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Abstract— Switching between two modes of operation is a
common property of biological systems. In continuous-time
differential equation models, this is often realised by bista-
bility, i.e. the existence of two asymptotically stable steady-
states. Several biological models are shown to exhibit delayed
switching, with a pronounced transient phase, in particular
for near-threshold perturbations. This study shows that this
delay in switching from one mode to the other in response to
a transient input is reflected in local properties of an unstable
saddle point, which has a one dimensional unstable manifold
with a significantly slower eigenvalue than the stable ones. Thus,
the trajectories first approximatively converge to the saddle
point, then linger along the saddle’s unstable manifold before
quickly approaching one of the stable equilibria.

I. INTRODUCTION

Biological systems are complex networks involving many

reactions, feedback loops and connections. One recurrent

motif in continuous-time models is the implementation of

binary decision by means of bistable switches. Examples of

such models include cell cycle progression [1], [2], [3], cell

death signalling [4], developmental processes [5], [6], signal

responses with memory such as in EGF signalling [7], [8],

infectious diseases such as prion propagation [9] or lambda

phage infection [10], and a synthetic toggle switch [11].

In several of these bistable systems, the switch is trig-

gered by a sufficiently large input signal. Often, this is

accompanied by a delayed decision making mechanism, in

particular for inputs near the threshold. This article uncovers

the importance of the usually neglected saddle point, and

the dynamics in its proximity in three bistable biological

models. Analysing the system responses shows that this

delayed switching serves as a robust mechanism to allow

for reverting the decision by small perturbations.

The paper is structured as follows. Section II describes

how bistable systems act as switches in continuous models

and introduces the concept of delayed decision making.

The latter is linked to properties of the saddle point in

Section III. The here proposed analysis is then applied to

two published, higher dimensional models of programmed

cell death (Section IV). The paper closes with a discussion

and conclusions.

II. BISTABLE SYSTEMS AND DELAYED DECISION MAKING

Bistable systems have the ability of modelling switch-like

decisions in continuous-time systems [12]. These can be re-

versible or not, depending on the precise setup. In most cases,

the bistable models contain not only two asymptotically

stable equilibrium points, but also a saddle point as depicted

in Figure 1. In a two-dimensional model, the stable manifold

of the saddle corresponds to the separatrix of the two stable

equilibria while the saddle’s unstable manifold connects all

three equilibria. This phase portrait is illustrated in Figure 1.

This picture actually extends to many higher dimensional

models of dimension n with an n − 1 dimensional stable

manifold and a 1 dimensional unstable manifold.

Fig. 1. Phase plane of a typical bistable system in two dimensions. The
stable manifold of the saddle point divides the phase plane in the two basins
of attraction of the stable equilibria. A perturbation pushing the trajectory
across the separatrix induces a switch in the final decision.

A. Bistable systems: decision making on transient signal

Bistable systems are particularly useful for transforming

short-duration input signals in permanent decisions. When

transient inputs are applied, the equilibrium points remain

unchanged. Starting in one of the steady-states, eg. the

unexcited one, the input can trigger the switch if the input

signal is sufficiently strong. For a signal of particular shape,

it is possible to define an input transition threshold such that

any larger input activates the switch while any smaller one

does not.
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An intriguing property of several bistable system models is

that the response near the threshold is significantly delayed,

as illustrated in Figure 2. This figure depicts the responses
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Fig. 2. Output trajectories for increasing impulse inputs. Near the threshold,
the final decision (y = 0 or y = 2) is significantly delayed.

of a model of genetic control proposed by [13] where a

protein x1 enhances the production of the mRNA x2 which

is translated into the protein itself. The model is modified

here to include an input u and an output y:

ẋ1 = −ax1 + x2 (1a)

ẋ2 =
x2
1

1 + x2
1

− bx2 + u (1b)

y = x1, (1c)

with the two states x1, x2 ∈ R≥0, and the parameters a, b >

0 describing the rate of degradation of x1 and x2. Figure 3

depicts the corresponding phase plane.

