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Abstract

Biological switches are frequently encountered in mathematical model-
ing of biological systems because binary decisions are at the core of many
cellular processes. A bistable switch presents two stable steady-states,
each of them corresponding to a distinct decision. These two decisions
are assumed to result from the interactions between biochemical effec-
tors at the molecular level. Because these molecular interactions are
particularly complex, involving many effectors, mathematical models of
biological switches are often high dimensional and nonlinear. Therefore,
an analysis of these systems is challenging. In this dissertation, we try to
identify principles and tools to study the performance and robustness of
biological switches. Our first contribution is to highlight the dynamical
nature of these switches. A biological switch encodes a decision-making
process rather than a static binary code. It captures dynamical phenom-
ena that are important for the decision-making process, such as decision
latencies and reversibility. Our second contribution is methodological.
While most of the classical analysis tools are based on a linearization
of the system around a stable steady-state, a switch is a non local phe-
nomenon involving a transition between two stable steady-sates. Rather
than studying the system around stable equilibria, we identify the local
rulers of the decision-making process in both the state and parameter
spaces and propose a local analysis in the vicinity of these particular
points. Our third contribution is to emphasize the added value of an
abstract (that is, mathematical) framework for the analysis of biologi-
cal switches. By studying different models, we point out that the same
principles can be used to encode dynamical phenomena in very different
cellular processes. Physiological processes as different as apoptosis, the
cellular choice of death, and action potential, the cellular choice to emit
an electrical spike, share common features when regarded as decision-
making processes.

iii



iv



Résumé

L’objet de cette thèse est l’ étude de la performance et de la robustesse
des modèles d’interrupteurs en biologie. Mathématiquement, ces in-
terrupteurs sont modélisés par des systèmes bistables, c’est-à-dire des
systèmes dans lesquels deux états stationnaires stables coexistent. Ces
modèles sont utilisés en biologie systémique pour représenter des dé-
cisions cellulaires binaires, résultant de réactions biochimiques. Etant
donné la complexité de ces interactions et le nombre potentiellement
élevé d’effecteurs, ces systèmes sont souvent de grande dimension et
nonlinéaires, rendant leur étude complexe. La thèse tente d’identifier
des principes et outils d’analyse permettant de mieux comprendre et
contrôler ces interrupteurs biologiques. Notre première contribution ré-
side dans la mise en lumière du caractère dynamique des interrupteurs
biologiques. Nous considérons les interrupteurs bistables comme des
processus de prise de décision temporels qui permettent d’implémenter
des phénomènes dynamiques tels qu’une latence dans la décision ou la
réversibilité de la décision. Notre seconde contribution est méthodolo-
gique. Nous partons du constat qu’il existe une inéquation entre les
outils d’analyse classiques basés sur une étude locale du système au-
tour d’un état d’ équilibre stable et le caractère non local de la prise
de décision impliquant une transition entre deux états d’équilibre dif-
férents. En réponse à ce problème, nous proposons une analyse locale
non pas effectuée aux points d’équilibre stables du système mais en des
points que nous identifions comme des régulateurs clés du processus de
décision dans l’espace d’état et des paramètres. Notre dernière contri-
bution vise à mettre en évidence l’intérêt d’une analyse mathématique
des modèles d’interrupteurs bistables indépendamment de leur contexte
biologique. En effet, notre analyse fournit un cadre d’étude commun
à des phénomènes distincts en biologie. Elle montre que des processus
cellulaires de nature très différentes, tels que que l’apoptose cellulaire
ou la génération de potentiels d’actions dans les neurones, partagent des
caractéristiques essentielles.
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Introduction

The cell is the functional unit of life able to grow, replicate and respond
to its environment. In the 20th century, major advances have been made
in the understanding of the cell machinery with the discovery of genetic
and proteinic mechanisms of regulation. Proteins carry the information
encoded in the genome. They are the key effectors of the cell, composing
its structure, ruling its metabolism and participating to various signal-
ing pathways.

The question underlying molecular and cellular physiology is, how to
bridge the gap between biochemical interactions such as interactions
among proteins and a given cell behavior? Whereas, the main bio-
chemical signaling pathways governing the cellular functions have been
identified, understanding how such complex interactions can give rise to
robust behaviors is still challenging. These questions have recently mo-
tivated the emergence of new disciplines such as systems and synthetic
biology. In these fields, biological phenomena are studied in the light of
theories inherited from engineering such as systems and control theories
while mathematical modeling is proposed as a tool to understand, de-
sign and control the interactions between biochemical effectors.

In this thesis, we study the performance and robustness of biological
switches. Bistable switches model cellular binary decisions. Mathemat-
ically, those models are called bistable, which means that two attractors
(for instance, equilibria) coexist, each corresponding to a possible alter-
native for the cell. These two decisions are assumed to result from the
interactions between biochemical effectors at the molecular level.

Because these molecular interactions are particularly complex, involving
many effectors, nonlinear phenomena and taking place on different time-
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scales, mathematical models built to represent these systems are partic-
ularly difficult to analyze. Classical analysis methods fail to capture the
properties of bistable switches. This is because they are mostly based
on local analysis (linearization) around a stable steady-sate, whereas
bistability modeling is about capturing the transition between the two
stable equilibria. Biological switches are non-local phenomena, not de-
termined by the local behavior about each stable steady-state. This
explains why most current studies about biological switches modeling is
through numerical simulation. The system is simulated for various ini-
tial conditions and parameters values and performance and robustness
measures are drawn from the results of these simulations. This approach
quickly becomes formidable as the number of equations and parameters
grows. It rarely captures qualitative mechanisms, which are what mod-
eling is about.

Systems biology is still a young field, and its methodology is under
development. In this thesis, we propose a mathematical methodology
to study biological switches. Our hope is that this methodology when
coupled to other approaches, will help at understanding and designing
performant and robust switches.

Contributions

Our first contribution lies in our particular viewpoint on bistable switches.
Rather than reducing a bistable model to its two stable steady-state
responses, we consider bistable switches as open dynamical decision-
making processes, that is we focus on the temporal transition that de-
termines the switch between the two states. Time is associated to tran-
sient phenomena that are at the core of the decision making process,
allowing for instance the decision-making to be slowed down or even
reversed. The decision-making process also depends on time trough the
input history, i.e the decision-making process has a memory.

Our second contribution is methodological. We propose a new method-
ology to study bistable switches. The methodology is standard, in the
sense that is is based on local analysis, but the local analysis is not
performed around the stable steady-states. Rather, we identify in the
state-space and in the parameter space particular points that act as local
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rulers of the (non-local) decision-making process. In the first part of the
thesis, we focus on the role of the saddle-point, an unstable equilibrium
that typically separates the basins of attraction of the two stable attrac-
tors, and show that a local analysis around that unstable equilibrium
is an excellent predictor of the non-local analysis of bistablity. In the
second part of the thesis, we further explore this idea with the concept
of singularity, that locally organizes bistability both in state-space and
in parameter space. The idea that isolated points of high sensitivity or-
ganize the global behavior of complex dynamical models does not seem
to have been previously exploited in systems biology.

Finally, a third contribution is to show the added value of analyzing in
a unified framework decision models that have a very different physio-
logical background. Our thesis aims at showing that two biological phe-
nomena that seem very different from a physiological viewpoint, such as
apoptosis, the controlled cell death and the mechanism of spike genera-
tion in neurons share common features that shed light on each other.

Outline

In Chapter 1, we present three distinct examples of important decision-
making processes taking place at the cellular level. The first process is
apoptosis, the controlled cell death. Facing pro-apoptic signals, the cell
has to choose between the survival and death. The second example is
inherited from electrophysiology and is the problem of first spike latency
in neurons. The last one is a switch in particular enzymes known to par-
ticipate to long term potentiation, a phenomenon underlying synaptic
plasticity and memory.

In Chapter 2, we identify the main characteristics of a switch model by
surveying the history of models in the literature. This survey shows how
the switch concept is coupled to the mathematical concept of bistabitl-
ity but also how it evolved from a static input-output relationship to
a dynamical process. Through the multiplicity of examples, we try to
convince the reader, that the concept of switch is a dominant concept
of systems biology.
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Based on this analysis, we propose, in Chapter 3, a definition of per-
formance and robustness for biological bistable switches and review the
advantages and limitations of existing methods to quantify these mea-
sures. Our analysis reveals a paradox. The switch is a non local phe-
nomenon describing a transition between two stable steady-states. Yet,
the theoretical methods from control theory are generally local relying
on the linearization of the system around a particular stable steady-sate.
To cope with this problem, most of studies of performance and robust-
ness of biological models are based on extensive numerical simulations.
However, results from these simulations are often difficult to interpret
in terms of biology.

The study of planar bistable models in Chapter 4 identifies the key
rulers of the switch in the state space and sheds light on the interplay
between the system dynamics and properties of these local rulers. The
saddle point is central to the decision-making in the phase portrait like
a mountain pass connecting two valleys. A local analysis at this point
is proposed to quantify the switch performance and robustness. In this
chapter, we furthermore emphasize the role played by bifurcations such
as saddle-node bifurcations in the decision-making process. In chapter
5, we extend our analysis to high-dimensional models.

Chapter 6 illustrates the power of the proposed analysis by studying the
performance and robustness of two cellular decision-making processes,
the apoptotic process and long term potentiation, in high-dimensional
models of the literature. We identify the saddle point in all these mod-
els and perform a local analysis at this point. We compare our results
with results from non local methods such as numerical simulations and
diagrams of bifurcation. Results suggest that theoretical concepts illus-
trated on toy conceptual models in the previous chapters do generalize
with high predictive value to high-dimensional models.

Chapter 7 introduces singularities, in particular hysteresis singularities
and cusp. These singularity organize bistability in both the state and
the parameter spaces.

In chapter 8, we study the problem of the first spike latency in neuronal
models. Based on the concepts developed in the previous chapters, we
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show how this property is naturally connected to the concept of bista-
bility and we stress the interplay between the first spike latency and a
particular type of excitability called regenerative excitability.

Trough all the dissertation, we illustrate our argumentation with various
models and biological experiments of the literature and try to convince
the reader that same principles are shared across various biological pro-
cesses.
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Chapter 1

Three examples of decision-making processes
in cellular biology

Three cellular phenomena lie at the heart of this disseration, apoptosis,
the controlled cell death, the first spike latency, a signaling phenomenon
underlying neuronal excitability and long-term potentiation, a mecha-
nism involved in synaptic plasticity. All these three phenomena involve
a decision-making process: to die or not to die in apoptosis, to spike or
not to spike in first spike latency, to remember or to forget in long term
potentiation. This chapter briefly introduces these phenomena and the
main issues related to the modeling of these complex processes.

1.1 Apoptosis, the controlled cell death

Apoptosis, the predominant form of programmed cell death, is used by
multicellular organisms to remove superfluous, damaged or potentially
harmful cells (Elmore, 2007; Green and Evan, 2002). In response to
pro-apoptotic signals such as radiation, nutrient deprivation or oxida-
tive stress, the cell triggers a biochemical signaling cascade which leads
to its own destruction. This cellular suicide, highly regulated and con-
trolled, is involved in several physiological functions including morpho-
genesis, regulation of the immune system and early-stage embryonic de-
velopment (Jacobson et al., 1997; Nijhawan et al., 2000; Opferman and
Korsmeyer, 2003). Failure in the apoptotic process is associated with
severe diseases including cancers and neurodegenerative diseases such as
Parkinson’s and Alzheimer’s diseases (Lowe and Lin, 2000; Thompson,
1995). Anti-cancer drugs have been shown to induce apoptosis in tu-
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2 Chapter 1.

mor cells revealing the therapeutic potential of controlling the apoptotic
pathway (Fulda and Debatin, 2006; Lowe and Lin, 2000). However, the
design of these new drugs requires a fine and quantitative understand-
ing of the apoptotic process which is still lacking. Whereas, most of the
regulators of the apoptotic pathways have been identified, understand-
ing how their complex interactions leads to a robust binary life-death
process is still challenging (Elmore, 2007). The current description is
still largely qualitative and descriptive and there is an increasing need
for quantitative measures and models.

In the last decade, the need for a quantitative description of the phys-
iological pathways of apoptosis has motivated the development of new
mathematical models, see Huber et al. (2009) for a review of apoptotic
signaling models. These models are built on several mathematical for-
malisms including ordinary differential equations (ODEs), boolean net-
works, partial derivative equations (PDEs) and stochastic differential
equations (SDEs). Among these formalisms, ODE’s models have been
the most popular (Albeck et al., 2008; Bagci et al., 2006; Chen et al.,
2007; Cui et al., 2008; Eissing et al., 2004; Fussenegger et al., 2000; Leg-
ewie et al., 2006). In an ODE model, a state variable is associated to
the concentration of each key biochemical enzyme or protein. There-
fore, the dimension of the model is fixed by the number of regulators
included in the physiological description. The dynamics of each variable
are then determined by the kinetic laws which govern the interactions
of this enzyme with the other regulators of the system.

The first model of apoptosis was developed in 2000 (Fussenegger et al.,
2000). At that time, the development of new experimental procedures
such as fluorescent reporters imaging techniques shed light on the dy-
namics of the apoptotic process at the level of a single cell. In particular,
these experiments permitted to follow the dynamics of key regulators of
apoptosis called effector caspases (Rehm et al., 2002; Tyas et al., 2000).
Effectors caspases are particular proteases whose activation is recog-
nised as a hallmark of the cellular death (Wolf and Green, 1999). Once
fully activated, these effectors trigger the ensemble of cellular mecha-
nisms leading to the cellular death. Experiments at the single cell level
showed that the activation of the effector caspases is a fast all-or-none
phenomenon (Rehm et al., 2002; Tyas et al., 2000), see Figure 1.1. In
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each cell, the concentration of effector caspases rises sharply and sud-
denly in a switch-like manner after the application of a sufficiently strong
pro-apoptotic signal. This all-or-none activation at the single cell level
contrasts with the response of a population of cells presenting a graded
increase in the concentration of effector caspases (Hentze et al., 2002;
Scaffidi et al., 1998). Since that time, the idea that a switch governs the
apoptotic process at the single cell level has been at the core of the de-
velopment of new mathematical models. The goal of these models is to
identify how the switch from life to death might arise from the complex
interactions between the key biochemical effectors of apoptosis and how
this switch could be possibly controlled.
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Figure 1.1: Experimental recording of effector caspases activation. Fig-
ure from Rehm et al. (2002).

Mathematical modeling has attributed the switch in apoptosis to var-
ious physiological mechanisms (Albeck et al., 2008; Bagci et al., 2006;
Chen et al., 2007; Eissing et al., 2004; Legewie et al., 2006). Current
models of apoptosis try to get a finer description of the process by incor-
porating more and more physiological details. Mathematically, further
details translate into further states and parameters in the model (Ben-
tele et al., 2004; Schliemann et al., 2011). As the number and complexity
of biological models increases, there is a need for methods to quantify
the performance and robustness of these models.
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1.2 First spike latency in single neurons

Neurons are excitable cells that transmit and process information. In
neural coding theory (Borst and Theunissen, 1999; Koch, 1999), it is
assumed that this information is encoded in the pattern of action po-
tentials generated by a single or a collection of neurons in response to
specific stimuli. Several neuronal codes have been proposed including
rate codes where the information is encoded by the rate at which the neu-
ron fires action potentials and spikes timing codes which depend on the
precise timing of spikes (Maass and Bishop, 1999; Rieke, 1997; Thorpe
et al., 2001). First spike latency coding is one of these spike timing codes
where information is presumably encoded by the latency preceding the
first action potential of a neuron subjected to a sufficiently strong stimu-
lus (Fgure 1.2). Recent studies have shown that first latency could code
for stimulus recognition in several sensory systems (Chase and Young,
2007; Gollisch and Meister, 2008; Johansson and Birznieks, 2004; Storchi
et al., 2012; Zohar et al., 2011). However, physiologically, mechanisms
that allow neurons to implement this code reliably are still unclear.

V

I

Figure 1.2: Schematic representation of a first spike latency recording.

Each neuron possesses a cellular membrane separating its cytoplasm
from the extracellular medium (Figure 1.3). Because of the selective per-
meability of this membrane to ions and the active transport of ions by
cellular pumps, there is a gradient of ion concentrations across the mem-
brane (Hille, 1984; Keener and Sneyd, 2009). When the neuronal mem-
brane is depolarized, following an incoming electrical signal, voltage-
dependent ion channels of the membrane can open or close, thereby
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modifying the permeability of the membrane to these ions. Ions flow
through the membrane driven by their electrochemical gradient. This
flow of ions modifies the intracellular potential resulting in a sudden
rise and fall of the voltage called action potential. Conductance-based
models of neurons describe the variations observed in the difference of
potential (neuron voltage) resulting from this (in)activation of ion chan-
nels following the application of some external current. They typically
model a neuron as an electrical circuit including a capacitor, the neuron
membrane, in parallel with resistors, the ion channels (Figure 1.4). In
electrophysiology, it is common to use conductances instead of resistors.
These conductances can be variable reflecting the fact that (in)activation
of some ion channels are time and voltage dependent. The size of the
model depends on the number of ion channels incorporated in the sys-
tem. Due to the zoo of ion channels which have been shown to regulate
neuronal excitability (Hille, 1984), the size of conductance-based models
can be particularly large. How can we identify currents which give rise
to a specific mechanism such as the first spike latency in these mod-
els? How can we estimate the robustness of the proposed models? Are
these models capturing true physiological properties or just reflecting
the fine-tuning of some parameters?

Na+

neuron membrane

K+ channel

+
-

Cl-

K+

extracellular

intracellular

∆V

Na+/K+ pump

Na+ channel

Figure 1.3: Neuron membrane potential resulting from the selectivity of
the neuron membrane to ion channels.
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Figure 1.4: Neuron as a RC circuit. The neuron membrane is a capaci-
tor. Each ion channel has a specific (voltage-dependent) conductance.

1.3 Long term potentiation and synaptic plasticity

Our last illustration is a decision-making process involved in memory for-
mation, called long term potentiation. In the brain, it is assumed that
long-term information storage is achieved through changes in synaptic
efficiency. An electrical signal at the postsynaptic membrane translates
into chemical signals which in turn trigger mechanisms to generate an
increase in the synaptic strength (Bliss and Collingridge, 1993). Long
term potentiation (LTP) describes the longlasting increase in synaptic
strength described in learning and memory processes (Frey and Morris,
1997). When submitted to weak stimuli, an early-phase of long term
potentiation is triggered which lasts for 2-4h, while when submitted to
strong stimuli, a late phase of long term potentiation (L-LTP) is trig-
gered which lasts much longer (Frey et al., 1988). Several studies have
proposed that long-term memory could be accomplished trough a molec-
ular bistable switch (Aslam et al., 2009; Lisman and Zhabotinsky, 2001;
Miller et al., 2005). In particular, Aslam et al. proposed a model of late
LTP in agreement with experimental data where long term potentiation
is achieved thanks to the autophosphorylation of the kinase α-CaMKII,
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an enzyme regulated by calcium (Aslam et al., 2009).The importance of
the model lies in its ability to reproduce experimental results, in par-
ticular to account for the different effects of applying inhibitors during
the induction or the maintenance phase of L-LTP: if applied during the
induction of L-LTP, protein synthesis inhibitors can block L-LTP but
they do not reverse the potentiation when applied during the mainte-
nance phase of L-LTP (Fonseca et al., 2006; Frey and Morris, 1997).
Moreover blocking the αCaMKII activity stops the L-LTP induction
phase but not the maintenance phasz (Malinow et al., 1989; Otmakhov
et al., 2004) (Figure 1.5). The reversibility of the switch in the αCaMKII
activity, associated with memory formation, depends on the time of ap-
plication of the reversing stimulus.

1.4 Conclusion

In this chapter, we introduced three cellular decisions which illustrate
current research in systems biology and neuroscience. While in all these
phenomena, the key regulators of the process have been identified, it
is still unclear how to relate the molecular interactions to a robust sig-
naling function. Mathematical modeling is viewed as a tool to answer
these questions. Because these models try to include a precise physio-
logical description of the phenomenon, they are often high-dimensional
and nonlinear. Therefore, understanding which parameters and state
governs the dynamical phenomena of interest in these complex models
is challenging. In this thesis, we will try to show that, because these
three nonlinear phenomena are of the same nature, a switch between
two stable attractors, they can be studied using the same mathematical
framework. We will propose some mathematical tools to study these
phenomena and apply them on several models of the literature. Our
analysis relies on several concepts including the notions of biological
switch and bistability, introduced in Chapter 2 and the concepts of per-
formance and robustness of biological systems, discussed in Chapter 3.
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maintenance. However, as activity-blocking levels are in-
creased beyond 46%, the induction of L-LTP is compromised.

Next, we simulated the application of activity inhibitors
starting several hours after the induction of L-LTP (Figure 8B).
We showed that complete blocking of aCaMKII activity during
the maintenance of L-LTP can completely abolish any increase
in total aCaMKII. However, our results also indicate that a
partial blocking of activity during maintenance has no effect
on the total amount of aCaMKII, as blocking aCaMKII activity
by less than 53% of aCaMKII does not lead to any significant
change in the total amount of aCaMKII, and only inhibition
above 60% completely abolishes any change in total aCaMKII
concentration. It is noteworthy that the exact quantitative
numbers shown here depend on the parameters of the system,
many of which have not been experimentally verified.
However, the qualitative results suggesting that blocking
during maintenance requires much more effective inhibition
than during induction are robust.

Discussion

This study proposes a general hypothesis that a feedback loop
between a plasticity-related kinase and its translation factor
can act as a bistable switch that stabilizes long-term memory.
On the basis of experimental results (Wells et al, 2000, 2001;
Miller et al, 2002; Atkins et al, 2004, 2005), we used the

aCaMKII–CPEB1 molecular pair as a specific instantiation
of this hypothesis. In the proposed molecular network,
phosphorylation of CPEB1 regulates the synthesis of aCaMKII
molecules through polyadenylation of aCaMKII mRNA, and
aCaMKII phosphorylates CPEB1. Our results show that this
molecular network can indeed be bistable, and that in
potentiated synapses, the total aCaMKII content is signifi-
cantly increased, whereas the fraction of aCaMKII phosphory-
lated is moderately elevated. These results are consistent with
experimental observations in which tetanized slices show an
elevation in the total amount of aCaMKII levels (Ouyang et al,
1997, 1999) and in which the fraction of aCaMKII phosphory-
lated is far from saturation.

Besides exploring the dynamics and fixed points of this
system numerically, we have also reduced the complex system
of differential equations to a single fifth-order polynomial,
which can be used to find the fixed points of this system. We
use this polynomial to generate bifurcation diagrams that are
identical to those found numerically (Figure 5). Being a fifth-
order polynomial, the system has at most five fixed points, but
we found that, at most, three of them are real and in the
physiologically plausible range (positive). In terms of the
polynomial, the transition from bistability to monostability
occurs when two real fixed points, one stable and one
unstable, merge and then move into the complex plane.
Finding the zeros of a polynomial is much simpler and
computationally cheaper than numerical methods for finding
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Figure 7 Blocking of protein synthesis in early and late phases. Simulations are implemented with and without a (Ca2þ )4–CaM pulse. The solid line indicates the
aCaMKII concentration without any pulse stimulus, whereas the dotted line indicates the aCaMKII concentration with pulse stimulus (pulse stimulus is used to mimic
the effect of HFS). (A) Protein synthesis blocking during induction for 33 min (solid thick black line shows blocking time). For different levels of blocking, L-LTP has a
different outcome during the maintenance phase. (B) Protein synthesis blocking during maintenance for 1300 min (the solid thick black line shows blocking time). Even
for high-percentage blocking, the upregulated state can still be maintained, suggesting that if aCaMKII is a trace for L-LTP, its expression can still be observed, even if
synthesis of new proteins is blocked.

