVM prediction

Output 1

16.001 16.201 16.401 16.601 16.801 17.001 17.201 17.401 17.568

30

40

50

60

70

80

90

100

Time step

Tolerance
True continuation
SVM prediction

Output 2

16.001 16.201 16.401 16.601 16.801 17.001 17.201 17.401 17.568

90

100

110

120

130

140

150

160

170

Time step

Tolerance
True continuation
SVM prediction

Output 3

16.001 16.201 16.401 16.601 16.801 17.001 17.201 17.401 17.568

140

150

160

170

180

190

200

Time step

Tolerance
True continuation
SVM prediction

Output 4

Figure 1. Results using SVMs. We show the original outputs and the prediction
obtained using SVMs. The gray curves mark the boundaries of the tolerated error
TubeERR.

Table 1. Comparison of the prediction errors for time step 16 001-17 568.

SVM RN

output 1 MSE 7.44 9.44
TOL=0.01 TubeERR 115.54 149.87
σ = 0.015 #Basis 591

output 2 MSE 41.83 47.41
TOL=0.011 TubeERR 2082.12 2382.44
σ = 0.005 #Basis 195

output 3 MSE 24.07 22.28
TOL=0.01 TubeERR 1214.25 1069.10
σ = 0.013 #Basis 476

output 4 MSE 20.84 23.29
TOL=0.009 TubeERR 781.02 1115.24
σ = 0.013 #Basis 486

have used the idea of sparse approximation as a means of reducing the compu-
tational complexity and an incremental learning approach to add new training
samples to the kernel-based method and efficiently update the current solution.
The results obtained support the suitability of the proposed methodology for
this long term time series prediction problem with high training complexity.

References

1. EUNITE Competition 2003: Prediction of product quality in glass manufacturing,
www.eunite.org (2003)

2. Engel, Y., Mannor, S., Meir, R.: The Kernel Recursive Least Square Algorithm.
IEEE Transactions on Signal Processing, 52(8) (2004) 2275–2285

3. Engel, Y., Mannor, S., Meir, R.: Sparse online greedy support vector regression.
Proc. of 13th European Conference on Machine Learning. Springer (2002)

4. Schoelkopf, B., Smola, A.: Learning with Kernels. Cambridge, MA: MIT Press
(2002)

5. Smola, A., Schoelkopf, B.: Sparse greedy matrix approximation for machine learning.
Proc. of 17th International Conference on Machine Learning. Morgan Kaufmann
(2000)

6. Cao, L.J., Tay, F.E.H.: Support Vector Machine With Adaptive Parameters in Fi-
nancial Time Series Forecasting. IEEE Transactions on Neural Networks. 14(6)
(2003) 1506-1518

7. Cristianini, N, Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cam-
bridge University Preess. Cambridge, England (2000)

8. Chang, M.-W., Chen, B.-J., Lin, C.-J.: EUNITE Network Competition: Electricity
Load Forecasting , November 2001. Winner of EUNITE world wide competition on
electricity load prediction.

9. Csato, L., Opper,M.: Sparse on-line Gaussian processes. Neural Computation 14(3)
(2002) 641–669