The model (1) is bistable as it has two stable equilibrium

points (green dots) and one saddle point (red dot) located

at the intersection of the nullclines (blue and gray dashed

curves). The stable state corresponding to low values of x1

and x2 can be named unexcited state while the other can

be named excited state. The saddle point has one attrac-

tive direction (stable manifold, in green) and one repulsive

direction (unstable manifold direction, in red). The stable

manifold of the saddle point divides the phase plan into two

regions corresponding to basins of attraction of the two stable

equilibrium points.

We study the system responses with the unexcited steady-

state as initial condition and an impulsive input u with height

d, ie.

u(t) = dδ(t) (2)

where δ(t) is the Dirac impulse. This shows that there is a

threshold d̄ such that for all d < d̄ the trajectory returns

to the initial equilibrium point, while for all d > d̄ the

trajectories tend to the excited equilibrium. Furthermore, the

convergence time to the excited steady state depends on the

input amplitude: the larger the input, the faster the response.
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Fig. 3. Phase plane for the model of Griffith (1). The nullclines dx1/dt = 0

(orange line) and dx2/dt = 0 (blue line) intersect at the equilibrium points.
The stable and unstable manifold of the saddle point are shown by green and
red dashed lines, respectively. Equidistant time markers (dark red squares)
highlight the temporal evolution along the unstable manifold.

TABLE I

SADDLE POINT PROPERTIES

Griffith (1) Eissing [4] Schliemann [14]

λ+ 0.1 1.0·10−4
2.6·10−5

λ
−

−2.3 −1.1·10−3 −5.6·10−5

r = |λ
−
/λ+| 23.0 11.0 2.2

stable dimensions 1 7 36

Unstable (λ+) and slowest stable (λ
−

) eigenvalues of the saddle point in
the three studied models, as well as ratio r of the magnitude of these two
eigenvalues and the dimension of the stable manifolds.

B. Delayed decision making

Simulations of the model (1), shown in the phase plane

in Figure 3, reveals that the trajectories quickly approach

the unstable manifold of the saddle point and linger along

it towards one of the stable equilibria. This lingering is

particularly pronounced for input signals that are close to the

input transition threshold. Figure 2 shows the response of (1)

to impulses above to marginally above the input transition

threshold. The closer the magnitude is to this threshold, the

longer the output remains on an intermediate value. A closer

look at the corresponding phase plane (Figure 3) reveals that

during this intermediate phase, the state evolves close to the

unstable manifold of the saddle point, which is furthermore

the slow manifold of both stable steady-states. We call such

a switching behaviour with long transients close to the input

threshold delayed decision making.

An important consequence of a delayed decision making

is illustrated in Figure 4. As the system remains close

to the saddle point and thus to the separatrix during the

intermediate phase, a small input perturbation allows for
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Fig. 4. Output trajectory for a bistable systems with or without time scale
separation, starting at the unexcited steady-state. (A) The input signal is
chosen slightly larger than the threshold for activating the switch (solid line).
A small input perturbation is shown in red. (B) For a bistable system without
time separation, the system quickly switches and the output is soon close to
the excited state. The input perturbation has little effect. (C) For a bistable
system with time scale separation, the output remains at an intermediate
value as the system evolve close to the saddle point for a long period of
time. During this interval, a small perturbation can push the trajectory back
into the domain of attraction of the unexcited steady-state, thus preventing
the switching to occur.

reverting the switching decision. This is shown by the red

dashed signals in Figure 4. Thus, such delayed decision

making system is very sensitive to reverting perturbations

during this intermediate phase. Such a property could have

biological significance in a signalling mechanism.