Translational switch and synaptic plasticity
N Aslam et al

8 Molecular Systems Biology 2009 & 2009 EMBO and Macmillan Publishers Limited

Figure 1.5: Reversibility of a bistable switch in a model of long-term po-
tentiation proposed by Aslam et al. (2009). The reversibility is achieved
by blocking the protein synthesis in the early phase while the switch is
difficult to reverse when blocking the protein synthesis in the late phase.
Figure from Aslam et al. (2009).



Chapter 2

Mathematical models of biological switches:
a historical perspective

By presenting experimental advances from early developments in chem-
istry to recent findings in new disciplines including systems biology and
synthetic biology, we highlight the main characteristics of a biological
switch. Through this chronological description, we attempt to formulate
a switch definition. As the concept of switch is closely related to math-
ematical modeling, mathematical concepts relevant for the modeling of
biological switches are introduced in parallel.

2.1 Preliminaries: kinetics laws and enzymatic regulation

Kinetics laws govern the interactions among species in chemical and
enzymatic reaction networks. An introduction to chemical kinetics can
be found in any text book on mathematical modeling in biology including
Keener and Sneyd (2009).

The law of mass action

A chemical reaction between two reactants A and B interacting to pro-
duce the product C, is graphically modeled by:

A+B → C

In this chapter, we denote the concentrations by lower case letters. The
derivatives with respect to time are denoted by a dot. The rate of
accumulation of the product, ċ, is the rate of the reaction. The law

9
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of mass action predicts that the rate of the reaction is proportional to
the product of the concentrations of reactants. This law is a model
based on the hypothesis that the rate of reaction is proportional to the
number of collisions between the two reactants per unit of time. The
number of collisions is assumed to be proportional to the product of the
concentrations of the two reactants A and B,

ċ = kab

with a and b, the concentrations of the reactants and c, the product
concentration. The factor k depends on the temperature of the mixture
and on the geometry of the reactants.

Michaelis-Menten kinetics

In biological processes, most of the chemical reactions are catalyzed by
enzymes. Enzymes speed up the chemical reaction by decreasing the
energy of activation of the reaction. An enzyme E links to a substrate
S, forming the complex C. This complex is necessary for the production
of the product P .

S + E
k1
�
k2
C

k3→ P + E

Applying the mass action law to these reactions leads to the system of
equations,

ṡ = −k1se+ k2c

ė = −k1se+ k2c+ k3c

ċ = k1se− k2c− k3c

ṗ = k3c

As the enzyme is not consumed during the reaction, we can write an
equation of conservation:

˙(c+ e) = 0⇔ e = e0 − c

and the system can be reduced to a three-dimensional model:

ṡ = −k1s(e0 − c) + k2c

ċ = k1s(e0 − c)− (k2 + k3)c = k1 [se0 − (Km + s)c]
ṗ = k3c
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with Km = k2 + k3
k1

.

The relation of Michaelis-Menten is based on the quasi-steady state ap-
proximation. The hypothesis is that the complex c is instantaneously at
equilibrium. This means that after a fast transient, the complex stays
constant:

ċ = 0

It follows than c can be expressed as a function of s,

c = se0
Km + s

and
ṗ = k3c = Vmaxs

Km + s
, where Vmax = k3e0

The relation between the substrate concentration and the rate of the
reaction is nonlinear. While for small concentrations of substrate, the
relation is linear, there is a saturation effect for high concentrations of
the substrate.

Hill kinetics and the sigmoid input-output relation curve

At the beginning of the 20th century, a particular interest was paid to
hemoglobin, a protein contained in the red blood cells of vertebrates
which carries oxygen from the respiratory system to the tissues of the
whole organism (Hill, 1910; Pauling, 1935). The affinity of the oxygen
for hemoglobin strongly depends on the pressure of oxygen. When the
pressure is high as in the lungs, the affinity is large and oxygen binds to
hemoglobin. In contrast, when the pressure is low, as in tissues burning
nutrients to produce energy, the affinity is low and oxygen can dissociate
from hemoglobin.

The experimental dissociation curve of oxygen to hemoglobin was pre-
senting a sigmoid shape which could not be described in terms of mass
action kinetics. However, this curve was well fitted by a simple relation
proposed by Hill in 1910, (Hill, 1910),

y = xn

xn +Kn
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with y the percentage of saturation of hemoglobin in oxygen and x the
partial pressure of oxygen.

At that time, nothing was known about enzymatic regulation and scien-
tists were facing serious troubles to provide a valid explanation for this
experimental observation.

In the 1960’s, major discoveries in the field of enzymatic regulation pro-
vided an explanation for the binding of oxygen to hemoglobin (Monod,
1966; Monod et al., 1963, 1965). The fixation of oxygen to hemoglobin
was explained in term of a particular mechanism of regulation pro-
posed by Jacob and Monod, called allosteric transition. Allostery is
a mechanism of regulation where the fixation of a ligand to one binding
site modifies the affinity of the ligand for another, distant binding site.
Hemoglobin presents four binding sites called hemes. When the oxygen
binds to one heme, a conformational change of the protein is assumed to
increases the affinity of the oxygen for the hemoglobin (Changeux and
Edelstein, 2005; Hsia, 1998). This is an example of positive cooperativ-
ity where the affinity for a binding site is enhanced by the fixation of a
ligand to another binding site. There exist many models of enzymatic
cooperativty (Dixon and Webb, 1979).

A simple model to represent cooperaitivty is to consider that nmolecules
of substrate must bind to the receptor for the reaction to occur. This
model is a simplification because it is not realistic to assume that n+ 1
molecules meet simultaneously. The reaction scheme,

nS + E
k1
�
k2
C

k3→ P + E

leads to the system,

ṡ = nk2c− nk1s
ne

ė = (k2 + k3)c− k1s
ne

ċ = k1s
ne− (k2 + k3)c

ṗ = k3c



2.1. Preliminaries: kinetics laws and enzymatic regulation 13

s

ṗ
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Figure 2.1: Ultrasensitive re-
sponse resulting from a coop-
erative behavior described by
a Hill kinetics. As the Hill
factor nH increases, the sig-
moidal relation between the
substrate concentration and
the product concentration at
steady-state becomes steeper.

By assuming a quasi steady-state approximation and assuming the en-
zyme concentration is small with respect to the concentration of sub-
strate, we get,

ṗ = k3c = Vmaxs
n

Km + sn

The Hill equation is generally used when a cooperative behavior is sus-
pected to describe the rate of reaction but intermediate steps are not
necessarily well understood or known. If we assume that the product is
degraded at a rate k4, we get at equilibrium:

ṗ = k3c̄− k4p̄ = 0⇔ p̄ = 1
k4

Vmaxs
n

Km + sn

The relation between the substrate and the product concentration is sig-
moidal (Figure 2.1). The steepness of the sigmoid depends on the Hill
coefficient n. For small concentrations in the substrate, we observe very
small quantities of the product. If we increase this concentration, the
rate of production remains small until reaching some kind of threshold
in the concentration of substrate. For concentrations above this thresh-
old, the rate of production is almost instantaneously maximal, leading
to a sudden and sharp increase in the product concentration. A behav-
ior characterized by a sigmoidal input-output response curve is called
ultrasensitive.

Besides cooperativity, several others mechanisms of enzymatic regu-
lation can lead to an ultrasensitive behavior including zero-order ul-
trasensitivy and multi-step phosphorylation reactions (Goldbeter and
Koshland, 1984).
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Example 2.1.1. Zero-order ultrasensitivty is achieved by two convert-
ers enzymes, E1 and E2 operating close to stauration, i.e in the zero-
order kinetic region of the Michalis-Menten kinetics. These two enzymes
act in opposite direction on the same protein W whose total quantity is
conserved.

W + E1
a1
�
d1
WE1

k1→W ∗ + E1

W ∗ + E2
a2
�
d2
W ∗E2

k2→W + E2

with the concentration of the protein, a conserved quantity wT = w +
we1 + w∗e2 + w∗. At steady-state, the fraction of activated protein
w∗

wT
= f(v1

v2
,
Km1

wT
,
Km2

wT
), with v1 = k1e1T , v2 = k2e2T . When the 2

enzymes, E1 and E2 work close to saturation, i.e Km1,Km2 << 1, the
function f is a sigmoid function of the ratio v1

v2
= k1e1T
k2e2T

. If we assume
that the enzyme E1 is activated by an input effector S, for instance by
a simple Michaelian mechanism, we get that the fraction of activated
protein w∗

wT
, is a Hill-function of the input signal s.

The Hill equation is a sigmoid input-output relation curve. For small
input signals, the system exhibits very small responses. However, when
the signal s reaches a particular threshold s∗, the system becomes fully
activated and the response increases sharply. The response is therefore
switch-like. We will call mechanisms presenting an ultrasensitive re-
sponse as switch-like responses while the term of switch will be devoted
to the concept introduce in the next section. We will see later that the
concept of biological switch and the concept of ultrasensitive response
are tightly coupled.

2.2 Emergence of the switch concept

In 1965, Jacques Monod, André Lwoff and Francois Jacob were awarded
the Nobel prize of Physiology or Medicine for their work on genetic reg-
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Figure 2.2: Lac operon in E. coli.

ulation (Jacob and Monod, 1961). One of their major discoveries is the
concept of operon. An operon is a set of genes corresponding to a single
transcriptional unit, see Figure 2.2. An operon corresponds to a DNA
unit including a promoter, an operator, a set of structural genes and a
terminator. The transcription of structural genes into mRNA is initiated
when a specific enzyme called RNA-polymerase binds to the promoter
region. An operon can be regulated by specific proteins called activators
and repressors trough specific mechanisms of regulation called induction
and repression which control the transcription of the gene.

The Lac operon is generally considered as one of the first example of a
biological switch (Figure 2.2). The lac operon consists in a set of three
genes coding for the metabolism and uptake of lactose and other sugars
in intestinal bacteria such as Escherichia Coli (Jacob and Monod, 1961;
Müller-Hill, 1996; Ozbudak et al., 2004). This set of genes encodes an
enzyme called β-galactosidase which allows for the effective digestion of
lactose. Novick and Wiener showed experimentally that the induction
of β-galactosidase by a specific inducer called TGM is an all or none
phenomenon (Novick and Weiner, 1957). Under high concentrations of
TGM, the β-galactosidase is produced at maximum rate almost instanta-
neously. However, at low concentrations of inducers, the rate of enzyme
synthesis per bacteria increases linearly. Novick and Wiener showed that
the population of bacteria consist in bacteria which can be either fully
induced or not induced at all. When submitted to low concentrations of
inducers, all the bacteria are not fully activated simultaneously. As the
fraction of fully induced cells in the population increases, the rate of syn-
thesis increases linearly. The all-or-none enzyme induction at the scale
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of a single bacteria can be considered as one of the first examples of a
biological switch (Laurent and Kellershohn, 1999; Ozbudak et al., 2004).

In 1968, Griffith studied in a theoretical work mechanisms of gene in-
duction. In particular, he studied a mechanism of induction of a gene
by the protein for which it codes.

Example 2.2.1. Posititve feedback to one gene. In this model, the
mRNA (RNA messenger), M codes for the protein E. This enzyme E
acts as an inducer of the gene and therefore produces a positive feedback
on M.

ṁ = −αm+ em

K + em
(2.1)

ė = −βe+m (2.2)

The theoretical analysis of Griffith showed that the self-induction pro-
posed by Monod and Jacob where an enzyme induces the production
of the gene that codes for this particular enzyme, leads to ‘ sufficient
stability in the two states required (Griffith, 1968)’ only if the induction
is a cooperative mechanism with m ≥ 2, (Griffith, 1968).

In dynamical systems theory, the behavior described by Griffith is called
bistability. The system presents two stable equilibria, an inactivated
state corresponding to low concentrations of M and E (the gene is not
induced) and an activated state where both concentrations are high (the
gene is fully induced). The stability of both states requires that the in-
ducing mechanism or positive feedback is described by a Hill equation,
i.e an ultrasentitive mechanism.

In the 1990’s, ultrasensitivity was discovered in cell signaling systems
(Ferrell, 1996). In signalling cascade, ultrasensitive mechanisms allow
to convert a graded signal, typically a concentration into a switch-like
response. By adding a positive feedback loop to the cascade, the switch
becomes bistable and or-all-none (Ferrell and Machleder, 1998). As for
the model of Griffith, the combination of an ultrasensitive mechanism
and of a positive feedback loop leads to bistability.

Experimentally it is not always possible to distinguish between an ul-
trasensitive response and a bistable switch (Sha et al., 2003), see Figure
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Figure 2.3: Comparison of a bistable and an ultrasensitive, memory-less,
switch like, response. The black dots represent experimental observa-
tions. The bistable system presents two branches of stable equilibria
(black lines) and a branch of unstable equilibria (black-dashed line).
For the same value of the signal s, the system can be in two distinct
operating conditions, i.e the system shows hysteresis. Conversely, the
ultrasensitive, switch-like, system only presents one stable equilibrium
for each signal input. This figure has been inspired by Sha et al. (2003)

2.3. Discontinuity in the sigmoidal stimulus-response curve may be due
to either a bistable process or a very steep ultrasensitive mechanism.
One way to distinguish between these two mechanisms is by testing a
defining property of bistable systems, hysteresis. A system presents hys-
teresis when the stimulus threshold needed to trigger a transition from
the rest to the excited state differs from the threshold needed to trigger
the opposite transition from the excited state from the resting state.
Evidence for hysteresis was demonstrated experimentally in the cell cy-
cle (Pomerening et al., 2003; Sha et al., 2003; Thron, 1997). Systems
with hysteresis have memory because once the transition from the rest
state to the excited state as been initiated, the system remains in the
high state even if the stimulus is decreased below the low-to-high state
threshold.

2.3 Modern developments

Thanks to the development of new techniques in biology such as cloning
or genome sequencing but also the development of computer-assisted
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computation, new disciplines such as synthetic biology and systems bi-
ology have emerged at the beginning of the 21th century.

Synthetic biology is the engineering of new biological processes trough
the practical implementation of theoretical design concepts (Serrano,
2007). In 2000, Gardner et al. engineered a synthetic bistable switch in
the bacteria E. Coli (Gardner et al., 2000). The switch was designed as
a mutually inhibitory network between two repressible promoters. This
experiment demonstrated the practical implementation of modules with
functions predicted by the theory such as memory. The experiment of
Gardner et al. (2000) also shed light on one important issue for the de-
sign of robust switches, the stochastic nature of gene expression. In the
E Coli toggle switch, natural fluctuations in the gene expression blur the
switching threshold resulting in a transient bimodal distribution of cell
responses for concentration of inducers close to this threshold (Figure
2.4). Relation between (transient) bimodality in a cell population and
stochasticity was further discussed in Ozbudak et al. (2004) and more
recently in Robert et al. (2010) where it was shown that other factors
such as epignetic inheritance could also be involved in this mechanism.
Bimodal cellular phenomena require single-cell method analysis and can
not be captured by average models on a cell population. For these sys-
tems, a stochastic approach is needed (Ullah and Wolkenhauer, 2010).

Another concept discussed in Gardner et al. (2000) is reversibility. In
response to transient inputs, the system can be reversed in a long-term
scale. Encouraged by the success of the experiment of Gardner, other
teams have proved the practical implementation of switches (Kramer
et al., 2004; Palani and Sarkar, 2011). These new experiments try to
reproduce switches with some design specifications such as reversibility.
Originally applied to small modules, synthetic biology is currently trying
to engineer complex multicellular systems (Basu et al., 2005; Kobayashi
et al., 2004). Interfacing several modules to create a system performing
nontrivial dynamical behavior is particularly challenging. Challenging
issues include the problem of handling noise, formulating effective bio-
engineering design principles, developing computational tools to study
large-scale models and developing programming abstractions which al-
low to capture the essential features of the system without including
complex details (Purnick and Weiss, 2009).
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architecture, rather than the engineering of proteins and other
regulatory elements, to obtain desired behaviours. In addition, the
reasonable agreement between the toggle theory and experiment
indicates that the theoretical design of complex and practical gene
networks is a realistic and achievable goal. Moreover, the genetic
toggle switch exempli®es a forward engineering approach to the
study of gene regulation in which synthetic gene circuits serve as
highly simpli®ed, highly controlled models of natural gene net-
works. As a practical device, the toggle switch, which requires only
transient rather than sustained induction, may ®nd applications in
gene therapy and biotechnology. Finally, as a cellular memory unit,
the toggle forms the basis for `genetic applets'Ðself-contained,
programmable, synthetic gene circuits for the control of cell
function. M

Methods
Numerics

All theoretical curves were calculated numerically from equation (1) (Box 1) using Matlab
(Mathworks), XPP-AUTO, software for simulation and analysis of differential equations
(G. B. Ermentrout, University of Pittsburgh, available at http://www.pitt.edu/,phase/), or
AUTO, a bifurcation package included in the XPP-AUTO software (E. Doedel, McGill
University).

Plasmid construction

Plasmids were constructed using basic molecular cloning techniques as described in
standard cloning manuals22,23. Restriction enzymes were from New England Biolabs and
Promega; PfuTurbo polymerase was from Stratagene; all other enzymes were from New
England Biolabs; all synthetic oligonucleotides were from Operon Technologies. All genes,
promoters and transcription terminators were obtained by PCR ampli®cation using
PfuTurbo proofreading polymerase and synthetic primers with overhanging ends con-
taining the appropriate restriction sites. Ribosome binding sites were included in the
overhanging ends of the primers. Site mutations were performed using either Stratagene
QuickChange or ExSite.

Genes, promoters and transcription terminators were obtained as follows: Ptrc-2 from
pTrc99a (AP Biotech); PL from pXC46 (ATCC); pLtetO-1 by total synthesis according to
the published sequence20; lacI from pTrc99a; cIts from pGW7 (ATCC); tetR from pcDNA6/
TR (Invitrogen); gfpuv from pGFPuv (Clontech); gfpmut3 from pJBA111 (gift of J. B.
Andersen, Technical University of Denmark); and rrnT1T2 terminators from pTrc99a. All
plasmids contained the ampicillin resistance region and ColE1 and origin of replication
from the pTrc99a plasmid. All cloning was performed by TSS transformation22 into E. coli
strain JM2.300 (CGSC), JC158 (CGSC) or TAP106 (ATCC).

DNA sequencing was performed using a Perkin-Elmer ABI Prism 377 sequencer.

Strains, growth conditions and chemicals

The host cell for all promoter assays and toggle switch experiments was E. coli strain
JM2.300 (l-, lacI22 rpsL135 (StrR), thi-1) (CGSC strain 5002). JM2.300, which contains
few mutations, is a fast-growing strain that can tolerate enormous overexpression of
plasmid-bound genes. Because JM2.300 contains no l repressor and carries a nonfunc-
tional Lac repressor (lacI22), it is an ideal host for the toggle switch.

All cells were grown in LB medium (Difco) with 100 mg ml-1 ampicillin plus inducers as

indicated in the text. All Type I and pIKE series plasmids were grown at 37 6 1 8C, unless
otherwise indicated. All pTAK series plasmids were grown at 32 6 1 8C except during
thermal induction. Thermal induction was carried out at 42 6 1 8C, unless otherwise
indicated. For all expression tests, cells were maintained in logarithmic growth phase by
periodic 500±1,000-fold dilution into fresh medium.

Ampicillin and IPTG were from Sigma. Anhydrotetracycline was from ACROS
Organics. All other chemicals were from Fisher.

Assay of gene expression

All expression data were collected using a Becton±Dickinson FACSCalibur ¯ow cytometer
with a 488-nm argon excitation laser and a 515±545-nm emission ®lter. Before assay, cells
were pelleted and resuspended in 0.22 mm ®ltered PBS (58 mM Na2HPO4, 17 mM
NaH2PO4, 68 mM NaCl, pH � 7:4). Cells were assayed at low ¯ow rate and ¯uorescence
was calibrated using InSpeck green ¯uorescent beads (Molecular Probes). All measure-
ments of gene expression were obtained from three independent cultures maintained
simultaneously under identical conditions. For each culture, 40,000 events were collected.
All ¯ow data were converted to ASCII format using MFI (E. Martz, University of
Masachusetts, Amherst, available at http://marlin.bio.umass.edu/mcbfacs/¯owcat.
html#m®) and analysed with Matlab.
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Figure 6 pTAK117 switching time. a, b, The fraction of cells in the high state is plotted as

a function of the induction time. Cells were divided between high and low states as in Fig.

5c. c, Switching of pTAK117 cells from the low to the high state by IPTG induction. The cell

population is illustrated at four time points. Cells begin switching between 3 and 4 h as

shown by the appearance of a bimodal distribution. The switching is complete by 6 h.

Figure 2.4: Bimodal distribution of cell responses in the experiment of
Gardner et al. (2000). Figure from Gardner et al. (2000).

Systems biology aims at understanding the interactions between the
components of complex biological processes (Alon, 2006; Chuang et al.,
2010; Kitano, 2002). Methods used in systems biology are various includ-
ing both top-down and bottom-up approaches (Bruggeman and West-
erhoff, 2007). Among all the possible methods and formalisms, models
based on ordinary differential equations (ODE) have been applied to the
analysis of several biological switches (Kotaleski and Blackwell, 2010;
Yao et al., 2011; Zi et al., 2011). As illustrated for apoptosis in Chap-
ter 1, a general tendency in systems biology is to build high-dimensional
models in order to get a fine description of the system’s physiology. Mod-
els of apoptosis (Albeck et al., 2008; Chen et al., 2007; Legewie et al.,
2006; Schliemann et al., 2011) can include up to 58 states which is a
high-dimension with respect to the classical analyses tools of nonlinear
dynamical systems. As a consequence, analysis of these models is often
based on extensive numerical simulations. Which kind of biological in-
formation can be extracted from the analysis of these systems? What
are the parameters which the most affect the system behavior? Rigorous
means are required to link models to experimental data and understand
which aspects of a model are supported by data (Spencer and Sorger,
2011).
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2.4 From cellular to population models

One of the main challenges in current biology is to bridge the gap be-
tween the single cellular level and the large-scale multi-cellular network
level (Purnick and Weiss, 2009). We briefly discuss challenges encoun-
tered when trying to switch from the single cell level to multicellular
models.

Biological systems are subjected to various sources of heterogeneity
(Balázsi et al., 2011; Hilfinger and Paulsson, 2011; Raj and van Oude-
naarden, 2008; Sanchez et al., 2013). Several methods can be used to
study heterogeneous systems. One possible approach is cell ensemble
modeling. In this approach, some given kinetic parameters such as ex-
pression rates are drawn from a given statistical distribution for each
cell in the population (Henson, 2003). The system is simulated for a
large number of cells differing slightly in their parameters and results
are derived from these numerical simulations. Cell ensemble modeling
has been applied to the study of apoptosis (Schliemann et al., 2011)
revealing that heterogeneity reduces sensitivity to tumor necrosis factor
(TNF) stimuli.