III. LOCAL SIGNATURE OF DELAYED DECISION MAKING

The just described decision making is caused by the

temporary attractivity of the saddle point, enforced by a time

scale separation between the (slowest) stable eigenvalue (λ−)

of the Jacobian and the unstable one (λ+). The ratio r

r =

∣

∣

∣

∣

λ−

λ+

∣

∣

∣

∣

(3)

is thus a simple measure of the stiffness of the saddle point

and quantifies locally this time scale separation between its

stable and unstable manifolds. This ratio r is a local signature

of delayed decision. A high ratio is an indicator that the

attractive direction is much faster than the repulsive one.

Delayed decisions are induced by time scale separation

between the attractive and the repulsive direction of the

saddle point. This causes trajectories passing close to the

separatrix to rapidly converge to the neighborhood of the

saddle point, along the saddle point’s stable manifold. They

then slowly escape in the direction of the unstable manifold.

The speed can be inferred from the time markers (red squares

in Figure 3). Thus, the pronounced time scale separation

of the saddle point is visible in trajectories that have been

induced by inputs close to input transition threshold and fur-

thermore result in input strength dependent transition delays.

Moreover, the duration of the delayed decision making is

inversely correlated to the closest distance to the saddle point.

IV. DELAYED DECISION IN HIGHER DIMENSIONAL

MODELS

Delayed decision making is also observed in higher dimen-

sional models. A typical example is the signalling pathway

of apoptosis, the predominant form of programmed cell

death used by multicellular organisms to remove superfluous,

damaged or potentially harmful cells [15]. A variety of

models of apoptosis have been proposed, see [16] for an

overview of models of apoptotic signalling. Several of them

include a positive feedback loop of caspase interaction,

which leads for suitable parameters to a bistable system. One

of these is the model by Eissing et al. [4] that describes

the interaction of two caspases (Caspase 3 and 8) and

two inhibitors (XIAP and CARP), see Figure 5. Initiator

caspases activate effectors caspases which trigger the cellular

processes leading to death. The survival state corresponds to

a state with low concentration level of effector caspases while

death corresponds to high level. Input signal correspond to

impulsions modelling the effect of a transient pro-apoptotic

signal. The system’s input has been slightly modified with

regard to the original model proposed by Eissing et al. In

the present analysis, input signal directly acts on the number

of initiator caspases that become activated ( C8 → C∗
8 )

rather than a extra inflow of active initiator caspases [17].

The system’s output is defined as the concentration level

of activated caspase 3 (C3∗). There is an input threshold

corresponding to 75 molecules of C3∗, above which the

system switches to death.

The model in [4] is a set of 8 nonlinear ordinary differ-

ential equations. The model is bistable and the two stable

steady-states correspond to survival and death, respectively.

For inputs close to the input threshold, the trajectories

approach the saddle point [18]. Figure 6 shows output

trajectories for increasing impulse input signals above input

threshold. The system clearly presents a delayed decision

making that depends on the input strength. Even though this

model has been analysed in many publications, none has

yet emphasised the role of the saddle point in time delays

between stimulus application and cell death.

Table II lists the eigenvalues at the saddle point. The

system has only one positive eigenvalue, which is in addition
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Fig. 5. Eissing et al. model. Input act on the number of molecules of
initiator caspase 8 (C8) that become activated (C8*). The output corresponds
to the concentration of activated effector caspase 3 (C3*).

TABLE II

EIGENVALUES OF THE JACOBIAN AT THE SADDLE POINT OF THE

EISSING MODEL [4].

−21.2165
−18.7366
−0.0270
−0.0117
−0.0039
−0.0039
−0.0011
0.0001

the eigenvalue with the smallest absolute value of all the

eigenvalues. Table I shows that the two slowest eigenvalues

are an order of magnitude apart. The time scale separation

explains the fast attraction towards the saddle point and the

lingering along its slow, unstable manifold towards one of

the stable steady-states. This time scale separation can also

be observed in Figure 7. The responses to inputs close to the

transition threshold converge quickly to the neighbourhood

of the saddle point, before escaping slowly along its unstable

manifold, which corresponds to the slow direction. As the

saddle point is close to the survival steady-state, the cell

behaviour during the decision-making phase is very similar

to survival.