Intrinsic noise seems to play a critical role in cellular decision-making
processes (Balázsi et al., 2011). If we assume that heterogeneity at the
macroscopic scale arises from intrinsic noise at the microscopic scale
such as protein interactions, several mathematical formalisms can be
used depending on the nature of the physical assumption characterizing
interactions among species (Gillespie, 1976). A short review of stochas-
tic methods and simulations will be presented in Chapter 3.

At the scale of population of individuals, such as a population of neurons
or an insect colony, bistable models have been successfully used to rep-
resent a collective decision-making process (Hopfield, 1982; Seeley et al.,
2012; Usher and McClelland, 2001; Wilson and Cowan, 1972). The theo-
retical works of Wilson and Cowan (1972) and Hopfield (1982) show how
hysteresis and memory can arise from collective interactions among ex-
citatory units. More recently, the leaky-competing accumulator model
has been proposed to represent the decision-making process between
subpopulations of neurons inhibiting each other. In its two dimensional
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nonlinear form, this stochastich system exhibits biomdality (Usher and
McClelland, 2001). In Seeley et al. (2012), a colony of honeybees has
to choose between two alternative nest sites. Each honeybee or agent
is represented as a single microscopic unit which can interact stochasti-
cally with other single units. Provided that the number of single units
is not too small, the macroscopic behavior is drawn by using averag-
ing techniques. At the population level, the decision-making process is
well described by a two-dimensional bistable model where the variables
represent the fraction of honeybees committing to each decision.

2.5 Conclusions

The switch is a concept which has been used from the early develop-
ment in biochemistry to modern developments in systems and synthetic
biology. Initially, the switch was associated to a nonlinear static input-
output response curve between the stimulus and the response of the
system. A distinction can be made between switch-like, memory-less
switches and bistable switches. Memory-less switches present an ultra-
sensitive behavior, i.e they present a continuous sigmoidal input-output
relation curve which is well described by a Hill function. This ultrasen-
sitive behavior is achieved through different mechanisms of regulation
including cooperativity and zero-order ultrasensitivity. By adding a pos-
itive feedback loop to an ultrasensitive mechanism, it is possible to build
a bistable switch. Bistable switches present two stable steady-states for
a particular set of experimental conditions. Their input-output rela-
tion curve is discontinuous, i.e the system shows hysteresis and memory.
Their activation is all-or-none, i.e they present an activation threshold.

With the development of new experimental technologies allowing the
study of the dynamics of concentrations at the single cell level, the con-
cept of switch evolved towards a dynamical concept. Questions such as
reversibility by transient signals or latencies prior to switch where shown
to be important for the control of several physiological processes. Some
of these properties were used as design principles to build new synthetic
switches. Because, new models try to incorporate more physiological
details, their dimension can be particularly large. As a result, system
questions are generally addressed by means of numerical simulations.
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Bistable models have been used to describe decision-making processes at
the molecular, cellular and population scale. Bridging the gap between
these scales would require to deal with heterogeneity and multi-scale
systems. Modeling a biological system is a matter of scale and of finding
the good level of representation to capture the essential characteristics
of the phenomenon under investigation. Yet, fundamental phenomena
such as bistability seem to be conserved across scales and systems.



Chapter 3

Performance and robustness of bistable switches

This chapter introduces the concepts of performance and robustness of
biological switches. First, we review the general considerations which
need to be taken into account when trying to define the robustness and
performance of a biological system. Based on these general consider-
ations and the analysis of Chapter 2, we identify performance criteria
for biological switches. Finally, we present a short survey of the meth-
ods that have been used to quantify the performance and robustness
of biological bistable switches. We try to identify the advantages and
limitations of each method in the light of our previous analysis.

3.1 Performance and robustness of biological systems

Chapter 2 illustrated how the complexity of biological models rapidly
increases when a certain level of physiological description is incorporated
in the model. The goal of systems biology is not only to provide models
for numerical simulations but also to identify the functional principles
ruling the behavior of biological processes. A major issue in systems
biology is to understand how complex biological systems can implement
a function robustly. The formulation of a definition of robustness for
biological systems is a challenging issue which has recently received a
particular attention (Kitano, 2004, 2007; Stelling et al., 2004b). Classical
approaches such as methods from control theory face serious challenges
when dealing with biological systems. Failure of classical approaches is
not only due to the complexity of models which results from the inherent
nonlinear and possible stochastic nature of biological phenomena under
investigation. The nature of questions related to the study of biological

23
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systems can also be quite different from the questions raised when en-
gineering a new device. This section reviews the considerations which
need to be taken into account when formulating these definitions. This
review is mainly based on the work of Kitano (Kitano, 2004, 2007, 2010),
a pioneer in the study of the robustness of biological models.

The robustness of a biological system is generally defined as its capacity
to maintain its function against perturbations:

‘robustness is a property that allows a system to maintain its
functions against internal and external perturbations’ (Ki-
tano, 2004).

‘robustness, the ability to maintain performance in the face
of perturbations and uncertainty, is a long-recognized key
property of living systems’ (Stelling et al., 2004b).

With regard to the previous definitions, the robustness of a biological
system is defined with respect to a given system, function and set of
perturbations. The system may be defined at a scale ranging from the
molecular level to the scale of an entire organism or population. The
function typically corresponds to a physiological function that the or-
ganism needs to perform under normal physiological conditions. The
characteristics of the physiological process dictate the performance cri-
teria that the model should satisfy. Obviously, this definition implies
that the system has a given and well-characterized function. In prac-
tice, this function may be unknown. In addition, a biological system
generally present several functions and could be robust to one of them
while presenting high fragility with respect to another one.

The set of perturbations is very broad in biology. These perturbations
are due to a fluctuating external environment but also to internal per-
turbations (Hilfinger and Paulsson, 2011; Swain et al., 2002). Among
others, internal perturbations include molecular noise resulting from the
possible low copy number of molecules interacting in a biochemical re-
action and intrinsic gene expression noise (Blake et al., 2003; Ozbudak
et al., 2002; Sanchez et al., 2013) which has been shown to participate
to cell to cell phenotypic variability. Identifying the system, the func-
tion and the set of perturbations are all three current research issues
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revealing the complexity hidden in the seemingly simple definition of
robustness proposed at the beginning of this paragraph.

One other major point raised by Kitano is that robustness is a concept
which is too often confused with homeostasis or stability (Kitano, 2007).
Homeostasis is the maintaining of physiological parameters which need
to stay relatively constant. This is the set of mechanisms which allow
the system to maintain steady-states in the organism (Cannon, 1932).

‘Whereas homeostasis and stability are somewhat related
concepts, robustness is a more general concept according to
which a system is robust as long as it maintains functionality,
even if it transits through a new steady state or if instability
actually helps the system to cope with perturbations (. . . ).
Such transition between states is often observed in biological
systems when facing stress conditions’ (Kitano, 2007).

The concept of homeostasis is related to the capacity of a system to
maintain a given state and not a given function. As illustrated in Chap-
ter 1, the apoptotic switch from life to death is an important function of
the system associated with a crucial decision. Failure in this process can
lead to severe diseases emphasizing the importance of a precise regula-
tion of this switching mechanism. A definition of apoptotic robustness
only based on homeostatic regulation of the survival sate would certainly
miss the true function of the apoptotic switch.

‘A theory that takes into account multistability and evolu-
tion of unstable systems needs to be developed and new the-
oretical avenues need to be explored to provide a broad and
unified account of robustness of biological systems’ (Kitano,
2007).

Whereas some simple concepts inherited from control theory such as
the trade-off between robustness and performance seems to have appli-
cations in biology, they warrant careful investigation (Kitano, 2010). For
instance, robust control, a field dedicated to design of systems able to
perform in presence of disturbances, could provide a framework for the
study of biological robustness. However robust control generally assumes
that there is a criterion to optimize. We already mention the difficulty
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to define such kind of criteria for biological systems. Furthermore, as-
suming that a biological system is optimized is a hypothesis subject to
discussion (Kitano, 2010). Another drawback of this approach is that
these techniques generally rely on control theory which mainly focuses
on stability and performance of monostable systems.

Biological systems deserve a specific theory which takes into account
their heterogeneity and structural nature. There is still a gap to fill
between the level of description used in thermodynamics and physical
sciences and a description at the scale of networks of biological interac-
tions. These considerations should motivate new advances in theories
of dissipative systems in thermodynamics or in the field of nonlinear
dynamical analysis and chaos (Kitano, 2007).

A proper definition of performance and robustness criteria for biologi-
cal switches should cover all the aspects presented in this section. In
this thesis, we will try to formulate a definition of robustness and per-
formance of biological switches which is consistent with the previous
considerations. In the next section, we identify performance criteria rel-
evant for the analysis of biological switches. These criteria are motivated
by the analysis presented in Chatper 2.

3.2 Definition of criteria for biological switches

In Systems Biology, the system typically corresponds to a subnetwork
of enzyme and protein interactions which are supposed to give rise to
the switch behavior. Performance criteria are motivated by the need to
control these complex processes and design effective drugs. In the light
of Chapter 2, we define the following criteria to study the performance
of biological switches:

All-or-none sharp activation In models of biological switches, the
fast, all-or none increase (or decrease) in one or several concentrations
of the system is assumed to be a good indicator of the physiological pro-
cess under investigation. In apoptosis, the switch typically corresponds
to the fast nonlinear increase in activated effector caspases. The switch
is a nonlocal phenomenon that can not be characterized in the vicinity
of stable equilibria and does not correspond to homeostatic conditions.
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Rather, bistable switches correspond to a sharp transition between two
different stable steady-states corresponding to distinct physiological be-
haviors.

Switching threshold Bistable switches present an activation thresh-
old. This threshold is defined as the minimal input necessary to trigger
the switch. This threshold depends on the type of input considered.
Common inputs in biological models include transient, pulse-like inputs
and constant step-like inputs. In apoptosis models, inputs have been
used to represent an instantaneous increase in the initial concentration
of pro-apoptotic effectors (Eissing et al., 2004; Schliemann et al., 2007).
The contamination process in prion diseases that is responsible for pro-
gressive neurodegenerative disorders, has been simulated by a pulse of
a pathogenic isoform of the prion protein (Kellershohn and Laurent,
2001). In experiments on the cell cycle, the input typically corresponds
to an increase in the total concentration of cyclin, a quantity conserved
in the system (Sha et al., 2003; Solomon et al., 1990; Tyson and Novak,
2008). Therefore, the input is similar to a step input corresponding to a
sustained rise in one concentration of the system. In experiments on the
lac-operon in E. coli, the bacterias are grown in a medium with different
concentrations of inducers (Gardner et al., 2000) also corresponding to
a constant input signal.

Hysteresis and memory We showed in Chapter 2 that memory and
hysteresis are a characteristic of bistable systems. As it will be recalled
in the next chapter, a hysteresis occurs when the signal modifies the
steady-states of the system. This situation is typically encountered for
step inputs.

Latency and decision time The example of apoptosis has high-
lighted a particular mechanism of latency at the single cell level. These
latencies correspond to a period following the application of the stimulus
and preceding the fast all-or-noe transition in the output concentration.
Understanding the relation between stimulus strength and latencies is
not only important for apoptosis. It is also particularly important for
understanding the dynamics of infectious diseases. Indeed, this mecha-
nisms as been shown to regulate long-term period of incubation in prion
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propagation and progression towards Alzheimer’s disease (De Caluwé
and Dupont, 2013; Kellershohn and Laurent, 2001). In these systems,
it is necessary to understand how the input, a concentration step or im-
pulse, is related to the time necessary to trigger the switch. The first
spike latency in neurons, presented in chapter 1, is an additional exam-
ple of a switch where the latency plays a critical role. In this thesis,
the decision time will refer to the time between the stimulus application
and the sharp transition. A system will be said to present latencies, if
it presents long transient following the application of the stimulus and
preceding the switch.

Reversibility Some switches can be reversed by applying a signal to
them. What is the type and strength of the input signal needed to
reverse the switch? Are all switches reversible? What is the best time
to apply the reversing signal? As illustrated in Chapter 1, reversibility
is important for long term potentiation and synaptic plasticity.

Bimodality Bimodality is the property of some populations to ex-
hibit two distinct responses for the same input. Bimodality occurs due
to natural fluctuations in gene expression (Blake et al., 2003; Gardner
et al., 2000). In a population of cells presenting (transient) bimodality,
an all-or none switch at the single cell level is traduced in a graded signal
at the population level when considering a global variable such as the
total concentration in a particular enzyme (Cui et al., 2008; Gardner
et al., 2000).

As mentioned in Chapter 2, the primary function of a bistable switch
is to encode a binary decision. We should note that our performance
criteria are related to general questions about binary decision-making
processes. What is the minimum amount of an enzyme or a drug to
trigger the decision-making process? Which factors control the deci-
sion time? Can we revert the decision taken by the system? In this
dissertation, we particularly focus on dynamical properties of biologi-
cal switches. The switch is not only a static input-output relation but
primarily a dynamical system encoding a decision-making process.
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3.3 Existing methods and limitations

In the previous section, we introduced some measures of performance for
biological switches. In this section, we review the methods to quantify
performance and robustness in biological sytems. We try to identify
the main advantages but also the limitations of these methods with
regard to the study of bistable switch models. The list of methods is
not exhaustive.

3.3.1 Network motifs

One attempt to understand the complex interactions of biochemical net-
works is the identification of network motifs (Alon, 2006; Tyson and
Novák, 2010; Tyson et al., 2003). Complex biochemical networks are
decomposed into small networks motifs which are assumed to perform
a particular function. Among popular motifs for switches, one can cite
the one-way switch and the toggle switch proposed in systems biology
(Tyson et al., 2003) and the excitatory-excitatory (E-E) and inhibitory-
inhibitory (I-I) motifs proposed in neural networks (Hopfield, 1982; Wil-
son and Cowan, 1972). These four motifs are two-dimensional and en-
code a positive feedback loop either by mutual excitation or by mutual
inhibition (Figure 3.1).

E E I I

+

+

-

-

Figure 3.1: Positive feedback in two-dimensional networks motifs of
bistability. The positive feedback loop results from mutual excitation
(E-E) or mutual inhibition (I-I) between two units.

The method of motifs tries to identify key structural mechanisms leading
to a biological function. This is an interesting approach for biological
systems where interactions are generally represented by graphical mod-
els and qualitative relations. However, this method mainly works for
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two or three dimensional models (Tyson and Novák, 2010). As the size
of the system increases, it becomes difficult to identify networks which
lead to a specific behavior. In addition, it is also difficult to estimate
the robustness of the small motif when it is embedded in a larger net-
work even if some features of biological networks can be used to simplify
the picture including the separation of time-scales between different pro-
cesses (Alon, 2007). Finally, these networks motifs only capture static
properties of the switch.

3.3.2 Parametric robustness

Another important consideration is parametric robustness. Because het-
erogeneity is present in every biological system, it is assumed that a
model should be robust to perturbations of its parameters. A variety
of methods has been proposed to quantify the robustness of biochemi-
cal networks to parametric perturbations (Hafner et al., 2009; Ma and
Iglesias, 2002; Shoemaker and Doyle, 2008; Stelling et al., 2004a). These
methods include local and global methods.

Sensitivity analysis is a classical tool to quantify the parametric robust-
ness (Turányi, 1990) that has been applied to various biological models
including models of switches (Bentele et al., 2004; Kikuchi et al., 2003;
Rehm et al., 2006) and models of oscillators (Bagheri et al., 2007; Stelling
et al., 2004a). A classical way to define the parametric sensitivity, sij of
the ith observable ci to the jth parameter pj is :

sij = ∂ci(t)
∂pj

This method, generally applied to a stable equilibrium, is local in the
state and parameter spaces. When trying to study the dynamics of
the process like the switching between two stable steady-sates, these
sensitivity measures can be computed over trajectories and normalized
by 1

T , with T the integration period, to get a time-average valued:

sij = 1
T

∫ T

0
|sij(t)| dt

Obviously the sensitivity measure is then dependent of the chosen tra-
jectory. Therefore, sensitivities must be computed for various initial
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Figure 3.2: Diagram of bifurca-
tion of a bistable model as a func-
tion of the parameter k. The solid
black curves represent branches of
stable equilibria while the dashed
black curve represents a branch
of unstable equilibria. The stable
equilibria disappear in local bifur-
cations kmin and kmax.

conditions to get a global picture of the switch robustness in the state
space, which can be time consuming.

A classical method to get a non local robustness measure of the system
in the state space is to draw diagrams of bifurcation. A one-parameter
diagram of bifurcation represents the steady-states of a system as a
function of the value of one parameter. In bistable switches, the sys-
tem typically presents two stable steady-states for a fixed value of one
parameter k (Figure 3.2). These diagrams allow to identify local bifur-
cations, i.e points when the system changes stability. Typically, these
diagrams can be drawn using specific softwares, see Appendix A. Among
others, this analysis has been applied to quantify the robustness of the
apoptotic switch, (Eissing et al., 2005) and the mitotic control, (Borisuk
and Tyson, 1998).

As an illustration, we will consider in later chapters a robustness measure
proposed by Ma and Iglesias (Ma and Iglesias, 2002). This method has
been used to quantify the robustness of apoptotic models, (Eissing et al.,
2007). The DOR (degree of robustness) of a bistable model with respect
to a particular parameter k > 0 (all remaining parameters being fixed)
is defined by:

DOR = 1−max
{
kmin
k

,
k

kmax

}
(3.1)

where (kmin, kmax) ⊆ (0,∞) denotes the parameter interval in which the
system presents two stable attractors (Figure 3.2). A degree close to
one means that the system is very robust to parameter k and a degree
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close to zero means that it is very sensitive to this parameter. The
advantage with respect to classical local sensitivity analysis is that the
measure does not depend on a given state or trajectory, it is non-local
in the state space. However, the computation of the range of bistabil-
ity for each parameter variation is a computationally demanding task.
Moreover, softwares dedicated to bifurcation analysis are difficult to run
when the size of the system increases, in particular if the system is stiff
which is generally the case in models of biological switches. In addition,
the sensitivity can only be computed for one or at most two parameters
at the same time. These measures are local in the parameter space, they
are computed around a nominal set of parameters which is not necessar-
ily easily defined. Finally, these methods only focus on the presence of
stable attractors, i.e on the static properties of the system and are not
suited to capture a dynamical transition between two steady-states.

To get a global robustness measure in both the state and parameter
spaces, parametric robustness is mostly computed trough simulation-
based methods. The system is simulated for various values of initial
conditions and parameters and results of numerical simulations are com-
pared with some performance criteria dictated by biology. These meth-
ods include Monte-Carlo based simulations where parameters are ran-
domly selected according to a given statistical distribution in a prede-
fined range (Robert and Casella, 1999). The robustness of the model
corresponds to the volume of parameters which lead to the desired be-
havior. These methods have been applied to quantify the switch robust-
ness in bacterial chemotaxis (Barkai and Leibler, 1997) and apoptosis
(Eissing et al., 2007; Shoemaker and Doyle, 2008). However these are
computationally demanding and results are often difficult to interpret
from a biological point of view.

A possibly promising approach is the coupling between both local analy-
sis and global methods. Such methods have recently been applied to the
study of circadian oscillators, (Hafner et al., 2010, 2009) and the study of
the ErbB signaling pathway (Chen et al., 2009). To study such complex
systems, interdisciplinary teams try to integrate the various concepts
including networks motifs, sensitivity analysis, noise robustness, popu-
lation dynamics. This type of analysis has been used to design artificial
tissue homeostasis (Miller et al., 2012).
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3.3.3 Noise robustness

In biology, decision-making processes are subject to different sources
of noise (Balázsi et al., 2011). First, biological systems are exposed
to perturbations from their external environment (extrinsic perturba-
tions). But there are also subject to a different source of noise often
called intrinsic noise. This noise arises when the copy number of units
(ions, molecules or individuals) in a population is low. In this case, the
deterministic ordinary differential equations which describe the system
behavior at the macroscopic (population) level fail to provide a faith-
ful representation of the system. The interactions among species are
then probabilistic. Intrinsic noise has been particularly investigated in
the context of molecular reactions, see Gillespie (2007) for a review of
stochastic simulation of chemical kinetics. In particular the chemical
master equation (CME) gives a good description of the system based on
a probabilistic description of the interactions between species. It con-
sists in describing the system as a continuous-time Markov jump process.
However, solving the CME is a computationally demanding task even if
efficient algorithms including the SSA algorithm (Gillespie, 1976, 2007)
have been designed to simulate sample paths of the process.

The diffusion approximation can be used to approximate the CME by
a stochastic differential equation (SDE) when the number of species is
large enough (but not large enough to be described by deterministic
equations). A SDE is an ordinary differential equation with a noise
term. In chemical kinetics, SDE arise as a natural approximation of the
CME under the diffusion approximation. On the other hand, SDE or
Langevin-type equations have also been used in a broad variety of fields
to describe the dynamics of macroscopic (or collective) variables which
are subjected to microscopic (individual) perturbations. It is based on
the hypothesis that the macroscopic variables vary slowly with respect to
the microscopic perturbations. SDE can be simulated using the Euler-
Maruyama scheme (Higham, 2001).



34 Chapter 3.

3.4 Conclusion

Based on general observations on performance and robustness of biolog-
ical systems, we introduced performance criteria for biological switches.
Instead of focusing on static properties of the system such as the pres-
ence of two stable steady-sates, the performance is defined with respect
to dynamical properties of the switch such as latencies and reversibil-
ity. The introduction of these dynamical criteria is motivated by the
fact that most models of biological switches represent a binary decision-
making process. The questions which seemed important for the control
of the switch can be related to general questions about the dynamics of
this decision-making process.

We presented a short and non-exhaustive survey of methods to quantify
the robustness of biological models and identified their advantages and
limitations in studying the robustness of dynamical switches:

• Methods that are local in both the state and parameter spaces such
as local sensitivity analyses are easy to implement. However, these
methods usually consider the linearization of the system around
a stable equilibrium. This methodology is suited for the analysis
of biological phenomena such as homeostasis, but it is not suited
to phenomena characterized by a nonlocal transition between two
stable steady-sates.

• To get a non-local picture of the switch robustness in the state
space, sensitivity analysis can be applied along trajectories. Tra-
jectories are simulated for different initial conditions and the sen-
sitivity is computed over all these trajectories.

• Methods such as diagrams of bifurcations are also non local in the
state space, capturing in one diagram all the states of the system.
However, they only describe the static properties of the switch,
they are difficult to run for high-dimensional models and local in
the parameter space.

• Global methods generally address the problem of robustness by
means of extensive simulations. The system is simulated for vari-
ous initial conditions and sets of parameters. This type of analysis
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quickly becomes intractable as the dimension of the system in-
creases. In addition, results are often difficult to interpret from
a biological point of view and it is not clear yet what biological
insight could be gained from such methods.

Studying the robustness of biological switches is challenging. Because
these systems describe a dynamical decision-making process, involving
a transition between two stable steady-sates, classical theoretical tools
based on a local linearization around one stable steady-state fail to cap-
ture the switch performance and robustness. This explains why most
studies currently address this problem by means of extensive numerical
simulations.
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Chapter 4

The saddle point: a local organizer of bistability

Quantifying the performance and robustness of bistable switches is a
challenging issue which can be addressed with various theoretical and
numerical methods. The analysis presented in this chapter relies on dy-
namical systems theory. The goal is to identify general mathematical
properties that rule the switch behavior and propose some simple tools
to quantify its performance and robustness. These principles are intro-
duced in planar models in the present chapter and then extended to
high-dimensional models in the next chapter. In contrast to methods
previously proposed in the literature, our goal is to provide local tools
that can be used to estimate the global performance and robustness of
the switch.

4.1 The saddle point, a key ruler of the switch

E E

Figure 4.1: EE motif corresponding to mutual activation between two
excitatory units. Each unit produces a nonlinear positive feedback on
the activation of the other unit.

Bistability is a phenomenon that is well understood in planar models.

37
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There are many examples of two-dimensional bistable models including
the famous Lotka-Volterra equations for two competing species popu-
lation dynamics (Lotka, 1925; Volterra and Brelot, 1931), the model of
genetic control proposed by Griffith (Griffith, 1968) and the “excitatory-
excitatory” (E-E) and “inhibitory-inhibitory” (I-I) models of Hopfield for
neural networks (Hopfield, 1982).
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stable point

unst
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anifold

x
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saddle point

x 1
= 0.

x 2
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Figure 4.2: Phase plane of a typical bistable model resulting from mutual
activation. The system has two stable steady-states (black dots) and
a saddle point (white dot). The stable manifold of the saddle (black
curve) separates the phase plane into the two basins of attraction of
stable equilibra while its unstable manifold (red curve) connects the
three equilibra. Depending on the initial condition, the system converges
to the ‘off’ state associated with decision 1 or the ‘on’ state associated
with decision 2.

In all these models, bistability is achieved thanks to the presence of a pos-
itive feedback loop, a mechanism particularly important for bistability
(Cinquin and Demongeot, 2002; Thomas, 1994). This positive feedback
results from different mechanisms of interactions such as self-induction
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(Lotka-Volterra model), mutual activation (Griffith and E-E models) or
mutual inhibition (I-I model). As a toy example for this section, we use
a model of mutual activation between two simple components (Figure
4.1),

ẋ1 = −x1 + sat(x2)
ẋ2 = −x2 + sat(x1)

(4.1)

where x1, x2 ∈ R≥ 0 are the level of activation of two interacting com-
ponents (activation of neurons, expression level of genes, concentration
level of proteins, . . . ). The positive, nonlinear function sat, typically
sigmoidal or step-like, describes the positive feedback of one compo-
nent on the other. In this section, sat(x) is chosen as a Hill function,
sat(x) = 1

γ
xn

1+xn with γ > 0, n = 2. For suitable values of the parameter
γ > 0, the system is bistable.

In addition to the two stable equilibria, two-dimensional bistable models
must include a saddle point as an extra equilibrium. Figure 4.2 depicts
the typical phase plane of a bistable model resulting from mutual activa-
tion. Equilibrium points are located at the intersection of the nullclines
(black-dashed curves), i.e the curves ẋ1 = 0, ẋ2 = 0. Nullclines present a
typical sigmoidal shape which is related to ultrasensitivity and coopera-
tive behaviors introduced in Chapter 2. Due to the s-shape nonlinearity
of nullclines, the system has three equilibria. Two are stable and cor-
respond to experimentally observable conditions (black dots): the ‘off’
state where both x1 and x2 are inactivated and the ‘on’ state where
both x1 and x2 are fully activated. The third equilibrium is unstable
and is therefore not seen in experiments (white dot). This point is a
saddle point, i.e an equilibrium point with attractive and repulsive di-
rections. The saddle point has a central role in the decision model: it
is like a mountain pass between two valleys. Its stable manifold (black
curve) divides the phase plane into the two basins of attraction of stable
equilibrium points while its unstable manifold (red curve) connects the
three equilibria.

4.2 Local analysis at the saddle point

The local stability of an equilibrium, x0 is determined by computing the
Jacobian matrix of the system at this point.
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For the system 4.1:

J =
(

−1 ∂x2sat(x2)
∂x1sat(x1) −1

)∣∣∣∣∣
x=x0

=
(
−1 m
q −1

)

with m = ∂x2sat(x2)|x0 and q = ∂x1sat(x1)|x0 .
The local stability of x0 is determined by the real part of the eigenvalues
of J , λ1 and λ2.

Tr(J) = −2 = λ1 + λ2 < 0
det(J) = 1−mq = λ1λ2

if
{
mq < 1: the equilibrium is stable
mq > 1: the equilibirum is a saddle

At the saddle point, the system possesses two real eigenvalues, one neg-
ative −λs and one positive λu. The linearized system can be written,

u̇ = −λsu+O(u2, uv, v2)
v̇ = λuv +O(u2, uv, v2) (4.2)

with u and v the eigenvectors corresponding to −λs and λu. At the sad-
dle point, they correspond to the tangent approximation of the stable
and unstable manifold of the saddle point. At the first order, the rate of
convergence to the saddle in the stable manifold is given by e−λst while
the escape rate is governed by eλut.

We define the ratio τ :

τ = λs
λu

(4.3)

This ratio locally quantifies the time-scale separation between a fast at-
traction to the saddle in the stable manifold and a slow repulsion in the
unstable manifold.

Figure 4.3 shows the phase portrait of the system 4.1 for a value of γ
corresponding to a saddle with a large τ . Due to the time-scale separa-
tion at the saddle point, trajectories (dark blue and light grey curves)
that start in the vicinity of the stable manifold (green line) converge in
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the fast time-scale to a neighborhood of the saddle point. They escape
the saddle in the slow time-scale, resulting in a long transient latency.
Eventually, they converge to one of the two stable equilibria.
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Figure 4.3: Latencies induced by a time-scale separation at the saddle
point. The figure shows trajectories for initial conditions at an increas-
ing distance of the separatrix (A). The corresponding trajectories are
depicted in the phase plane (B). Trajectories starting close to the sep-
aratrix are delayed by the saddle point. The quantity d describes the
strength of an impulse signal that modifies the initial condition of the
system while d̄ is the lowest signal strength necessary to trigger the
switch, see section 4.2.1.

4.2.1 Latencies

A saddle point with a large τ induces transient latencies in the switch.
This mechanism is a simple way to create switches with input-strength
dependent latencies. As an illustration, we consider an input-output
version of the system 4.1:

ẋ = −x+ F (x) +Bu(t)
y = Cx

(4.4)

with x = [x1 x2]T , B = [0 d]T , d ∈ R, C = [1 0]T , F (x) = [sat(x2) sat(x1)]T
and x0 = [0 0]T , i.e the system is initially in the ‘off’ state.
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We analyze the effect of short duration (pulse-like) inputs, modeled for
simplicity by a Dirac function, i.e u(t) = δ(t). These inputs represent
an instantaneous change in the state of the system such as a modifica-
tion of the initial concentrations of the system. If the signal strength d
is greater than a particular threshold d, the system switches from the
‘off’ state to the ‘on’ state (i.e from decision 1 to decision 2) see Figure
4.3 A where the output has been normalized. The threshold d ∈ R+

0
is the minimum input necessary to trigger the switch. The ‘off’ state
corresponds to y = 0 and the ‘on’ state to y = 1. If d < d, the system
returns to the ‘off’ state and no switch occurs. The switch occurs when
the transient signal is strong enough to push the system state beyond
the separatrix in the phase plane. The switching time depends on the
signal strength. Figure 4.3 B shows the corresponding trajectories in
the phase plane. The time-scale separation at the saddle point forces
trajectories that approach the stable manifold to rapidly converge to a
neighborhood of the saddle point from which they slowly escape, causing
the delay. This results in a mechanism of input-strength dependent la-
tencies with latencies particularly long for inputs close to the threshold,
d.
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Figure 4.4: Local analysis at the saddle point, see (4.2) and the text
below.
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The duration of these latencies can be estimated by integrating the lin-
earized system (4.2), we get:

u(t) = u(0)e−λst

v(t) = v(0)eλut (4.5)

Trajectories are attracted by the saddle point at a speed e−λst in the
direction of the vector tangent to its stable manifold (−→e u). They escape
the saddle at a speed eλut following the direction tangent to the unsta-
ble manifold (−→e v). When, at the saddle point, the ratio τ (4.3) is large,
i.e. λs >> λu, trajectories fast converge to the unstable manifold of the
saddle and then slowly escape along this manifold resulting in latencies
in the switch. In this case, the scalar motion on this unstable manifold
is sufficient to quantify the latencies.

The decision-time or escape-time τd is defined as the time to reach a
distance d∗ > 0 of the saddle point in the direction, −→e v of the tangent
approximation of the unstable manifold, see Figure 4.4. The expression,

v(t) = v(0)eλut (4.6)

characterizes the escape rate from the saddle in this direction. We get
for an initial condition at a distance v(0) = δ of the separatrix (stable
manifold),

v(τ)
v(0) = d∗

δ
= eλuτd , d∗ > δ > 0 (4.7)

τd = 1
λu

ln d
∗

δ
(4.8)

The value of d∗ being fixed, the duration of delays is inversely propor-
tional to λu and scales logarithmically with the ratio d∗

δ
.

4.2.2 Reversibility

An important consequence of latencies and delayed decision making is
illustrated in Figure 4.5. In this picture, the effect of a small reverting
input is compared on two different systems. The first one is a switch
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Figure 4.5: Effect of small reverting perturbations on a switch either
presenting no latency (A) or presenting a long transient latency (B)
close to the saddle point. For this last one, a small perturbation is likely
to revert the switch. This is a schematic representation of a phenomenon
discussed on published biological models in Chapter 6.

without latencies while the second one presents long latencies induced
by the saddle point. By contrast to the first system which does not
present latencies, a small perturbation can revert the switch in the sec-
ond system with latencies. As the system remains close to the saddle
point and thus to the separatrix during the intermediate phase, a small
input perturbation can easily revert the switching decision. This is il-
lustrated by the grey dashed signals. Therefore, such delayed decision
making system is very sensitive to reverting perturbations during this
intermediate phase. Such a property could have biological significance
in a signalling mechanism as it will be illustrated in Chapter 6.

4.3 The saddle node bifurcation

‘The saddle-node bifurcation is the basic mechanism by which fixed
points are created and destroyed. As a parameter is varied, two fixed
points move toward each other, collide, and mutually annihilate (Stro-
gatz, 1994).’ At a saddle node bifurcation, only one eigenvalue crosses
the imaginary axis, i.e only one eigenvalue has a zero real part (see
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the general definition of a saddle node bifurcation in Guckenheimer and
Holmes (1983), also discussed in Chapter 5). In this thesis, we consider
the typical saddle node bifurcation where a stable equilibrium disappears
when it collides whit a saddle point. In planar models, this situation
corresponds to a situation where, at the bifurcation, the system pos-
sesses one eigenvalue with a negative real part and one eigenvalue with
a zero real part.

A large τ occurs when λu << λs. This situation is typically encoun-
tered in the vicinity of co-dimension one bifurcations such as saddle node
bifurcation of the saddle point with a stable equilibrium. Indeed, the
positive eigenvalue λu > 0 at the saddle point can be made as small
as desired by pushing the system closer to the saddle node bifurcation
while the negative eigenvalue at the saddle point, −λs, remains strictly
negative.

To illustrate the effect of saddle node bifurcation on the switch, we
consider the input-output version of the system studied in the previous
section, see system 4.4 but with step inputs, i.e u(t) = H(t). Figure
4.6 depicts trajectories for increasing values of d. Step inputs affect the
nullclines and equilibria of the system. The switch is triggered when
the signal strength d is strong enough to push the system beyond a bi-
furcation point. At the switching threshold d̄ (i.e the minimum value
of the input signal to trigger the switch), the stable equilibrium merges
with the saddle point in a so-called saddle-node bifurcation, the positive
eigenvalue λu vanishes and the ratio τ is infinite. For d > d̄, only the
excited state remains. When d ' d̄, there is a bottleneck created by
the proximity of nullclines where the dynamics is slowed down. Even
if the saddle point has disappeared, the ghost saddle delays trajectories
(Strogatz, 1994). The decision-time is mainly determined by the escape
time from this bottleneck.

The effect of a ghost saddle is a phenomenon well characterized in system
dynamics, (Strogatz, 1994). To illustrate this phenomenon, we introduce
the system:

ẋ = x2 + k, k ∈ R (4.9)

As it will be introduced in the next chapter, this system corresponds to



46 Chapter 4.

0 50 100
0

0.5

1

d < d

d <≈ d

d >≈ dd > dd >> d

t

y

0 1 2

1

2

x
1

x
2

.
x
2
=0

.
x
1
=0

bottleneck

A B

Figure 4.6: Switches with input-strength dependent latencies. Effects of
a step input.

the normal form of a saddle node bifurcation. For k < 0, the system has
two equilibria given by x = ±

√
−k, one is stable (black dot) and one

unstable (white dot), see Figure 4.7. For k = 0, the two equilibria merge
in a saddle node bifurcation (black-white dot). For k > 0, the system
has no equilibria and ẋ = x2 + k is always positive, the system escapes
to infinity. The parameter k controls the distance to the saddle point.

If k > 0, the solutions will escape to infinity. However, the escape time
can be particularly long. This escape time or decision time from the
interval (x0, xthresh) can be computed by:

τd =
∫ xthresh.

x0
x2 + k dt = 1√

k
atan( x√

k
)|xthresh.
x0

with x0, xthresh ∈ R and x0 < xthresh.
The time for x to go from −∞ to +∞ (x0 = −∞ and xthresh = +∞,) is
then given by:

τd = π√
k

that is the classical escape time from a bottleneck (Strogatz, 1994).
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Figure 4.7: Normal form of a saddle node bifurcation: ẋ = x2 + k

When the system is close to the saddle node, k is close to zero and the
escape time is particularly long.

4.3.1 Latencies and reversibility

The previous paragraph showed that the time to escape from a bottle-
neck created by a ghost saddle is fixed by the distance to the saddle
node bifurcation, k. Thanks to this type of bifurcation, the biological
process can implement a new mechanism of delayed-decision making for
constant inputs that modify the equilibria of the system. As for the
mechanism presented previously, the system presents an input thresh-
old corresponding to the strength of the signal necessary to push the
system at the bifurcation point. The duration of latencies is then a de-
creasing function of the distance to this threshold i.e. of the distance
to the bifurcation point. For these type of inputs, when the process has
been triggered, it can only be reverted by constant inputs that will push
back the system in the bistable regime.

4.3.2 Remarks

In Section 4.1, we highlighted a mechanism to create input-strength
dependent latencies based on impulse signals. However, this mechanism
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relies on the presence of a system with a large τ , a situation typically
encountered in the vicinity of a saddle node bifurcation. What happens
to this mechanism when the system is pushed beyond the bifurcation
point?

ẋ = −x+ F (x) +Bu(t) +Dp(t) (4.10)
y = Cx (4.11)

where B = [0 d]T , d ∈ R, u(t) = δ(t), D = [0 α]T , α ∈ R and p(t) = H(t)
with H(t), the classical Heaviside step function representing a constant
input production term. When α = 0, the system is bistable and we
observe latencies in the decision making process, see Figure 4.3 in Sec-
tion 4.2. For α = 0.2, the saddle point disappears trough a saddle-node
bifurcation. Despite the absence of a saddle point, see Figure 4.8 A-
B drawn for α = 0.25, one still observes the latency-induced decision.
The phenomenon disappears as the system moves further away from the
bifurcation point, see Figure 4.8 C-D where α = 1.5. The mechanism
persists beyond the saddle node because of the ghost saddle. Therefore,
latencies induced by impulse signals can still be observed beyond the
bifurcation point., i.e even if the system is no longer bistable.

The distinction between impulse and step inputs deserves further dis-
cussion. When talking about step signals we talk about increasing a
quantity which will be conserved in the system or applying a constant
signal to the system. This situation typically occurs if we consider that a
cell is immersed in a medium where the concentration of inducer remains
constant. Impulse signals represent a modification in an initial concen-
tration which is not conserved in the system, for example the injection
of some protein which can be degraded by the cell. However this simple
distinction hides some complexity. For example a step input of a fixed
duration could be considered as either an impulse signal or a constant
input depending on the time-scale of the decision-making process with
respect to the length of the input signal.

4.4 Parametric sensitivity

Sensitivity analysis is a standard tool to quantify the effect of parameter
variation on the system behavior. Local sensitivity analysis is routinely
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Figure 4.8: Figures (A-B) and (C-D) show the switch is modified by
adding a step input p(t) to the switch described by (4.4) and depicted
on Figure 4.3. (A-B) α = 0.25, only the ‘off " state remains while the
value of α is close to the bifurcation point αs = 0.2. The saddle point has
disappeared but its ghost creates a similar delay. One can still observe
switches with input-strength dependent latencies. (C-D) α = 1.5, both
the bottleneck and the switches with delays disappear.

applied around stable fixed points. Here, we propose to compute the
local sensitivity analysis at the saddle point. For a hyperbolic steady
states, the local sensitivity at the steady state x0 ∈ Rn for a set of
nominal parameters p = p0 ∈ Rm can by computed by (Ingalls, 2008;
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Turányi, 1990),

S = − ∂f(x, p)
∂x

∣∣∣∣−1

x=x0,p=p0

∂f(x, p)
∂p

∣∣∣∣
x=x0,p=p0

, (4.12)

or, its normalized version for a steady state x0 with nonzero entries

S̄ = −diag(x0)−1 ∂f(x, p)
∂x

∣∣∣∣−1

x=x0,p=p0

∂f(x, p)
∂p

∣∣∣∣
x=x0,p=p0

diag(p).(4.13)

with diag(x0)−1 ∈ Rn×n and diag(p) ∈ Rm×m.

For each parameter, pj , j = 1 . . .m, we compute the cumulated sensi-
tivity given by the scalar:

s̄pj =
n∑
i=1
|S̄ij | (4.14)

where |S̄ij | is the absolute value of the element (i, j) of the matrix S̄. The
row vector s̄p = [s̄p1 , . . . , s̄pm ] ∈ R1×m collects the cumulated sensitivi-
ties for each parameter. The idea is that, by identifying the parameters
which affect the saddle point, we will be able to identify parameters
that control the switch performance. This sensitivity analysis will be
performed in Chapter 6.

4.5 Noise sensitivity

As introduced in Chapter 3, biological systems are subject to different
sources of noise. When the level of species is sufficiently large but not
large enough to be described by ordinary differential equation, the diffu-
sion approximation is a simple way to account for random perturbations.
The diffusion approximation allows to represent the system as a set of
stochastic differential equations (SDE). Let us consider a noisy version
of the system 4.1.

ẋ = sat(x) + εξ(t), x ∈ R2 (4.15)

with ξ(t) a vector valued random process of zero mean and ε > 0 small.
The components of this vector are independent. Each component corre-
sponds to an independent identically distributed random variable. We
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consider that ξ(t) is a Wiener process (Arnold, 1974).

Let us consider the mechanism by which impulse signals create input-
dependent delays. As this mechanism of delays strongly depends on
the local effects of the saddle point, a reasonable question is to see if
these delays can still be observed in the presence of small noise. The
problem of computing the escape time from a saddle point subjected to
small random perturbations has been studied in (Kifer, 1981; Stone and
Holmes, 1990). In particular, for random perturbations starting on the
local stable manifold of a hyperbolic saddle point, the escape time scales
as:

1
λu
| ln ε| (4.16)

see, (Kifer, 1981). Increasing ε will therefore decrease the time spent
close to the saddle. However the relation is logarithmic. This means
that for small λu, delays will still been observed in the presence of noise.
The relation of Kifer (1981) is for an initial condition on the stable man-
ifold of the saddle. The problem is solved with an initial distribution
around this stable manifold in (Stone and Holmes, 1990). However, this
problem is analytically solved for heteroclinic attractors under the re-
stricting hypothesis of the orthogonality of eigenvectors at the saddle
point.

In addition, these results do no include the effect of an initial distance to
the separatrix. In order to test these effects, we simulated numerically
the system,

dx1 = [−x1 + sat(x2)]dt+ εdW1

dx2 = [−x2 + sat(x1)]dt+ εdW2
(4.17)

with dW1 and dW2, two independent Wiener processes of zero mean, i.e
< dW1,2 >= 0 and < dW 2

1,2 >= dt where < · · · > denotes expectation.
ε is the root mean square noise level. Numerical simulation is based on
an Euler-Maruyama scheme, see Appendix A.

Figure 4.9 shows the mean decision time in function of δ, the initial
distance to the separatrix, for different values of ε (blue: ε = 1e−4, red:
ε = 1e−3, black: ε = 1e−2). The mean decision time is defined as the
mean time to reach a distance d∗ of the saddle point in the direction of
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Figure 4.9: Mean decision time for a model of mutual activation for dif-
ferent values of ε (blue: ε = 1e−4, red: ε = 1e−3, black: ε = 1e−2). For
large initial distance to the separatrix δ with respect to ε, the mean de-
cision seems to follows the law predicted by the deterministic expression
4.8 (diagonal solid line). For small initial distance to the separatrix, the
mean decision time is scaled by noise. It is a constant which depends
on the value of ε as predicted by 4.16.

the eigenvector associated with the positive eigenvalue λu for an initial
condition at a distance δ from the stable manifold of the saddle (like in
the deterministic setting, see Figure 4.4). The mean is computed over
several realizations of the stochastic process for the same initial condi-
tion. The distance δ is computed as the classical euclidian distance in
the direction of the vector tangent to the unstable manifold. In this
analysis, we neglect the convergence to the unstable manifold and study
initial conditions on the unstable manifold of the saddle. For each point,
the decision time is computed by performing a mean of the decision time
over 500 realizations of the stochastic process. The distance d∗ is fixed
to d∗ = 0.1. As for the deterministic decision time predicted by the local
analysis 4.8, the mean decision time of the stochastic system decreases
with the initial distance to the separatrix, δ. For large values of δ with
respect to ε, the mean decision time follows the law predicted by the
deterministic analysis, see 4.8 and the diagonal solid lines in Figure 4.9.
When δ is small with respect to the noise, the decision time is scaled
by the noise. In this later case, the mean decision-time seems to be a
constant, which is fixed by the value of ε as predicted by 4.16 for initial
conditions on the stable manifold, i.e δ = 0.
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The problem of estimating how noise affects the decision-making process
in the vicinity of a saddle node bifurcation will be briefly discussed in
Chapter 5.

4.6 Global analysis of the phase plane

Recently, a new method has been proposed to draw the isostables of a
equilibrium (Mauroy et al., 2013). For a given equilibrium, ‘the isosta-
bles are the sets of points that approach the same trajectory when they
converge toward the fixed point’. Isostables are equally spaced in time,
i.e a trajectory intersects the isostables with a constant time interval.
This method is applied to the system (4.1) for a value of γ correspond-
ing to a large ratio τ , see Figure 4.10 where isostables have kindly been
computed by A. Mauroy. The isotables of the excited state (the stable
equilibrium with non-zero concentrations) are depicted in black while
isostables of the resting state (the stable equilibrium with zero concen-
trations) are depicted in blue. Isostables are almost parallel to the stable
manifold of the saddle and they are particularly dense in the vicinity of
the stable manifold of the saddle reflecting the decrease of the system
speed close to the separatrix. Qualitatively, this global analysis provides
the same information than that our local analysis at the saddle point.
In this system with a large τ , trajectories are delayed in the vicinity
of the saddle point as illustrated by the high density of isostables in
the vicinity of the separatrix. There is a fast attraction to the unstable
manifold in a direction parallel to the stable manifold as illustrated by
the shape of isostables almost parallel to the separatrix.