The analysis was also applied to a significantly larger

model of 37 states. This model describes the pro- and anti-

apoptotic signalling [14] pathways induced by the stimula-

tion by the cytokine TNF of NF-κB, an important transcrip-

tion factor for anti-apoptotic proteins. At the same time,

TNF internalises and then activates the initiator caspase

Caspase 8, which is part of a positive feedback loop of

mutual activation of Caspase 8, Caspase 3 and Caspase 6.

This system is also a bistable system with a saddle point

having only one positive eigenvalue which furthermore is

the smallest in magnitude, see Figure 9. The ratio is less

pronounced here, approximatively a factor two. This is still

enough to generate a delayed decision making for inputs

close to the input threshold.
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Fig. 6. Output trajectories of Eissing model [4] for impulse inputs slightly
above (red), above (magenta) and significantly above (blue) the decision
making threshold.
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Fig. 7. Trajectories of the Eissing model for increasing impulse inputs: Blue
curves correspond to trajectories for inputs close to the transition threshold
while green curves depict trajectories for larger inputs. The inlet is a zoom
of the neighbourhood of the saddle point.

Figure 8 shows the delayed decision making for different

input intensities. In particular for inputs slightly above the

threshold, the delay is quite significant (about one day).

Visualising the trajectories in the state space illustrates the

importance of the saddle point and of its unstable manifold.

Inputs close to the transition threshold result in trajectories

that first converge to the proximity of the saddle point before

diverging along the unstable manifold. As the stiffness of the

saddle is smaller than in the other two previously studied

models, the convergence is less pronounced for inputs not

very close to the threshold.

V. DISCUSSION

Model comparison is an important problem in systems

biology. However, the comparison of different bistable sys-

tems of different dimensions is difficult. In many cases,
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only the stable equilibrium points are analysed. This study

demonstrates that local analysis of an unstable point, the

saddle point, may add very useful information to the analysis.

In particular, its time-scale separation captures the delayed

decision making mechanism, not visible in the two stable

equilibria. Two published models of apoptosis show the

relevance of the presented approach.

As for the Griffith model, time scale separation between

attractive directions and repulsive direction of the saddle

point leads to input-strength dependent time delays in higher

dimensional models. The analysis of the models [14], [4]

show that the mechanism of delays induced by time-scale

separation between attractive and repulsive directions of

the saddle point, can be observed in higher dimensional

models. These models are much more difficult to analyse.

This highlights the usefulness of the quantification of delayed
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Fig. 10. Trajectories of the Schliemann model [14] for increasing impulse
inputs. The light blue curve corresponds to the trajectory for an input below
the transition threshold, while the gray one to an input slightly below this
threshold. Both converge to the survival state. The magenta one is slightly
above and the blue one even more above the threshold. Both converge to the
death state. The axes are normalised by the values at the death steady-state
for Caspase 8 and Caspase 3 and by the value at the survival steady-state
for XIAP.

decision making via the ratio of unstable and slowest stable

eigenvalues of the saddle point.

VI. CONCLUSION

This study highlights the importance of the saddle point in

delayed decision making in bistable switches. In particular,

the ratio of the magnitudes of the unstable and the slowest

stable eigenvalue is a simple local measure of stiffness not

only locally around this unstable equilibrium, but also for

trajectories induced by inputs close to the input transition

threshold. The time-scale separation between attractive and

repulsive direction of the saddle point creates a robust

mechanism for delayed decision making. Its usefulness has

been illustrated at the hand of models of apoptotic signalling.

The delayed decision making phase could be used by anti-

apoptotic signals to revert the path to cell death.

Future work will provide a global analysis of the hetero-

cline connecting the three equilibria and also analyse further

biological models of delayed switching.
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