4.7 Conclusion

In bistable models, the saddle point is a key ruler of the switch. Because
it lies at the frontier between basins of attraction of equilibria, this point
is a good candidate for a local analysis of the decision-making process in
the phase plane. Like a mountain pass between two valleys, the saddle
point is located on the shortest path to switch from one attractor to the
other. In addition, its stable manifold acts as a natural threshold which
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Figure 4.10: Isostables of a the system 4.1 for a value of γ corresponding
to a large τ . The figure has been drawn from the numerical results kindly
provided by A. Mauroy.

filters out small perturbations.

When the system presents a time-scale separation at the saddle point,
properties such as latencies or transient reversibility, are likely to be
observed. This time-scale separation is captured by a high ratio τ of
eigenvalues at this point. For these systems with a fast convergence to
the unstable manifold of the saddle, the sensitivity of the decision-time
is estimated by computing the escape time from the saddle point. This
latency depends on the positive eigenvalue of the system at the saddle,
the initial distance to the separatrix and the noise strength. In systems
with large τ , small noise is likely to perturb the decison-making pro-
cess because the system presents long transients close to the separatrix,
where perturbations are able to revert the switch.

A high ratio τ naturally occurs in the vicinity of a saddle node bifurca-
tion. In this case, the switching performance is strongly affected by the
distance to the bifurcation point and the global system behavior is very
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sensitive to the parametric perturbations which control the distance to
this bifurcation. Therefore, identifying parameters which control this
distance is not only a way to study static performance criteria of the
switch but also its dynamical properties such as the decision-time and
the reversibility.

All the considerations of this chapter have been drawn for a planar
model. An important issue is to know whether this type of behaviors
can still be observed for high-dimensional models. Indeed, our goal is to
identify simple ways to design switches with a given property even when
the dimension of the system is not limited to the typical dimension of
a network motif. Is it possible to observe latencies in high dimensional
systems? Can we generalize the ratio τ? What does this ratio capture
in high dimensional models? Is it a simple way to link the dynamic and
the static properties of the system such as for the lower dimensional
analysis? These questions will be addressed in Chapter 5 and results
will be illustrated on three models of the literature in Chapter 6.
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Chapter 5

A local analysis method
for high-dimensional models of bistability

This chapter extends the measures and concepts introduced in the pre-
vious chapter to n-dimensional models. We generalize the ratio τ . The
link between the system dynamics and the proximity to a bifurcation is
rigorously justified by the Center manifold theory. This theory allows
the reduction of a n-dimensional system to a simple one-dimensional
equation called normal form when the system operates close to a co-
dimension one bifurcation. This equation can be used to get insight on
the decision-making process.

5.1 Localization of the saddle point

Localizing steady states in a high-dimensional system of nonlinear differ-
ential equations is not a straightforward task because it requires finding
the roots of the algebraic equation f(x) = 0, x ∈ Rn. The peformance
of numerical root finding algorithms is usually local, that is, roots are
easily found numerically provided that a good initial guess is known.
For stable steady-states of a bistable system, a few simulations of the
differential equation are sufficient to provide good initial guesses since
simulations will converge to one of the two stable equilibria. In a similar
way, simulations initialized in the vicinity of the stable manifold of the
saddle point will have a long transient near the saddle point, especially
if there is a strong time-scale separation, thereby providing good initial
guess for the root finding algorithm. Because the stable manifold of the
saddle is a separatrix of the two basins of attraction, initializing a simula-
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tion near the stable manifold is achieved by picking a state variable that
clearly distinguishes the two stable states (this choice is often suggested
by biology) and by applying a bisection procedure to identify an initial
condition close to the separatrix. In this thesis, we used Matlab’s ode15s
for simulating the differential equations and Levenberg-Marquardt op-
tion in the fsolve algorithm for solving the algebraic equations.

5.2 Local stability analysis

Let,

ẋ = f(x) x ∈ Rn (5.1)

describe an n-dimensional bistable dynamical system having two stable
equilibria. We assume that the two stable equilibria are connected by a
heteroclinic orbit through a saddle point, x0.

The local stability of an equilibrium point, x0 is computed by linearizing
the differential equation around that point to obtain the Jacobian matrix

J = ∂f(x)
∂x

∣∣∣∣
x=x0

(5.2)

and calculating the eigenvalues and corresponding eigenvectors of J . A
saddle point has eigenvalues with both positive and negative real parts.
We assume that the saddle point is hyperbolic, i.e. it has no eigenvalues
with zero real part. In addition, we assume that the system only pos-
sesses one real positive eigenvalue λu > 0. We will see later that this
hypothesis is natural for bistable models.

At the saddle point:

λu = λ1 > 0 > Re(λ2) = −λs > · · · > Re(λn)

From the stable manifold theorem (Guckenheimer and Holmes, 1983),
the eigenvector associated with the positive eigenvalue λ1 provides the
tangent approximation of the unstable manifold at saddle point, that is
also the heteroclinic trajectory connecting the two stable states, while
the remaining eigenvectors span an hyperplane tangent to the stable
manifold, that is the hypersurface separating the basins of attraction of



5.3. Center manifold theory 59

the two stable sates. We generalize the two-dimensional definition of the
ratio (4.3) by defining

τ = λs
λu

a high ratio meaning a strong time-scale separation. As λu → 0 and
the other eigenvalues remain finite, the ratio τ becomes infinite. Center
manifold theory can be applied to study the dynamics of the system.

5.3 Center manifold theory

Center manifold theorem is a tool to reduce the state space which need
to be considered when analyzing bifurcations of a given type. This the-
orem characterizes the local behavior of solutions near a bifurcation and
allows to reduce the dynamics of complex nonlinear systems to a sim-
ple ordinary differential equation called normal form. Therefore, this
tool is particularly interesting to describe the local behavior of com-
plex nonlinear systems. Theoretical results presented in this section are
extracted from Guckenheimer and Holmes (1983) and Kuznestov (2004).

We introduce the center manifold theorem following the formulation of
Kuznestov (2004). We suppose that the system,

ẋ = f(x), x ∈ Rn, (5.3)

has an equilibrium at x0 = 0 which is not hyperbolic. We assume that
the Jacobian matrix of the system, J computed at this point has n−
eigenvalues with Re(λ) < 0, n0 eigenvalues with Re(λ) = 0, and n+
eigenvalues with Re(λ) > 0. Let, T c, be the (generalized) eigenspaces
of J associated with the union of the n0 eigenvalues and φ(t) the flow
associated to (5.3), then

Theorem 5.3.1. (Centre manifold theorem as presented in Kuznestov
(2004)) There is a locally defined smooth n0-dimensional invariant man-
ifold W c

loc(0) of (5.3), that is tangent to T c at x = x0. Moreover, there
is a neighborhood U of x0 such that if φt x ∈ U for all t ≥ 0(t ≤ 0), then
φtx → W c

loc(0) for t → +∞ (t → −∞). The manifold W c
loc(0) is called

the center manifold.
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In the following part of the section, we only consider the case n+ = 0.
Indeed, as for the planar analysis and introduced in the next section,
we only focus on co-dimension one bifurcations, such as saddle node
bifurcations, where a stable equilibrium collides with a saddle point.
Without loss of generality, we can always set x0 = 0. Then the system
(5.3) can be rewritten as follows:

ẋ = Ax+ f(x, z), (x, y) ∈ Rn × Rm

ż = Bz + g(x, z)
(5.4)

where A and B are n × n and m ×m matrices whose eigenvalues have
respectively, zero real parts and negative real parts, and f and g vanish
at the origin. Since the center manifold is tangent to T c, we can represent
it as a (local) graph:

W c = {(x, z)|z = h(x)}, h(0) = Dh(0) = 0; (5.5)

where h : U → Rm is defined on some neighborhood U ∈ Rn of the
origin. The projection of the vector field on z = h(x) onto T c gives:

ẋ = Ax+ f(x, h(x)) (5.6)

The solutions of (5.6) describes the flow of (5.4) restricted to W c. By
derivating 5.5 with respect to t, and noting Dh(x) = [∂hi/∂xj ], the
Jacobian matrix of h(x), we also get:

ż = Dh(x)ẋ = Dh(x)[Ax+ f(x, h(x))] = Bh(x) + g(x, h(x))

or

N(h(x)) = Dh(x)[Ax+ f(x, h(x))]−Bh(x)− g(x, h(x)) = 0 (5.7)

with boundary condition

h(0) = Dh(0) = 0 (5.8)

The center manifold can be computed by solving 5.7.

In order to reduce the system to its motion on the center manifold, we
made the hypothesis that B has only negative eigenvalues. This condi-
tion ensures the attractivity of the center manifold. When λu goes to
zero and the ratio τ becomes infinite, the system presents the conditions
for a local attractive center manifold.
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5.3.1 Normal forms and co-dimension one bifurcations

Thanks to the center manifold theorem, the behavior of a complex non-
linear system near a nonhyperbolic equilibrium (e.g., a bifurcation) can
be studied locally by observing its restricted dynamics on its center
manifold. The normal form procedure is a procedure which aims at sim-
plifying the analytic expression of the vector field on the center manifold
(Guckenheimer and Holmes, 1983). By an appropriate change of coor-
dinate, the systems dynamics on the center manifold can be reduced to
a canonical expression called normal form. Depending on the transver-
sality conditions satisfied by the system, the dynamics on the center
manifold is topologically equivalent to different normal forms.

Saddle node: If at the equilibrium (x, α) = (x0, α0),

fx(x0, α0) = 0
fα(x0, α0) 6= 0
f2
x(x0, α0) 6= 0

(5.9)

where fx(x0, α0) is the partial derivative of f(x, α) with respect to x
computed at (x, α) = (x0, α0), fα(x0, α0) is the partial derivative of
f(x, α) with respect to α computed at (x, α) = (x0, α0) and f2

x(x0, α0)
is the second partial derivative of f(x, α) with respect to x computed at
(x, α) = (x0, α0).

The dynamics on the center manifold is described by the normal form,

ẋ = α− x2 (saddle-node)

For small α > 0, the system possesses two equilibria, one is stable while
the other is an unstable (saddle if n ≥ 2) point. At α = 0, these two
equilibria merge in a saddle node bifurcation. For α < 0, there is no
equilibrium. There are other types of bifurcations associated to different
transversality conditions, we introduce the trans-critical bifurcation.
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Trans-critical bifurcation: If at the equiibrium (x, α) = (x0, α0),

fx(x0, α0) = 0
fα(x0, α0) = 0
fαx(x0, α0) 6= 0
f2
x(x0, α0) 6= 0

(5.10)

The bifurcation is a trans-critical bifurcation and the motion on the
center manifold is described by,

ẋ = µx− x2 (transcritical)

The system possesses two equilibria for any value of α, one is stable and
the other unstable (saddle if n ≥ 2). The two points exchange stability
at the bifurcation. This situation typically occurs if, due to some sym-
metries, the system possesses an equilibrium whatever the value of the
parameter.

5.4 Bistable models and center manifold theory

Many n-dimensional bistable models have a geometry that straightfor-
wardly generalizes the geometry of a planar bistable model: two stable
equilibria and a saddle point with n − 1 attractive directions and one
repulsive direction. The separatrix between basins of attraction of these
equilirbia is a n − 1 dimensional manifold in the state-space. On this
manifold must lie a saddle point. The Jacobian matrix of the system
computed at the saddle point presents n−1 negative eigenvalues associ-
ated with this separatrix, the stable manifold and 1 positive eigenvalue,
λu associated with the unstable manifold that is the heteroclinic orbit
that connects the equilibria.

As the system approaches a saddle node bifurcation in which one of the
two attractors disappears, the positive eigenvalue λu goes to zero and
the other eigenvalues remain strictly negative As all the non vanishing
eigenvalues remain negative, the condition of stability of the center man-
ifold is automatically satisfied and the system dynamics can be reduced
to a one dimensional normal form describing its motion on the center
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manifold. The motion on this center manifold is slow in the vicinity of
the bifurcation resulting in latency in the convergence to the remaining
stable attractor. These latencies depends on the distance of the system
to the bifurcation.

Center manifold theory is a mathematical tool to traduce the intu-
itions formulated in Chapter 4 and extend them to any high-dimensional
model. In this chapter, we linked the possibility to create switches with
latencies, to the presence of a high ratio τ . The center manifold theo-
rem provides a link between these notions. We should emphasize that
latencies are induced by a local property, i.e. a saddle node bifurca-
tion. Therefore, nothing imposes that the system is really presenting
two stable attractors, and latencies could be observed for other types of
systems presenting a saddle point with a large τ . However, the condi-
tions of stability and presence of a center manifold are naturally satisfied
by bistable models. We will see in Chapter 8 that these considerations
are important.

Center manifold theory can also be applied to stochastic systems (Boxler,
1989).

5.5 Center manifold and normal forms for stochastic sys-
tems

A stochastic version of the center manifold theory has been proposed by
Boxler (1989). More recently, a normal form procedure has been pro-
posed to separate slow and fast modes in stochastic dynamical systems
(Roberts, 2008) and simplify multiscale nonlinear dynamics. Interest-
ingly, stochastic center manifold theory has been recently applied to the
problem of computing the escape rates in a stochastic system with mul-
tiple time-scales (Forgoston and Schwartz, 2009).

In their work, Forgoston and Schwartz proposed two procedures to com-
pute the stochastic center manifold. The naive procedure consists in
computing the deterministic center manifold and add a noise vector to
the right side of the equation describing the motion on this center man-
ifold. The second procedures relies on the construction of a stochastic
normal form that reduces the order of the system but also separates
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slow and fast processes as proposed in Roberts (2008). Although this
procedure is more accurate, it is particularly difficult to implement in
practice. Moreover, Forgoston et al. showed that, ‘because the noise ef-
fects occur at such a high order, the correction to the stochastic (naive)
result is minimal (Forgoston and Schwartz, 2009).’

Let us assume that following a similar procedure to the ones proposed
in Forgoston and Schwartz (2009); Roberts (2008), the system dynamics
of a stochastich system can be reduced to its motion on its stochastic
center manifold. We focus on the saddle node bifurcation. The problem
of studying the noisy normal form:

ẋ = x2 + k +
√

2Dξ(t) (5.11)

where the parameter D denotes the noise intensity, and the gaussian
white noise ξ(t) obeys the autocorrelation function < ξ(t), ξ(t + τ) >=
δ(τ), has been studied in Lindner et al. (2003). In this latter paper, the
normal form is studied to estimate the mean escape time and coefficient
of variation of a TypeI neuron described by the one-dimensional θ-model.

Let us study the normal form (5.11).

if k < 0 The system possesses a saddle point and a stable equilibrium.
For weak noise, D << |β|

3
2 ,

< τd >= π√
|k|

exp
[

4|k|
3
2

3D

]

This is the Kramer’s escape rate for the potential U(x, k) = −x
3

3 − kx
(Kramers, 1940).

if k > 0 In particular, for weak noise D
2
3 << k, the distribution of

the passage time can be approximated by a normal distribution whose
mean and variance are given by:

τd = π√
k

(5.12)
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< τ2
d >= 3Dπ

4k
5
2

The coefficient of variation is then given by:

CV =

√
< τ2

d >

< τd >
=

√
3D
4π k

− 3
4 (5.13)

The coefficient of variation is the inverse of the signal to noise ratio.

5.6 Conclusion

Phenomena introduced in planar models of bistability have their coun-
terpart in high-dimensional bistable models. Center manifold theory
provides a mathematical framework that allows the study of these phe-
nomena in high-dimensional, possibly stochastic systems. Generally,
bistable models present a particular structure with a separatrix and a
one-dimensional unstable manifold. Because of this particular structure,
phenomena such as reversibility and latencies are likely to be observed
in these systems for large τ . This situation typically occurs when the
system is close to a bifurcation. With regard to the analysis presented
in this chapter and in the previous one, a local analysis of the saddle
point should help to quantify the switch performance. In particular, the
design of a bistable model could be based on specifications of its saddle
point.
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Chapter 6

Robustness and performance
in dynamical models of cellular switches

From the theoretical analysis of Chapters 4 and 5, we learned that saddle
points and saddle nodes are key rulers of the decision-making process in
bistable models. This section presents a local analysis of three published
models of deterministic cellular switches. The analysis is first applied to
a small model of the apoptotic switch proposed by Eißing et al. (Eissing
et al., 2004), then to a larger model of the apoptotic switch by Schlie-
mann et al. (Schliemann et al., 2007) and finally to a model of long term
potentiation proposed by Aslam et al. (Aslam et al., 2009). Because
in all these three models, the switch is triggered by a transient signal
(pulse-like), we apply our analysis at the saddle point. The local anal-
ysis sheds light on the mechanism governing the switch between stable
steady-states and is used to quantify the robustness of the process to
parametric perturbations. The results are compared with results from
non local analyses.

6.1 Apoptosis

As introduced in Chapter 1, apoptosis, the cellular death is character-
ized by the activation of specific enzymes called effector capsases which
participate to the dismantlement of the cell (Elmore, 2007; Green and
Evan, 2002; Wolf and Green, 1999). Caspases, present in a latent form in
the cell cytosol are activated by proteolysis, i.e the cleavage of chemical
bounds in the protein. Activation of effector caspases can be initiated
through several pathways (Elmore, 2007; Green and Evan, 2002; Wolf
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and Green, 1999). The intrinscic pathway relies on the formation of
pores in the outer membrane of mitochondria leading the release of par-
ticular signalling proteins including cytochrome c and Smac/DIABLO
in the cytosol (Saelens et al., 2004). The cytochrome c binds to other
proteins to form the apoptosome, a complex which recruits and triggers
the activation of initiator which in turn activate effector caspases (Hill
et al., 2004). The permeabilization of the outer membrane is regulated
by proteins of the Bcl-2 family (Cory and Adams, 2002).

The activation of the extrinsic pathway is triggered by the fixation of
specific ligands to proteins called death receptors. These death receptors
are members of the tumor necrosis factor (TNF) receptor gene super-
family (Locksley et al., 2001). By the formation of a specific complex
called DISC (death inducing signalling complex), proteins are recruited
to activate the initiator Caspase 8 which in turn activates the effector
Caspase 3 (Kischkel et al., 1995; Scaffidi et al., 1999).

In the first section of this dissertation, we illustrated how the switch
in effector caspases has been at the origin of the concept of switch in
apoptosis. Let us recall the characteristics of the switch in the light of
the previous chapters. The main characteristics of the apoptotic switch
are reviewed in Spencer and Sorger (2011).

Experiments at the single cell level have revealed that the activation of
effectors caspases is an all-or-none phenomenon (Rehm et al., 2002; Tyas
et al., 2000). At the population level, the response is graded (Hentze
et al., 2002; Scaffidi et al., 1998). This graded response can be explained
in term of the variability in the timing the cell triggers the switch. Re-
cent experiments have shown that this variability does not seem to have
a genetic origin but conversely to rely on the differences in initial con-
centration of proteins present in the cell (Spencer et al., 2009). These
properties are consistent with the presence of a bistable switch in the
apoptotic process. Indeed, in bistable models, the presence of a thresh-
old is natural. Because the stable manifold of the saddle acts a sepa-
ratrix in the state space, the systems presents two behaviors which are
robust to small perturbations. The switch can be triggered either by
an input sufficiently large to make the system cross the separatrix or
sufficiently large and long to induce a bifurcation of the resting state as
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illustrated with the saddle node bifurcation. Bistable model have the
additional property to induce variable latencies whose length depends on
the strength of the input. These latencies are induced by a slow escape
from the saddle point in its unstable manifold. This property is not only
robust but enhanced in the vicinity of bifurcations of the resting state
where the positive eigenvalue of the saddle λu vanishes, and the dynam-
ics of the decision-making process is governed by the system dynamics
on the center manifold. In the vicinity of these bifurcations, the vector
field is small making the system very sensitive to perturbation and noise.
Therefore, it is likely to observe variability in the switching time in a
population of cells. This variability results in a graded response at the
level of a population.

Whether bistability is essential or not to the apoptotic switch is a hy-
pothesis which is still debated (Albeck et al., 2008). Furthermore, in
bistable models, the bistability has been attributed to various steps in
the apoptotic process (Bagci et al., 2006; Chen et al., 2007; Eissing et al.,
2004; Legewie et al., 2006). Our goal in this section is not to identify the
physiological cause of the switch in effector caspases. Rather, we try to
show that the general principles discussed theoretically in the previous
chapter are really encoded in models of the literature. In particular,
we illustrate the role played by the saddle point and saddle node bifur-
cations in the switch dynamics. Our results show that a simple local
analysis at the saddle point of these model can be used to estimate the
global performance and robustness of the switch and identify parameters
which are likely to modify the switch behavior.

6.1.1 8-dimensional model

The model of Eißing (Eissing et al., 2004) is a model of 8 ordinary dif-
ferential equations with 19 kinetic parameters describing the activation
of effector caspases in the exrtinsic pathway. In this model, the activa-
tion of the initiator caspase C8 is enhanced through a positive feedback
loop with the effector caspase C3, see Figure 6.1. In this model, two
inhibitors of apoptosis IAP and CARP can link to caspases to avoid
apoptosis.

Eißing et al proposed an input-ouput version of the model. The input
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affects the concentration of activated initiator caspases C8∗ while the
ouput is related to the concentration of activated effector caspases C3∗.
In the present analysis, the input signal directly acts on the number of
initiator caspases that become activated (C8 → C∗8 ) rather than an extra
inflow of active initiator caspases. This slight modification with respect
to Eissing et al. (2004) has been chosen to better describe the effect of a
pro-apoptotic signal but the same results hold for the original input. For
nominal parameter values, the system exhibits three steady-states with
non-negative concentrations, two stable points corresponding to life and
death and a saddle point, see Table 6.1. We can notice that concentra-
tions at the stable life equilibrium are very close to concentrations at the
saddle point. For impulse signals above 75 mol/cell, the cell switches
from life to death. These results agree with the analysis of Bullinger
(2005). For inputs above the threshold, the cell presents a delay before
the switch. This delay depends on the strength of the input signal, see
Figure 6.2 where the output, i.e the number of molecules of activated
caspase 3, C3∗ has been normalized. The output is equals to zero in the
unexcited state and equals to one in the exited state.

C8 C8*

C3* C3

CARP

C8*~CARP

C3*~IAP

IAP

input

output

Figure 6.1: Model of Eißing. In response to a pro-apoptotic input signal,
initiator caspases C8 become activated and activate the effector caspase
C3. Activated C3, C3*, activate C8 in return through a positive feed-
back loop. Inhibitors CARP and IAP bind to C8* and C3* to prevent
apoptosis.
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xlife xsaddle xdeath
C8∗ 0 0.4900 74380
C3∗ 0 0.3900 5162
C3∗−IAP 0 34.2400 2999
IAP 40000 39550 264
C8 130000 129870 9132
C3 21000 20850 19
CARP 40000 39492 21
C8∗−CARP 0 40 3457

Table 6.1: Concentrations at equilibria for the model of Eissing et al.
(2004) in molecules per cell.

Local analysis at the saddle point

The model of Eißing (see Appendix A.1) linearized at the saddle point
has one real positive eigenvalue λ1, and 7 negative ones λ2 . . . λ7. The
ratio, τ between the slowest negative eigenvalue −λs and the positive
one, λu is high (≈10), see Table 6.2. As illustrated on Figure 6.3, trajec-
tories which start close to the separatrix corresponding to the switching
threshold converge to the vicinity of the saddle point before slowly es-
caping along the unstable manifold of the saddle to asymptotically reach
one of the two stable equilibria, see Figure 6.3. The slow escape from
the saddle produces a mechanism of input-strength dependent latencies
as it was previously observed on the two dimensional system. Long tran-
sients are reflected by the small value of λu at the saddle with respect
to the other eigenvalues at this point and the high ratio τ .

−λs λu τ

-0.0011 1.08e-04 9.9897

Table 6.2: Model of Eißing: Eigenvalues and ratio τ

The cumulative sensitivity s̄p computed at the saddle point shows that
the saddle is insensitive to the parameters k4, k5 and k6 (see Appendix
A.1), the ones controlling the degradation of free activated caspases
C3* and C8* and the active degradation of the inhibitor IAP by C3*,
see Appendix A.1. This local sensitivity analysis is compared with the
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Normalized switch in effector caspases

Figure 6.2: Input-strength dependent latencies in the model of EIßing.
For inputs above the threshold d̄, the system switches to the death state
characterized by a high concentration of effector caspases. Trajectories
have been normalized such that the concentration of C3∗ equals zero
in the life state and equals one in the death state. Trajectories are
depicted for inputs corresponding to an increasing percentage of the
threshold (input = 0.5 (blue), 1.05 , 1.1 and 1.5 times the switching
threshold). The latency is long for inputs close to the threshold and
then is shortened as the input signal increases.
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Figure 6.3: Two-dimensional projection of state space trajectories in a
8-dimensional model of apoptosis proposed by Eissing et al. (2004). Tra-
jectories starting close to the stable manifold of the saddle point quickly
converge to the neighborhood of the saddle where there are delayed be-
fore converging to the excited state leading to latencies in the decision
making process.

result of a non local robustness analysis, the DOR analysis proposed
by (Ma and Iglesias, 2002) and introduced in Chapter 3. The degree
of robutsness (DOR) of a bistable model with respect to a particular
parameter k > 0 (all remaining parameters being fixed) is defined by
the expression (3.1), i.e.:

DOR = 1−max
{
kmin
k

,
k

kmax

}
(6.1)

where (kmin, kmax) ⊆ (0,∞) denotes the range of bistability. A degree
close to one means that the system is very robust to parameter k and
a degree close to zero means that it is very sensitive to this parameter.
For the model of Eißing, we computed the range of bistability for each
parameter by drawing the corresponding diagram of bifurcation with the
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software XPP-AUT (Ermentrout, 2002).

This analysis shows that the system is particularly robust to the param-
eters k4, k5 and k6, thus to the ones with low sensitivities at the saddle
point. Conversely, the bistability is not robust to parameters with high
sensitivities. The good match between both analyses reveals the predic-
tive power of the local sensitivity analysis at the saddle point to estimate
the robustness of the bistable behavior. Interestingly, the three insensi-
tive parameters control the degradation of free caspases suggesting that
free caspases are not involved in the death decision making process. In-
stead, the slow dynamics at the saddle point are mostly governed by
inhibitors.
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Figure 6.4: Model of Eissing et al: comparison between local sensitiv-
ity analysis and DOR analysis. Results of the local sensitivity analysis
matches the results of the DOR analysis: parameters with a low sensitiv-
ity at the saddle point have a high degree of robustness (DOR) (black)
while parameters with a high sensitivity have a low DOR (light gray).
Parameters are represented by their rank in the table A.1.

Figure 6.5 is a comparison of the local sensitivity analysis when per-
formed at the stable life (top), saddle (center) and stable death (bottom)
equilibria. The life state has null concentrations making impossible the
normalization of sensitivities by the concentrations at this state. In order
to overcome this problem and compare sensitivities between them, we
normalized the sensitivities not by concentrations at each equilibrium



6.1. Apoptosis 75

but by the maximal concentration between all these three equilibria.
Therefore the normalization is the same for each equilibrium. This sen-
sitivity measure is called s̃p. Results are depicted on Figure 6.5. By
contrast to the local sensitivity analysis at the saddle (center), local
sensitivity analyses at stable equilibria (top and bottom) fail to capture
the robustness of the switch. Comparison with the results of diagrams
of bifurcation (not shown) reveals that the life state is an equilibrium of
the system whatever the values of the parameters. The stability of this
equilibrium changes when it meets the saddle in a trans-critical bifurca-
tion, making the system switch to the death state for arbitrarily small
perturbations.
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Figure 6.5: Model of Eissing et al: local sensitivity analysis at equilibria.
Sensitivities are normalized by the maximal concentrations observed at
steady-state. The analysis is performed at the life stable equilibrium
(up), the saddle point (center) and the death life state (down). The
sensitivity analysis at the life stable equilibria (up) fails to capture the
sensitivity of the switch to a given set of parameters including the pa-
rameters which control the positive feedback loop between the activated
Caspase 3∗ and Caspase 8∗ and the sensitivity to IAP (see the com-
parison of the DOR analysis for parameters k1, k2, k3). The sensitivity
at the death equilibrium (bottom) does not capture the sensitivity to
degradation of inactivated Caspase 3, Caspase 8 and the IAP and CARP
inhibitors (see parameters k8 to k12).
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6.1.2 37-dimensional model

The model by Schliemann et al. is a large model of apoptosis (Schlie-
mann et al., 2007) describing the pro- and anti-apoptotic signaling path-
ways induced by the stimulation with the cytokine TNF, see Figure 6.6.
On the one hand, TNF enhances the activity of NF-κB, an important
transcription factor for anti-apoptotic proteins. On the other, TNF in-
ternalizes and then activates the initiator caspase Caspase 8, which is
part of a positive feedback loop of mutual activation of Caspase 8, Cas-
pase 3 and Caspase 6. In the input-output version of the system, the
input modifies the initial concentration of TNF while the output is cho-
sen as the concentration of activated Caspase 3.

For nominal parameter values, see Appendix A.1, the model has a total
of 37 states and is also bistable with a saddle point having only one
positive eigenvalue, which furthermore is the smallest one in absolute
values, see Figure 6.7 and Table 6.3. The ratio τ is less pronounced
here, approximatively a factor two.

The switch is delayed for impulse inputs close to the input threshold,
see Figure 6.9 for simulations with various input intensities around the
threshold level d̄. The delayed decision making is particularly pro-
nounced for inputs slightly above the threshold, where the latency is
quite significant (about one day). This is well predicted by the local
analysis which shows that the positive eigenvalue at the saddle point is
particularly small with respect to the magnitude of other eigenvalues at
the linearization (Figure 6.7). Visualizing the trajectories in the state
space (Figure 6.8) illustrates the importance of the saddle point and
of its unstable manifold. Inputs close to the transition threshold result
in trajectories that first converge to the proximity of the saddle point
before diverging along the unstable manifold. Because of a smaller τ
value than in the model of Eißing, the convergence is less pronounced
for inputs not very close to the threshold.

−λs λu τ

-5.6e-05 2.6e-05 2.2

Table 6.3: Model of Schliemann: Eigenvalues and ratio τ
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Figure 6.6: Pro and anti-apoptotic signaling pathways in the model of
Schliemann et al. The picture has be redrawn from Schliemann et al.
(2007) in accordance with the terms of the Creative commons attribution
license.

Figure 6.11 shows the relative sensitivities at saddle point. As the sad-
dle presents zero concentrations at steady-state, we use two methods
of normalization. The first one consists in computing s̄ and summing
sensitivities on non-zero steady states (Figure 6.10) and the second one
is the s̃ sensitivity introduced previously (Figure 6.11). Let us remark
that, in this case, if a concentration is null for every steady-state, it is
replaced by its maximal concentration over a trajectory.
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For the two methods, the general qualitative picture is similar. In both
cases, the linearized system is particularly sensitive to the parameters
controlling the degradation of NFκB and the transcription, degradation
and translation of Iκβα and to reactions which involve the caspases and
their inhibitors while it is quite robust to parameters controlling the re-
actions that govern the binding of the ligand to the receptor. Softwares
such as XPP-AUT have difficulties to handle a 37 dimensional model.
Instead, we estimated the DOR manually by perturbing one parameter
at a time and checking that the system is still bistable through numeri-
cal simulation, i.e by checking numerically that the system still possesses
two stable equilibria. The DOR analysis correlates well with the sensitvi-
ties depicted on Figure 6.10. Almost all the parameters (all except the
parameters 6 and 7 related to NFκB) presenting a light gray histogram,
i.e histograms associated with parameters having a large sensitivity at
saddle point have a DOR ≤ 0.75. At the opposite, black histograms,
associated with parameters presenting a low sensitivity at saddle point
have a DOR ≥ 0.95. The parameters with the lowest degree of robust-
ness are associated to reactions associated with the positive feedback
loop between initiator and effector caspases (DOR ≤ 0.5). As for the
model of Eißing, sensitivity analysis at the saddle point is a good pre-
dictor of the robustness of the bistable behavior. The comparison with
the sensitivities at the stable steady-state shows that, as for the model
of Eissing, this measures does not capture the sensitivity to the positive
feedback loop between Caspase 3 and Caspase 8 (see parameters related
to caspases in 6.12). This is not really surprising in the sense that the
model has a similar positive feedback loop to the model of Eißing which
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Figure 6.8: Three-dimensional projection of state space trajectories in
a 37-dimensional model of apoptosis proposed by (Schliemann et al.,
2011). Output trajectories for impulse inputs, slightly below (light blue
curve), slightly above (light grey curve), above (dark grey curve) and
significantly above (black curve) the decision making threshold, d. Tra-
jectories passing close to the saddle point are delayed. Trajectories fol-
low the unstable manifold of the saddle point (red dashed curve) before
reaching the survival or the death state.

is embedded in a higher dimensional model. The local sensitivity anal-
ysis at the saddle suggests an essential role for caspases and inhibitors
in the control of the switch from life to death in agreement with a re-
cent analysis of the system based on experimental data (Schliemann
et al., 2011). Also the sensitivity analysis seems to give interesting re-
sults on the parametric robustness of the bistable behavior, it would
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require further investigation. For example, we could test the effect of
the normalization on the sensitivity of the system.
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Figure 6.9: Input-strength dependent latencies in the model of Schlie-
mann et al. For inputs above the threshold d̄, the system switches to the
death state characterized by a high concentration of activated effector
caspases. Trajectories have been normalized such that the concentration
of activated effector caspases equals zero in the life state and equals one
in the death state. Trajectories are depicted for inputs corresponding to
an increasing percentage of the threshold (input = 0.5 (blue), 1.05, 1.1
and 1.5 times the switching threshold). The latency is long for inputs
close to the threshold and then is shortened as the input signal increases.
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Figure 6.10: Sensitivity analysis at saddle point for the model of apop-
tosis proposed by Schliemann et al. (Schliemann et al., 2007). The
parameters have been divided in three sets. The first one includes the
parameters controlling the reactions involving the binding of TNF to re-
ceptor, the second one the parameters controlling the activity of NF-κB
and the last one the parameters linked to the reactions governing cas-
pases and their inhibitors. The sensitivity is normalized by the non-zero
concentrations at the saddle point.
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Figure 6.11: Sensitivity analysis at saddle point for the model of apop-
tosis proposed by Schliemann et al. (Schliemann et al., 2007). The
parameters have been divided in three sets. The first one include the
parameters controlling the reactions involving the binding of TNF to re-
ceptor, the second one the parameters controlling the activity of NF-κB
and the last one the parameters linked to the reactions governing cas-
pases and their inhibitors. The sensitivity is normalized by the maximal
concentration at the three equilibria.
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Figure 6.12: Sensitivity analysis at the life equilibrium for the model
of apoptosis proposed by Schliemann et al. (Schliemann et al., 2007).
The parameters have been divided in three sets. The first one include
the parameters controlling the reactions involving the binding of TNF
to receptor, the second one the parameters controlling the activity of
NF-κB and the last one the parameters linked to the reactions govern-
ing caspases and their inhibitors. The sensitivity is normalized by the
maximal concentration at the three equilibria.
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6.2 Model of long-term potentiation

This section shows the results of our local analysis to a model of long
term potentiation proposed by Aslam et al. (Aslam et al., 2009). Long
term potentiation (LTP) describes the long-lasting increase in synaptic
strength described in learning and memory processes (Frey and Morris,
1997). Aslam et al. proposed a model of late LTP (L-LTP) in agree-
ment with experimental data where long term potentiation is achieved
thanks to the presence of a bistable switch resulting from the molecular
loop between the kinase (α-CaMKII) and the translation regulation fac-
tor (CPEB1), see Figure 6.13. The protein α-CaMKII can be in one of
three states: inactive (X), active (XA) and phosphorylated (XAp ). When
active and phosphorylated, α-CaMKII phosphorylates CPBE1 which in
return initiates the translation of a new α-CaMKII protein. This creates
a positive feedback leading to a fast increase of the total concentration
of α-CaMII. For biologically plausible parameters values (see Appendix
A), the 10-dimensional ODE model is bistable. The induction of L-LTP
is modeled by a brief pulse (10 seconds), which transiently increases the
basal level of (Ca2+)4-CaM. For weak pulses, the system returns to the
initial steady state corresponding to low concentration of total CaMKII.
For stronger pulses, the system switches to the other steady state and
the total concentration of CaMKII increases to approximately twice its
basal level, see Figure 6.14 where the output has been normalized.

We numerically found a saddle point and computed the eigenvalues of
the Jacobian matrix at this point, see Figure 6.15 and Table 6.4. All the
eigenvalues are real with λu > 0, the slowest eigenvalue. As for the mod-
els of Eißing and Schliemann, the unstable manifold of the saddle point
is one-dimensional. The ratio τ is smaller than for the model of Eißing
but sufficient to ensure the local attractivity of the unstable manifold
and observe latencies in the switch for inputs close to the threshold, see
Figure 6.14.

−λs λu τ

-0.0013 4.04e-04 3.3

Table 6.4: Model of Aslam: Eigenvalues and ratio τ
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Figure 6.13: Model of Aslam et al. The model describes the positive
feedback loop between the protein α-CaMKII and the translation factor
CPEB1. The protein α-CaMKII can be in one of three states: inactive
(X), active (XA) and phosphorylated (XAp ). When active and phospho-
rylated, α-CaMKII phosphorylates CPBE1 which in turn can initiate
the translation of a new α-CaMKII protein (Aslam et al., 2009)

.

The local sensitivity analysis at the saddle point correlates well with
the degree of robustness: parameters with high sensitivities have a low
degree of robustness while parameters with low sensitivities have a high
degree of robustness, see Figure 6.161.

We looked at the effect of a parametric perturbation on the switch. We
chose a set of parameters with different sensitivities at the saddle point
and perturbed one parameter at a time. Then we computed the new
switching threshold d̄ and simulated the system for increasing inputs
above this new threshold d. Simulations show that both the switching
threshold and the delay durations are mostly affected by the sensitive
parameters at the saddle point, such as the basal level of (Ca2+)4-CaM
(parameter 22) and the rate of activation of CaMKII k1 (parameter 1),
see Figure 6.17. By contrast, the switch is insensitive to modification of
the protein synthesis rate kSYN2 (parameter 20).

1The relative sensitivity of parameters 27 and 28 is not shown as these parameters
are equals to zero in the nominal model
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Figure 6.14: Latencies in the model of Aslam et al. (2009).

As previously illustrated in dimension 2, delayed decision making is en-
hanced close to a saddle node bifurcation where the ratio τ is gener-
ally high. In the model of Aslam, the ratio τ is not so large. We
decided to test the system’s behavior when we increase the ratio τ .
This is illustrated by modifying the initial value (control) of parameters
(Ca2+)4-CaM, kSYN1, k1 and putting them close to their value at bi-
furcation, (Ca2+)4-CaMc, kSYN1c, k1c, see Figure 6.18. As predicted
by our analysis, the mechanism of delayed-decision making is enhanced
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Figure 6.16: Model of Aslam et al: comparison between local sensitiv-
ity analysis and DOR analysis. Results of the local sensitivity analysis
matches the results of the DOR analysis: parameters with a low sensitiv-
ity at the saddle point have a high degree of robustness (DOR) (black)
while parameters with a high sensitivity have a low DOR (light gray).

when a parameter is pushed close to a value corresponding to saddle node
bifurcation. This illustrates the possible trade-off between a switch with
input-dependent latencies and robustness.
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Figure 6.17: Parameter perturbation of the model of Aslam et al.
Aslam et al. (2009). (A)-(D) The switching is depicted for nominal val-
ues of the parameters (black curve), 10 % of parameter perturbation
(blue dashed curve), 20 % (gray dashed-dotted curve) and 30 % of vari-
ation (red curve). The system is simulated for an input slightly above
the threshold, i.e d = 1.01d̄, where the threshold d is recomputed for
each parameter perturbation. (A) (Ca2+)4-CaM (parameter 22), (B)
kSYN1 (parameter 18), (C) k1 (parameter 1) and (D) kSYN2 (parameter
20). Both the switching threshold and time are affected by perturbation
of parameters (Ca2+)4-CaM and k1. In contrast, the switching threshold
and time are insensitive to a perturbation of parameter kSYN2.
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Figure 6.18: Influence of the distance to a bifurcation on the switching
for the model of Aslam et al. Aslam et al. (2009). (A)-(D) Switching
responses for the Aslam model for different input intensities d, above
the threshold d: d = 1.01d (dotted line), d = 1.1d (dashed-dotted line),
d = 2d (dashed line), d = 10d (solid line). (A) Nominal model. (B)-(D)
Perturbed models with single parameter set to 0.99 of its upper bifur-
cation value. (E)-(G) Bifurcation diagrams for the parameters (Ca2+)4-
CaM, kSYN1 and k1. (B) and (E) (Ca2+)4-CaM, (C) and (F) kSYN1, and
(D) and (G) k1.
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6.3 Conclusion

Sensitivity analysis is routinely applied to systems linearized around a
stable equilibrium point in order to test the parametric robustness of the
model. Here, we studied the sensitivity around an unstable equilibrium
point to analyze the parametric robustness of a bistable decision process.
Performing a local analysis around an unstable equilibrium point may
seem of little relevance since it does not correspond to an experimental
condition. However, it was shown in Chapter 4 and 5 that the saddle
point is a key ruler of the transient behavior of bistable decision pro-
cesses and has a central position in diagrams of bifurcations. In addition,
the theoretical analysis predicts that the decision-making process is well
described by the dynamics of the system on the one-dimensional slow
unstable or center manifold when its attractivity is sufficient to force
trajectories to pass close to the saddle point. As discussed in Chapter
5, this condition should be naturally satisfied by bistable models work-
ing close to a co-dimension one bifurcation of the saddle point with the
resting state such as saddle node bifurcations.

We analyzed three previously published models of bistable switches and
compared our results with results of non local methods such as diagrams
of bifurcation and numerical simulations. For the three models, results
of the local sensitivity analysis are good predictors of the results ob-
tained with the non local methods. Local sensitivity analysis allowed us
to identify the parametric perturbations that are the most likely to de-
stroy the switch. In particular, in both models of apoptosis and for the
set of nominal parameters proposed by original authors, the apoptotic
switch is particularly sensitive to the parameters controlling positive
feedback such as the parameters controlling the positive feedback loop
between activated initiator Caspase 8 and effector Caspase 3. This re-
sult is in agreement with previous analyses of the models which identified
the complexes caspases-inhibitors as key rulers of the decision making
process (Bullinger, 2005; Eissing et al., 2005). Our analysis also reveals
that the simple mechanism to create switches with latencies introduced
in dimension 2 is robust and implemented in higher dimensional mod-
els of the litterature. In apoptosis, recent experiments suggest that the
variability in the duration of the latent period has a non-genetic ori-
gin and depends on the protein levels in the cell (Spencer et al., 2009).
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These results are well captured by the proposed mechanism where the
variability of the delay depends on the initial concentration of enzymes
involved in the death process and the way trajectories are attracted and
then repulsed by the saddle point.

A striking feature of the proposed analysis is that it captures important
properties of bistable switches models beyond one important hypothesis
of this chapter, i.e the assumption of a switch induced by impulse sig-
nals. Because of the ghost effect of the saddle point, our analysis in the
vicinity of a saddle-node bifurcation applies beyond the bifurcation, that
is, to models that are monostable and contain no saddle. This situation
typically occurs when a step signal is sufficiently strong to make the sys-
tem cross a bifurcation. For both impulse signals and step signals, the
slow escape from the (ghost) saddle results in latencies in the switch, a
phenomenon which is well illustrated by the small (or vanishing) value
of the positive eigenvalue at the saddle with respect to the magnitude
of other eigenvalues in the system.

The mechanism of delayed decision making has strong biological rele-
vance because it is related to potential reversibility. In the state space,
the long latency period of delayed decision takes place close to the sepa-
ratrix of the basins of attraction. As a consequence, small perturbations
have the ability to revert the switch during the entire latency period.
This potential of reversibility might be particularly relevant for the long
term potentiation model of Aslam. The importance of the model lies in
its ability to reproduce experimental results, in particular to account for
the different effects of applying inhibitors during the induction or the
maintenance phase of L-LTP: if applied during the induction of L-LTP,
protein synthesis inhibitors can block L-LTP but they do not reverse
the potentiation when applied during the maintenance phase of L-LTP
(Fonseca et al., 2006; Frey and Morris, 1997). Moreover blocking the
αCaMKII activity stops the L-LTP induction phase but not the main-
tenance phase (Malinow et al., 1989; Otmakhov et al., 2004). These
observations are completely consistent with our explanation that small
perturbations can revert the decision during the latency period, i.e close
to the saddle point in the state space, but not once the system has
reached one of the two equilibria.
The results of this chapter have appeared in Trotta et al. (2010, 2012).
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Chapter 7

Organizing singularities

In this chapter we introduce the concept of organizing singularities. We
highlight how singularities, locally organize bistability both in state-
space and in parameter space. First we introduce the hysteresis singular-
ity and show how this singularity provides a natural route to bistability
in biological models. Then, we introduce the winged-cusp, a singularity
that will be used to extend the concept of bistability to a switch between
a stable equilibrium and a stable limit cycle.

7.1 Lessons learnt from the first part of the thesis

The first part of the thesis showed that despite the nonlocal nature of
switches, important measures of performance are well characterized by a
local analysis at the saddle point. The high ratio τ quantifies the time-
scale separation at the saddle and can be used as a likelihood measure
of observing phenomena such as latencies or transient reversibility. A
high ratio τ naturally occurs in the vicinity of co-dimension one bifur-
cations of the saddle point with the resting state. This means that a
small perturbation is likely to push the system beyond the bifurcation
point. Local sensitivity analysis at the saddle point is a simple way to
identify the parametric perturbations which are the most likely to push
the system beyond these bifurcations as supported by our comparison
of sensitivity analysis with non-local methods of robustness on several
models of the literature. However, in many bistable models, the switch
through a saddle node bifurcation triggered by a constant input is a
natural way to operate. This is not taken into account by our local
sensitivity analysis because it involves non linear perturbations in the
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parameter space. A better way of defining the robustness of a bistable
switch for these bistable models, would be to mimic our use of a local
tool to capture a non local phenomenon not only in the state space but
also in the parameter space. This means that we would like to identify
isolated points of high relevance in the parameter space. In this chapter,
we introduce singularity theory and show how this theory can be used
to deal with this problem.

7.2 A short introduction to singularity theory

The goal of this chapter is not to provide a full description of singular-
ity theory but to extract concepts and methods which can be used in
the analyzing of biological switches. Singularity theory is presented in
Golubitsky and Schaeffer (1985).

The theory of singularity studies the problem of bifurcations in models
with multiple parameters. By performing a particular reduction called
the Lyapunov Schmidt reduction, the problem can be reduced to study-
ing how the solutions of a single scalar equation,

g(x, λ) = 0, x, λ ∈ R (7.1)

varies with the parameter λ. The variable x represents the state of the
system while λ is the bifurcation parameter. The set of pairs (x, λ)
satisfying 7.1 is called the bifurcation diagram. Singular points satisfy
g(x∗, λ∗) = ∂x(x∗, λ∗) = 0.

Definition 7.2.1. A universal unfolding of g(x, λ), is a parametrized
family of functions G(x, λ, α), where α lies in the unfolding parameter
space Rk, such that

• G(x, λ; 0) = g(x, λ)

• Given any p(x) and a small µ > 0, one can find an α near the
origin such that the two bifurcation problems G(x, λ;α) = 0 and
g(x, λ) + µp(x) = 0 are qualitatively equivalent.

• k is the minimum number of unfolding parameters needed to repro-
duce all perturbed bifurcation diagrams of g(x, λ). k is called the
codimension of g(x, λ).
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Following Golubitsky and Schaeffer (1985), we introduce the concept of
organizing center.

Definition 7.2.2. The notion of organizing center is used to describe
an equation which occurs in a model for certain values of the parameters
such that the universal unfolding of this equation generates many or all
the bifurcations diagrams occurring in the physical problem.

Unfolding parameters change the qualitative bifurcation diagram of
G(x, λ, α) = 0. In this theory, a distinction can be made between bifur-
cation and unfolding parameters. The methods impose a structure on
the parameter space that can be useful to get a deeper understanding
of the problem. Moreover, this method allows to get a quasi-global de-
scription of the model by performing a local analysis (Golubitsky and
Schaeffer, 1985).

7.3 The hysteresis singularity

Let us consider the scalar equation:

g(x, λ) = 0 (7.2)

and assume that (7.2) presents a singularity at (x, λ) = (x0, λ0), i.e,

g(x0, λ0) = gx(x0, λ0) = 0 (7.3)

if in addition,
g2
x(x0, λ0) = 0 (7.4)

with,
gλ(x0, λ0) 6= 0
g3
x(x0, λ0) 6= 0

(7.5)

then g(x, λ) has a co-dimension 1 hysteresis singularity (Golubitsky and
Schaeffer, 1985),

g(x, λ) = x3 − λ (7.6)

with universal unfolding,

G(x, λ, α) = x3 − λ+ αx (7.7)
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Figure 7.1 shows the solution of 7.7 for different values of the bifurcation
parameter γ and the unfolding parameter α. The singularity occurs at
α = 0. For α > 0, the system is monostable. For α < 0, two saddle-node
bifurcations appear. The system has two stable equilibria and a saddle
point for a specified range of the bifurcation parameter λ. The distinc-
tion between the bifurcation and the unfolding parameter is important.
When α > 0, the system can not be bistable whatever the value of λ.
Therefore, identifying an hysteresis singularity and the corresponding
unfolding parameter in a model where bistability is suspected is a way
to identify the mechanism that gives rise to the bistable behavior in the
system.

λ

x̄

α = 0

0

λ

x̄

α < 0

0

λ

x̄

α > 0

0

Figure 7.1: Hysteresis singularity.

7.3.1 Hysteresis singularity in the model of Griffith

Consider the model of Griffith introduced in Chapter 2 with a constant
input u,

ṁ = −am+ em

K + em
+ u = −am+ sat(e) + u

ė = −be+m

y = e

(7.8)

Let us analyze the static properties of the system. By posing ṁ = 0 and
ė = 0, we get the static relation:

bay = u+ sat(y)
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sat

u y+
ab
1

Figure 7.2: Block digram for the model of Griffith

which is described by the block diagram 7.2.

Defining γ = ab, the singularity conditions yields :

g(u, y) = γy − u− sat(y) = 0
gy = γ − ∂ysat(y) = 0
gy2 = −∂2

y2sat(y) = 0
(7.9)

and
gu = −1 6= 0 (7.10)

Replacing sat by its polynomial expression, we get for the conditions
7.9:

g(u, y) = γy − u− y2

K + y2 = 0

gy = γ − 2yK
(K + y2)2 = 0

gy2 = −2K(3y4 + 2Ky2 −K2)
(K + y2)4 = 0

(7.11)

The third condition in (7.11) imposes that the singularity occurs for a
value of y∗ corresponding to the inflexion point of sat(y), y∗. Assuming
K > 0, y∗ ≥ 0, we get,

y∗2 = −K ±
√
K2 + 3K2

3 (7.12)

which has two real solutions for K > 0. In this particular example, we
fix K = 1. The only physical solution for y∗ is y∗ =

√
3

3 .
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At y = y∗, the second condition in (7.11) yields, γ = ∂ysat(y)|y = y∗,
i.e the parameter γ should be equal to the slope of the sat function at
y = y∗, γs,

γs = 2Ky∗

(K + y∗2)2 (7.13)

Replacing y∗ by
√

3
3 in our example with K = 1, we get γs = 3

√
3

8 .

By posing α = γ − γs in the first condition of 7.11, we get the input-
output relation curve depicted on Figure 7.3. The parameter α is the
unfolding parameter while the parameter u is the control parameter. To
be bistable, it is required that α < 0, i.e γ = ab < γs = 3

√
3

8 and γs repre-
sents the slope of the saturation function at y∗, i.e at the inflexion point.

In the model of Griffith (Griffith, 1968), this slope increases with the
level of cooperativity while a and b represents respectively the rates of
degradation of the mRNA and the protein. If the product of the rates
of degradation is too high with respect to the level of cooperativity, the
system will only show one stable steady-sate for each value of the in-
put u. Conversely, if the degradation is slow with respect to the level of
cooperativity, the system will exhibit bistability for a given set of inputs.

For α < 0, the system presents two branches of stable equilibria con-
nected through a branch of saddle points. For α slightly below 0, we can
notice that the input value corresponding to the saddle node bifurcation
of the resting state (lower branch) is very close to u = 0. The singularity
condition imposes the presence of an inflection point in the feedback of
the protein on the mRNA. This inflection point can be achieved if the
feedback is sigmoid, i.e if it implies a cooperative mechanism, or a Hill
function with n ≥ 2 as it was already stated by Griffith (Griffith, 1968).

7.3.2 Hysteresis singularity and switch robustness

The theory of singularity deals with multi-parametric systems. How-
ever, all the parameters are not considered as being equal in the system.
This concept is clearly illustrated by the hysteresis singularity. At the
beginning of this section, we discussed the fact that the definition of
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Figure 7.3: Hysteresis singularity in the model of Griffith

robustness is not suited for systems where the switch is triggered by an
input moving the system from one-side to the other of a local bifurcation
of the resting state. The example of the hysteresis singularity shows that
is it possible to provide a different definition of robustness. Indeed, if u
is the input of the system, identifying the distance of an unfolding pa-
rameter to the hysteresis singularity is a way to estimate the robustness
of the switch. Indeed, if the unfolding parameter becomes positive, the
system exhibits monostability for any value of the input and looses its
capacity to encode a two-dimensional all-or-none decision-making pro-
cess.

In the model of Griffith, the singularity theory predicts that the system
is monostable if the degradation of proteins is sufficiently strong with
respect to the cooperative behavior. In order to test if this prediction
is a general principle, we tested the effect of increasing the parameter
λ in the model of Aslam, i.e the parameter controlling the degradation
of the different forms of CaMKII. Results show that if this parameter is
increased, the system switches from bistability to monostability (Figure
7.4).

7.4 The winged cusp

Singularity theory not only allows to ‘localize’ the analysis of the switch
in the parameter space. It also provides a way to generalize our anal-
ysis of decision-making processes to more general forms of bistability.
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Figure 7.4: Effect of increasing the rate of degradation of in the model
of Aslam. When the degradation is to strong the system only possesses
one stable steady-state whatever the value of the bifurcation parameter
k1.

We have just seen that the hysteresis singularity organizes a switch be-
tween two stable equilibria. In exactly the same way, the recent paper
(Franci et al., 2013a) shows that the cusp singularity organizes a switch
between a stable equilibrium and a stable limit cycle. Postponing to
the next chapter the relevance of this switch, we briefly review the cusp
singularity theory (Golubitsky and Schaeffer, 1985).
Let us consider the scalar equation:

g(x, λ) = 0 (7.14)

and assume that 7.14 presents a singularity at (x, λ) = (x0, λ0), i.e,

g(x0, λ0) = gx(x0, λ0) = 0 (7.15)

if in addition,
gλ(x0, λ0) = 0

gx,λ(x0, λ0) = 0
g2
x(x0, λ0) = 0

(7.16)

with gx,λ, the partial derivative of g with respect to λ and then with
respect to x, and,

g2
λ(x0, λ0) 6= 0
g3
x(x0, λ0) 6= 0

(7.17)
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then equation 7.14 presents a cusp singularity (Golubitsky and Schaeffer,
1985):

g = x3 + λ2 (7.18)

with the universal unfolding,

G(x, λ, α, β, γ) = x3 + λ2 + γλx+ βx+ α (7.19)

λ

x̄

0

Figure 7.5: Winged cusp

The winged cusp presents a particular shape, it looks like two hysteresis
singularities which meet for some parameter value. In the left half plane,
the increase in the parameter λ, increases the value of the equilibrium
while for the right half-plane, an increase of the parameter λ, decreases
the equilibrium value. The effect of the parameter λ is non-monotone.

7.5 Conclusion

Singularity theory is a local tool to isolate points of high relevance in
the state and parameter space. This theory provides a framework to
extend our local analysis in the state space to a local analysis in the
state space and the parameter space. Singularity theory provides an
interesting setting to study bistability. This framework naturally high-
lights the mechanisms that gives birth to a bistable behavior such as
a positive feedback loop coupled to ultrasensitivity. In addition, singu-
larities organize bistability. Hysteresis singularity organizes bistability
between two stable steady-states, while the cusp singularity organizes a
switch between a stable steady-state and a stable limit cycle as it will
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be illustrated in the next chapter on a model of neuronal excitability
(Franci et al., 2013a), see Figure 7.6.

2.3 The winged cusp singularity and rest-spike bistability

We repeat the elementary construction of Section 2.2 for the codimension-3 winged cusp
singularity −x3 − λ2. It differs from the hysteresis singularity in the non-monotonicity

of g(x, λ) in the bifurcation parameter, that is ∂(−x3−λ2)
∂λ = −2λ changes sign at the

singularity.
Figure 2A illustrates an important persistent bifurcation diagram in the unfolding of

the winged cusp, obtained for γ = 0, β > 0, and α < −2
(
β
3

)3/2
. We call it the mirrored

hysteresis bifurcation diagram. The right part (λ > 0) of this bifurcation diagram is
essentially the persistent bifurcation diagram of the hysteresis singularity in Figure 1A. In

that region,
∂Gs

wcusp

∂λ < 0. The left part (λ > 0) is the mirror of the hysteresis and, in that

region,
∂Gs

wcusp

∂λ > 0. For γ 6= 0, the mirroring effect is not perfect, but the qualitative
analysis does not change. The hysteresis and its mirror collide in a transcritical singularity

for α = −2
(
β
3

)3/2
. This singularity belongs to the transcritical bifurcation transition

variety in the winged cusp unfolding (see Appendix A). The transcritical bifurcation variety
plays an important role in the forthcoming analysis.
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Figure 2: Singularly perturbed rest-spike bistability in the universal unfolding of
the winged cusp. A. Persistent bifurcation diagram of the winged cusp for β > 0, α <

−2
(
β
3

)3/2
, and γ = 0. B. A phase plane of (7).

We use the algebraic curve in Figure 2A to generate the phase portrait in Figure 2B of
the two-dimensional model

ẋ = Gswcusp(x, λ+ y; α, β, γ) (7a)

= −x3 + βx− (λ+ y)2 − γ(λ+ y)x− α
ẏ = ε(x− y). (7b)

Its fixed point equation

F (x, λ, α, β, γ) := −x3 + βx− (λ+ x)2 − γ(λ+ x)x− α. (8)

is easily shown to be again a universal unfolding of the winged cusp around xwcusp := 1
3 ,

λwcusp := 0, αwcusp := − 1
27 , βwcusp := − 1

3 , γwcusp := −2. The face portrait in Fig. 2B
is a prototype phase portrait of rest-spike bistability: a stable fixed point coexists with a
stable relaxation limit cycle.

Similarly to the previous section, the analysis of the singularly perturbed model (7)
is completely characterized by the bifurcation diagram of Figure 2A. Such bifurcation

5

Figure 7.6: A cusp singularity organizing a switch between a stable
steady-state and a stable limit cycle. Figure from Franci et al. (2013a)



Chapter 8

First spike latency in spiking neurons

This chapter studies the first spike latency in models of neuronal
excitability. Thanks to the concepts developed in the previous chapters,
we show that first spike latencies rely on a particular type of neuronal
excitability called regenerative excitability. Based on the theoretical
analysis of Chapter 5, we propose some tools to quantify the information
encoded by the first spike latency in these models.

The material presented in this chapter is a joint work with Dr. Alessio
Franci, INRIA-Lille.

8.1 First spike latency in single neurons

At the level of a single neuron, the first spike latency corresponds to the
time between the reception of an excitatory input and the generation
of the first action potential. This latency depends on several electrical
and chemical processes including the propagation of the electric signal
along the neuron axon and the (in)activation of postsynaptic currents
(Axmacher and Miles, 2004). These postsynaptic currents specific of the
type of neuron studied, are particularly important for the control of the
first spike latency (Axmacher and Miles, 2004; Fricker and Miles, 2000;
Molineux et al., 2005). In particular, the hyperpolarizing K+ current
of Type A has been identified as a key ruler of the first spike latency in
several neurons including spiny projection neurons of neostriatum and
basal ganglia and cerebellar stellate cells (Anderson et al., 2010; Mo-
lineux et al., 2005). K+ currents of Type A also regulate the firing of
action potentials in CA1 pyramidal cells (Hoffman et al., 1997; Martina
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et al., 1998), a particular neuron of hippocampus for which the robust-
ness of the first spike latency has been tested experimentally (Axmacher
and Miles, 2004; Fricker and Miles, 2000). In CA1 pyramidal cells, the
first spike latency is sensitive to the strength of the excitatory input.
For strong stimuli, latencies are short and robust, while there are long
and variable for stimuli slightly above the firing threshold (Axmacher
and Miles, 2004). They also strongly depend on the balance between
inward and outward currents which flow trough the membrane close to
the firing threshold (Axmacher and Miles, 2004).

Motivated by our previous work on latencies in cellular decision-making
models, we would like to test if similar modeling principles could be ap-
plied to models of single spiking neurons. In particular, we would like
to test the hypothesis that first spike latencies are induced by the prox-
imity of a local saddle node bifurcation of the resting state, an hypoth-
esis already suggested by previous studies (Izhikevich, 2007). In models
of neuronal excitability, this hypothesis has mainly been investigated
in theoretical small dimensional systems but poor attention has been
paid to the real implementation of this mechanism in high-dimensional
conductance-based models. In this chapter, we investigate the following
questions. Is a saddle node bifurcation a sufficient condition to ob-
serve first spike latencies? Is this mechanism robust in high-dimensional
models? What are the possible physiological explanations for this mech-
anism?

8.2 First spike latency in planar reductions

In 1963, Hodgkin and Huxley were awarded the Nobel Prize for their
work on neuronal excitability (Hodgkin and Huxley, 1952). By studying
the axon of a giant squid, they identified the mechanisms at the origin
of the generation of action potentials in excitable cells. They proposed
to model the neuron membrane as a RC-circuit. The membrane voltage
(V ) is governed by:

CV̇ =
∑

Iion + I (8.1)

where
∑
Iion represents the sum of the ionic currents which flow through

the neuron membrane and I is the external current applied to the neuron.



8.2. First spike latency in planar reductions 107

Each ionic current obeys Ohm’s law;

Iion = −ḡion(V − Eion)

The key assumption of this model is that conductances of the ion chan-
nel are voltage dependent. The model of Hodgkin and Huxley includes
two ion channels that are voltage-dependent, a sodium channel (Na+)
and a potassium channel (K+). Gating variables are associated to each
one of these channels, the Na+ has an activating (mNa+) and and in-
activating gating variable (hNa+), the sodium channel only presents an
activating variable (nK+). Later, it was discovered that these gating
variables capture the average stochastic opening and closing of voltage-
dependent ion channels (Hille, 1984). Therefore, the model has four
variables (V,mNa+ , hNa+ , nK+).

CV̇ =− ḡKn4(V − EK)− ḡNam3h(V − ENa)
− ḡL(V − EL) + I

τm(V )ṁ =m∞(V )−m
τh(V )ḣ =h∞(V )− h
τn(V )ṅ =n∞(V )− n

where C is the membrane capacity, C = 1µF/cm2 and −ḡL(V − EL)
represents the current of ions that flow through the leakage channels.

x∞(V ) = αx(V )
αx(V ) + βx(V )

and
τx(V ) = 1

αx(V ) + βx(V )

x αx(V ) βx(V )
m (2.5− 0.1V )/ [exp(2.5− 0.1V )− 1] 4 exp(−V/18)
n (0.1− 0.01V )/ [exp(1− 0.1V )− 1] 0.125 exp(−V/80)
h 0.07 exp(−V/20) 1/ [exp(3− 0.1V ) + 1]
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x Ex(mV ) gx(mS/cm2)
Na 115 120
K -12 36
L 10.6 0.3

During an action potential, the activation of sodium channels follows
almost immediately the variation of potential while the sodium inacti-
vation and the potassium activation are much slower. Because of this
time-scale separation between fast variables (V , mNa+) and slow vari-
ables (hNa+ , mK+), this model can easily been studied mathematically.

8.2.1 Fast model reduction

Fast models rely on the assumption that the voltage dynamics and the
activation of Na+ channels is fast with respect to the activation of K+

channels and the inactivation of Na+ channels. In these models, these
two slow variables are treated as parameters (Keener and Sneyd, 2009).

CV̇ =− ḡKn4
0(V − EK)− ¯gNam3h0(V − ENa)

− ḡL(V − EL) + I

τm(V )ṁ =m∞(V )−m
(8.2)

The phase plane of the fast model is depicted on Figure 8.1. The fast-
model is a typical E-E model such as the toy model introduced in Chap-
ter 4. In this system, the voltage produces a positive feedback loop on
the opening of sodium channels which in turn increase the voltage. For
parameters values corresponding to physiological conditions, the system
is bistable. When a current I is applied to the neuron, the V -nullcline
is pushed right. For sufficiently strong I, the resting state merges with
the saddle point in a saddle node bifurcation. For inputs close to the
threshold, there is a bottleneck where trajectories are delayed.

Can fast models account for first spike latencies? These models are only
valid for small t and V . Once the action potential has been initiated,
the values of n0 and h0 increase modifying the phase portrait of the
system. This model is not able to describe the system dynamics on the
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Figure 8.1: Bistability in the fast model reduction of Hodgkin and Hux-
ley. For I = 0 (A-B) , the system has three equilibria, a stable equilib-
rium, a resting state and a unstable equilibrium. For I = Ith, the saddle
point and the resting state merge in a saddle node bifurcation. For I,
slightly above the switching threshold, the system presents a bottleneck
because of the ghost saddle point (C-D).
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time-scale of one entire or more than one action potentials. Therefore,
it is no suited to capture first spike latencies.

8.2.2 Hysteresis and cusp in the fast model

The fast model is only valid for fixed values of the parameters n0 and
h0. What does happen when these variables increase following the ap-
plication of a step of current? Figure 8.2 A shows the effect of increasing
the parameter n0, in the phase portrait of the fast model. When this
parameter increases, the V -nullcline is pushed left. Because K+ ions es-
cape from the intracellular medium, the potential decreases. The static
input-output relationship between n and V presents the typical hystere-
sis curve depicted on Figure 8.2 B. An increase in the value of n0 results
in an decrease in the static voltage response.
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increasing n
K+ 

n

A B

Figure 8.2: Effect of increasing n in the fast model of Hodgkin and
Huxley.

The model of Hodgkin and Huxley works admirably well to describe the
generation of action potentials. However, this neuron only includes two
types of voltage-dependent channels, Na+ and K+ channels. With the
development of electrophysiology, numerous channels have been shown
to regulate the neuron excitability (Hille, 1984). In particular calcium
channels play a critical role in this process (Tsien, 1983). Calcium chan-
nels have a slow activation. Therefore the activation of these channels
can be treated as a parameter in the fast model reduction, in the same
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way as potassium:

Adding a calcium current in the HH model leads to:

CV̇ =− ḡKn4
0(V − EK)− ¯gNam3h0(V − ENa)

− ḡL(V − EL)− ḡNamCa,0(V − ECa)︸ ︷︷ ︸
ICa

+I

τm(V )ṁ =m∞(V )−m

(8.3)
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Figure 8.3: Effect of increasing mCa,0 in the fast model of Hodgkin and
Huxley + calcium.

Let us assume, that during an action potential, calcium channels can
open following a depolarization of the neuron. The effect of increasing
the parameter mCa,0 is depicted in Figure 8.3. As for the parameter
n, the static input-output relation between the voltage and mCa is a
hysteresis curve. However, in this case an increase in the value of mCa

results in an increase in the static voltage response.

Figure 8.4 is a schematic representation of the possible effect of increas-
ing both the parameter mCa,0 and the parameter n in the Hodgkin and
Huxley model with calcium. We obtain the winged-cusp introduced
in Chapter 7. The winged-cusp translates the fact that the effect of
slow gating variables on the equilibrium potential is non-monotone. It
captures the balance between the two hysteresis responses depicted on
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V
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+ n

Figure 8.4: Effect of increasing simultaneously mCa,0 and n in the fast
model of Hodgkin and Huxley + calcium by fitting a static (linear)
relationship between mCa,0 and n.

Figures 8.2 and 8.3. This situation is typically encountered when two
slow variables as mCa and n are aggregated in a single variable as it is
performed in slow-fast planar model reductions.

8.2.3 Slow-fast planar models

A common reduction based on time-scale separation that is valid on a
longer time-scale, is the slow-fast model reduction. In this reduction,
it is assumed that fast gating variables such as mNa+ instantaneously
follow the variation of potential (V ) so that they can be represented
by their steady-state approximation mNa+

∞(V ). Slow gating variables
are assumed to have the same time-scale and are gathered in one single
variable n. The resulting system is a two-dimensional slow-fast model.

In the classical slow-fast reduction of the Hodgkin and Huxley model,
such as the FitzHugh-Nagumo model (FitzHugh, 1955), the V -nullcine
presents a cubic shape and the n-nullcline is a monotone increasing func-
tion of the voltage. The cubic shape of the V-nullcline is due to the
bistability of the fast subsystem, it captures the hysteresis in Section
8.2.2. Indeed, in the fast model, n is a bifurcation parameter producing
the typical hysteresic curve discussed in Chapter 7. A slow fast model
is typically described by:
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CV̇ = V − V 3

3 − n+ I

ṅ = ε (n∞(V )− n+ n0)
(8.4)

If we want to capture the mirror hypothesis brought by the combined
activation of potassium and calcium channels, we need a different phase
portrait. This motivates the novel phase portrait (Franci et al., 2013b),

V̇ = V − V 3

3 − n
2 + I

ṅ = ε (n∞(V )− n+ n0)
(8.5)

where n0 > 0 and n∞(V ) is the standard Boltzman activation function:

n∞(V ) := a

1 + e−bV
a, b > 0

Here, the V -nullcline corresponds to the unfolding the winged-cusp,
G(−V,−n, I, 1, 0) introduced in Chapter 7. What is the meaning of
this particular shape? We saw in the previous paragraph that the shape
of the V -nullcline is determined by the steady-state approximation of
the fast system for each value of n. The regenerative phase portrait is
bistable for appropriate parameter values. It is a bistability between a
stable equilibrium and a limit cycle.

Let us introduce the concepts of restorative and regenerative slow gat-
ing variables (Drion et al., 2012; Franci et al., 2013b). A restorative
gating variable is a variable which produces a negative feedback on the
membrane potential close to the resting state: a small depolarization of
the membrane increases the value of the gating variable which in turns
leads to an hyperopolarization of the membrane. Typically, a restora-
tive variable describes the activation (inactivation) of an outward (resp.
inward) current of positive ions. Recovery variables n and h of the
Hodgkin-Huxley model are restorative because they respectively repre-
sent the activation of an outward K+ current and the inactivation of an
inward Na+ current. A regenerative gating variable produces a positive
feedback on the membrane potential close to the resting state: a small
depolarization of the membrane increases the value of the gating vari-
able which in turns leads to a larger depolarization of the membrane.
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Figure 8.5: Comparison between restorative and regenerative phase por-
traits. For suitable values of the applied current I, the regenerative
phase portrait presents both a stable equilibrium (black dot) and a sta-
ble limit cycle (red curve). The basins of attraction of these attractors
are separated by the stable manifold (blue curve) of the saddle (white
center dot).

RESTORATIVE REGENERATIVE
hNa+ , nk+ mCa2+

negative feedback on potential positive feedback on potential

Table 8.1: Classification of slow gating variables (HH+Ca2+) in function
of their effect on the membrane potential close to the resting potential

Typically, a regenerative gating variable models the activation (inactiva-
tion) of an inward (resp. outward) current of positive ions. This type of
gating variables often represents the slow activation of a calcium channel.

In the model of Hodgkin and Huxley, all the slow gating variables are
restorative. Therefore, they all produce a negative feedback on the po-
tential. The static relation between n and the voltage is monotone re-
sulting in the hysteresis curve depicted in Figure 8.2. When the system
presents both restorative and regenerative slow channels, the static re-
lation between n and V depends on the balance between the negative
feedback of restorative variables and the positive feedback from regen-



8.3. First-spike latency in conductance-based models 115

erative variables. This static relation no longer monotone results in the
new hysteresis of Figure 8.4.

8.2.4 Latencies in restorative and regenerative
phase portraits

In the restorative phase portrait, a saddle node bifurcation is a sad-
dle node bifurcation on invariant circle (SNIC) under the presence of a
timescale separation between the voltage dynamics and the slow variable
n (Figure 8.6). This bifurcation results in a mechanism of low frequency
coding. In fact, it corresponds to a situation where the fast subsystem
is just beyond the saddle node bifurcation when the slow n variable is at
equilibrium. This mechanism essentially relies on the bistability of the
fast model. However, there is no hysteresis nor bistability in the slow-
fast model. Therefore, there is no mechanism to ensure the memory and
latency found in bistable models.

In sharp contrast, the regenerative phase portrait exhibits a robust first
spike latency. This latency results from the switch of the stable rest-
ing state to the stable limit cycle through a saddle node bifurcation.
In this case, the mechanism is induced by the bistability of the slow
model. The regenerative model shares the characteristics of bistable
models illustrated in the previous part of the thesis. It is a rest-and-
spike dynamical decision-making process, characterized by a hysteresis
response, a memory and a latency.

In the Appendix A, the reader can find the mathematical conditions to
observe a saddle node in both the restorative and regenerative phase
portraits, these conditions support the present analysis.

8.3 First-spike latency in conductance-based models

A general n−dimensional conductance based model describes the dy-
namics of the neuron membrane potential in function of the time and
the external current applied to the neuron I(t). The neuron membrane
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Figure 8.6: Comparison of the effect of a step current slightly above the
firing threshold in restorative and regenerative phase portraits depicted
in Figure 8.5. In the restorative phase portrait, the system loses stability
through a saddle node on invariant circle (SNIC) bifurcation and the
neuron shows a low frequency. In the regenerative phase portrait, the
system undergoes a saddle node (SN) bifurcation and the neuron shows
a first spike latency before firing at a high frequency.

dynamics is described by the general model:

CV̇ =
∑
k

Ik(t) + I(t) (8.6)

τi ẋi = xinfi(V − V0)− xi, i = 1 . . . n− 1 (8.7)

where
∑
k Ik(t) =

∑
k gk(x)(V − Ek) is the sum of the ionic currents

through ion channels and xinfi are are strictly monotone increasing sig-
moids (Franci et al., 2013b). The strength of each ionic current (Ik(t))
is determined by the membrane conductance to this specific ion (gk) and
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RESTORATIVE REGENERATIVE
h : Na+ inactivation b: K+

A inactivation
n: K+ activation
a : K+

A activation
negative feedback on potential positive feedback on potential

Table 8.2: Classification of slow gating variables for the model of Connor
and Stevens (1971) in function of their effect on the membrane potential
close to the resting potential.

the Nernst potential of this ion (Ek). Conductances (gk) are function of
the state of the gating variables represented by the vector x and describ-
ing the permeability of the membrane to these specific ionic currents.

8.3.1 Model of Connor and Stevens

We consider the model introduced in Connor and Stevens (1971), re-
cently studied in Barreiro et al. (2012). This model is of particular
interest because it includes a K+-current of type A, i.e a hyperpolar-
izing potassium current particularly important for first spike latencies
(Molineux et al., 2005). The strength of this current is controlled by the
conductance gA. In response to membrane depolarizations, this current
is slowly inactivated, decreasing the flow of potassium which can exit
from the neuron, i.e the source of hyperpolarization. Therefore the in-
activation of this channel produces a positive feedback on the potential.
Close to the resting potential, the variables nK+ ( potassium activation)
and nK+,A (potassium of type A inactivation) have the same time-scale
(Figure 8.7). It should be noted that we used the parameters proposed
by Ermentrout and Terman (2010). However, in the original models of
Connor and Stevens (1971), the inactivation of potassium channels is
much slower, we will discuss this difference later.

Bistability in the model of Connor and Stevens

Previous studies have shown that the model of Connor and Stevens
presents a Hopf bifurcation for low values of gA and a SNIC bifurcation
if gA is increased. By modifying this conductance, the neuron switches
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Figure 8.7: Time constants in the model of Connor and Stevens with
parameters from Ermentrout and Terman (2010): activation of Na+

currents channels (τm), inactivation of Na+ currents channels (τh), ac-
tivation of K+, A currents channels (τa), inactivation of K+, A currents
channels (τb) and activation of K+ currents channels (τn). For values of
the potential close to the resting potential V ≈ −60mV , the inactivation
of K+, A currents channels (τb) and activation of K+ currents channels
(τn) have the same time-scale.

from type II to type I excitability. As illustrated in the previous para-
graph, the two sources of positive feedback on the potential are the ac-
tivation of sodium channel and the inactivation of K+

A channels. While
the activation of sodium channel is fast, the inactivation of potassium
channels of Type A is slow. Potassium channels of type A are a source
of regenerativity in the neuron. The planar analysis predicts that by
increasing the value of gA, i.e by increasing the strength of regenerative
slow channels with respect to the strength of restorative slow variables,
the neuron exhibits first spilke latencies and bistability. Figure 8.8 shows
the firing of a single neuron for values of gA corresponding to Type I
excitability, i.e intermediate values of gA and high values of gA. During
the first 50 ms, the neuron potential is fixed slightly below the firing
threshold. At time t = 50, a step input, slightly above the firing thresh-
old is applied to the neuron. For intermediate values of gA, the neuron
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fires at low frequency. At high values, the neuron presents a long latency
before firing at high frequency. At t = 150 ms, the current is reset to
its initial value. While for intermediate values of gA, the potential in-
stantaneously returns to the resting potential, for high values of gA the
neuron still fires action potentials. In this last case, the neuron exhibits
a bistable behavior. As predicted by the planar analysis, a high level of
regenerativity induces both first spike latency and bistability.

0 100 200

−80

−40

0

40

Time [ms]

V

I

0 100 200

−80

−40

0

40

Time [ms]

V

I
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Figure 8.8: Model of Connor and Stevens: effect of a step input close
to the firing threshold for intermediate values of (gA = 48) and high
values of gA (gA = 200). In both model, the current is initially fixed at
a value slightly below the firing threshold . At 50 ms, a small step input
is applied during 100 ms and then the current to I0. When the neuron
show low frequency coding and no bistability for small values of gA (A),
it exhibits both first spike latency and bistability for high values of gA
(B).

Local sensitivity at saddle node

A local analysis for gA high and a value of current corresponding to the
firing threshold, shows that the system posses a saddle node bifurcation
at this point. Indeed, only one eigenvalue is equals to zero for this input.
We performed a sensitivity analysis close to the saddle node bifurcation.
We fixed the current slightly below the firing threshold and simulate
the system to get the resting state close to the saddle node bfiurcation.
Then we applied sensitivity analysis at this point (the stable one) as
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defined in Section 4.4 in Chapter 4. Results show that the system is
particularly sensitive to the gA conductance, see Figure 8.9, close to
the saddle node bifurcation. In other words, the first spike latency is
particularly sensitive to this parameter.

Noise sensitivity

In vitro, neurons typically receive input spikes from thousands of other
neurons. In practice, it is not possible to take into account all these
spike arrivals. A simple strategy is to focus on a subset of neurons and
treat spikes from other neurons as a source of noise. Under the diffusion
approximation, these random stochastic input arrivals can be approx-
imated by a gaussian noise term is added to the equation describing
the neuron voltage (Gerstner and Kistler, 2002). The neuron voltage is
described by a stochastic differential equation:

CV̇ =
∑

I(V, ni) + I(t) +
√

2Dξ(t) (8.8)

with D, the noise intensity and ξ(t) a gaussian white noise.
The first spike latency can be characterized by determining the mean
first passage time of 8.8, < T >. The sensitivity of the first spike latency
to noise for a given input current I is then determined by the coefficient
of variation. This coefficient, often used in neurosciences Gerstner and
Kistler (2002), represents the inverse of the signal to noise ratio and is
given by :

CV =
√
< ∆T 2 >

< T >

with < ∆T 2 >, the variance of the first spike latency.

Our analysis predicts that both the mean and the coefficient of variation
varies as a power law of the distance to the saddle node bifurcation. In
Figure 8.11, we fitted the mean first spike latency and coefficient of
variation with respectively : Tmean = α∆I−

1
2 and CV = β(D)∆I−

3
4 .

Results seem to fit the model. However, our analysis should require a
true model validation. In addition, we limited ourselves to small noise
to be in the condition of the theoretical analysis but this results in low
variance in the first spike latency. Therefore, these preliminary results
should be interpreted cautiously.
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Figure 8.9: First spike latency sensitivity for the model of Connor and
Stevens gA = 150. Cumulative sensitivities are computed at the resting
state for a value of the current (I = 50) slightly below to the switching
threshold (I = 5.60).
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8.4 Conclusion

It was previously suggested that saddle node bifurcations can lead to a
mechanism of first spike latency in models of neuronal excitability. In
the first part of the thesis, we showed that latency was indeed used an
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important function of biological switches to create input-dependent de-
lays. Motivated by these results, we investigated the behavior of planar
models corresponding to formal slow-fast reductions of higher dimen-
sional conductance-based models. Our analysis reveals that first spike
latencies are indeed observed for neurons presenting regenerative slow
channels. In the presence of these channels and for appropriate values
of the applied current I, the model is bistable in the slow time-scale,
that is a stable equilibrium and a stable limit cycle coexist. This anal-
ysis is confirmed in the study of a high-dimensional conductance-based
model. In Chapter 5, it was demonstrated that latencies naturally occur
in bistable models when the resting state and the saddle point merge in
a saddle node bifurcation. In planar bistable models, the proximity to
a saddle node bifurcation can either results from the bistability of the
fast system leading to a SNIC bifurcation and low-frequency coding or
to the bistablility of the slow system resulting in first spike latencies.
The bistability of the slow system is possible thanks to the presence of
a positive feedback loop between the voltage and the (in)activation of
slow gating variables.

8.4.1 Bistability in neuronal models

As illustrated in the first part of this thesis, bistability is an ubiquitous
component of biological models. As illustrated throughout this thesis, a
pervasive source of bistability in biological models is the positive feed-
back loop around sharp (sigmoid like) transitions. In the Hodgkin and
Huxley model, the only source of positive feedback close to resting po-
tential is the activation of fast Na+ gating channels. As a consequence,
bistability is generally associated with the fast-subystem in planar mod-
els of neuronal excitability. However, the zoo of ion channels which are
today known to regulate neuronal excitability (Gerstner and Kistler,
2002; Hille, 1984) provides many more sources of positive feedback. As
illustrated by the model of Drion et al. (2012), sodium channels are not
the only channels to produce a positive feedback on the neuron mem-
brane. For example, calcium channels are a prominent source of positive
feedback close to the resting potential. Activation of calcium channels
is slow with respect to the activation of sodium channels resulting in
the possible bistability of the slow model. In this case, bistability does
not occur between two stable equilibria but between a stable equilibrium
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and a stable limit cycle. It is organized by a cusp singularity instead of a
hysteresis singularity. The analysis of the model of Connor and Stevens
(1971) shows that potassium channels of Type A are another important
source of regenerativity. Because these channels slowly inactivate close
to the resting potential, they induce first spike latencies in the neuron.

In planar models of neuronal excitability, bistability is often associated
to a sub-critical Hopf bifurcation (Izhikevich, 2007). This alternative
source of bistability is not considered in this thesis because it does not
persist in the physiologically meaningful situation of fast-slow systems.
See (Franci et al., 2013b) for a more extensive discussion. Yet, bista-
bility is a mechanism observed in several experimental studies (Hahn
and Durand, 2001; Heyward et al., 2001; Lechner et al., 1996; Lee and
Heckman, 1998; Williams et al., 2002) and that seems to have particular
functional implications (Baldissera et al., 1994; Gruber et al., 2002).

8.4.2 First spike latency coding

Could the first spike latency be a neuronal code? A good code is a
code which is robust but also able to encode information. Our analy-
sis predicted that first spike latency scale as T = kα, α = −1

2 , with k
the distance to the saddle node. This relation persists under small per-
turbations of the voltage dynamics. The coefficient of variation, which
represents the inverse of the signal to noise ratio scales with a factor
k−0.75. This means that high signal to noise ratios are observed far
from the saddle node bifurcation. However, in this range of currents,
the latency is less sensitive to a variation of current as illustrated by
the decrease in the slope of the current-mean first spike latency curve in
Figure 8.11 A. Therefore, if this code is possible, it relies on a trade-off
between sensitivity and robustness fixed by the distance to the bifurca-
tion.
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Conclusion and perspectives

This dissertation is devoted to the study of performance and robustness
of biological switches. In our analysis, bistable switches are presented
as decision-making processes. Because these decision-making processes
are temporal processes, they deserve a dynamical analysis. The study
focuses on three different cellular processes, apoptosis the controlled cell
death, first spike latency in neurons and long term potentiation, a phe-
nomenon underlying synaptic plasticity. In these three processes, the
cell has to face a decision, to die or not to die in apoptosis, to spike
or not to spike in the neuron, to remember or to forget in long term
potentiation (Chapter 1).

Our historical survey of the literature (Chapter 2) showed how the con-
cept of switch translates to bistability in mathematical models. On the
other hand, it highlighted how the notion of switch evolved from a sim-
ple nonlinear static input-output relation to a dynamical process where
phenomena such as latencies and reversibility are important issues. In
bistable models, a stable attractor is associated to each decision. These
bistable models do not only implement a binary (static) choice, they
implement a dynamical decision-making process which has memory.

Our definition of performance and robustness for biological switches re-
lies on the study of the system away from stable steady-states, i.e. in the
transient behavior characterizing the switch between two stable operat-
ing conditions (Chapter 3). We emphasized that the performance and
robustness of bistable models is currently studied by means of exten-
sive numerical simulations, because of the apparent mismatch between

125
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mathematical analysis tools mainly based on local analysis of the system
around a stable steady-state and the non local nature of decision-making.

In this thesis, we proposed a different approach. We considered the
switch as a process rather than a set of trajectories and identify the key
rulers of this process in both the state and parameter spaces (Chapters 4,
5, 7). The saddle point is a key ruler of the phase portrait, always found
with the right time-scale separation in the neighborhood of saddle-node
bifurcations (Chapters 4 and 5) and singularities are associated to criti-
cal change of behavior in both the state and parameter spaces (Chapter
7). There is an interplay between these local rulers and the system’s
dynamics. At bifurcations such as saddle nodes, a local analysis reveals
the sensitivity of the system to small inputs and perturbations. Around
that point of high-sensitivity, the decision-making process can easily be
reverted or slowed down, it becomes sensitive to the external world. At
singular points not only the linear part of the system vanishes but also
its quadratic term in the normal form. A local analysis around these
particular points suggests that they organize much of the global phe-
nomenon.

We have shown that the proposed analysis is not only valid for small
dimensional models such as small network motifs but can be extended
to high-dimensional systems. This is justified by a theoretical analysis
(Chapter 5) and illustrated on high-dimensional models of the literature
(Chapter 6). The decision-making process depends on how trajectories
are attracted to and then pushed away from the saddle point. When the
system is close to a bifurcation, the repulsion is slow leading to latencies
in the decision.

With singularity theory (Chapter 7), we showed than a local analy-
sis in both the state and parameter space can help at understanding
the behavior of biological switches. Positive feedback loops coupled to
ultrasensitive mechanisms are natural conditions for bistability in this
mathematical framework.

In the light of the first seven chapters, we studied in the last part of the
thesis the first spike latency in models of neuronal excitability. Results
show that the first spike latency is not a mere property of systems with
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a saddle node bifurcation (as previously presented in the literature) but
rather a constitutive property of bistable models. This bistability comes
from the positive feedback of slow regenerative channels on the mem-
brane potential close to the resting state. We proposed some tools to
quantify the robustness of the first spike latency in both a deterministic
and simple stochastic setting.

By studying models of various processes, we pointed out that the same
principles can be used to encode dynamical phenomena in very different
cellular processes. Both the latencies observed in apoptposis and the
first spike latency in single neurons are captured by the same mathe-
matical concepts, revealing the added value of an abstract framework
for the analysis of biological switches.

Perspectives and future work

This dissertation suggests a number of physiological hypotheses that
could be studied in further research. In particular, the presence of dy-
namical phenomena such as latencies could be used by the cell as check
point mechanisms where the system integrates a collection of small in-
puts before taking a decision. The system, insensitive to small per-
turbation becomes, during a given window of time, sensitive to small
perturbations and inputs. This mechanism could explain how processes
that should be robust to small perturbations could be finely controlled,
once the cell has triggered a decision-making process. The link between
bistability in neuronal models and first spike latency is an another hy-
pothesis that should require careful experimental investigations.

In the first part of the thesis, we briefly introduced the fact that bistable
models can be used at different-scales and represent collective decision-
making processes. We think that future work could be carried out in this
direction. In addition, our study mainly focused on unicellular models,
it would be interesting to explore how our results extend to a population
of cells.

From a mathematical point of view, the analysis of normal forms and
bifurcation in the presence of noise seems an interesting topic to explore.
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Further research would be required to study the interplay between lo-
cal noisy systems and global properties of the decision-making process.
This type of study could be particularly interesting for neurons.

Our analysis reveals the importance of time and fluctuations in the study
of biological systems. These concepts have been studied in thermody-
namics in the context of chemical reactions. Thermodynamics is clearly
missing in the present analysis and it would be interesting to consider
this field in further work.

In this dissertation, we studied the problem of performance and robust-
ness of biological switches. It turned out that the problem was much
richer than expected. Understanding biological systems requires to in-
tegrate fields as diverse as chemistry, physics, control, mathematics and
physiology. All these fields have to to deal with constraints imposed by
the particular structure of biological systems, their variability and mul-
tiscale properties. The study of biological systems offers new challenges
to all these disciplines
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Appendix

A.1 Implementation of models

Model of Eissing et al. We re-implemented the 8-dimensional model
of Eißing et al. (Eissing et al., 2004) in MATLAB based on the descrip-
tion provided in Bullinger (2005). In this model, the interactions among
species are governed by the law of mass action, and are represented by,

C8∗ + C3 k+1−→ C8∗ + C3∗

C8 + C3∗ k+2−→ C8∗ + C3∗

C3∗ + IAP
k+3−→ C3∗ ∼ IAP

C3∗ ∼ IAP k−3−→ C3∗ + IAP

C3∗ + IAP
k+4−→ C3∗

C8∗ + CARP
k+11−→ C8∗ ∼ CARP

C8∗ ∼ CARP k−11−→ C8∗ + CARP

C8∗ k+5−→
C3∗ k+6−→

C3∗ ∼ IAP k+7−→
k−8−→ IAP

k+8−→

129
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k−9−→ C8 k+9−→
k−10−→ C3 k+10−→

k−12−→ CARP
k+12−→

C8∗ ∼ CARP −→ k+13−→

The table A.1 shows the values of parameters used for numerical simu-
lations. These values correspond to nominal parameters values provided
in Bullinger (2005).

1 k+1 = 5.8e-5 11 k+11 = 0.0005
2 k+2 = 1e-5 12 k+12 = 0.001
3 k+3 = 0.0005 13 k+13 =1.16e-2
4 k+4 = 0.0003 14 k−3 = 0.21
5 k+5 = 0.0058 15 k−8 = 464
6 k+6 = 0.0058 16 k−9 = 507
7 k+7 = 0.0173 17 k−10 = 81.9
8 k+8 = 0.0116 18 k−11 = 0.21
9 k+9 = 0.0039 19 k−12 = 40
10 k+10 = 0.0039

Table A.1: Model of Eißing: Parameter numbers and values (all in
MIN−1)

Model of Schliemann et al. At the time we began our analysis of the
model, the model proposed in Schliemann et al. (2011) was still under
revision. Therefore, our parameters and equations may vary slightly
with respect to the model proposed in that paper. Here, we list all the
reactions and parameters used in this model.
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1 ka1 = 0.001(sec−1) 12 kd10 = 1.134e-05 (sec−1)
2 ka2 = 3.226e-07 (µMsec−1) 13 ka11 = 0.17 (µM−1sec−1)
3 ka3 = 2.352e-02 (sec−1) 14 ka12 = 5e-04 (sec−1)
4 ka4 = 5e-05 (µMsec−1) 15 ka13 = 5e-04 (sec−1)
5 kd4 = 1e-04 (sec−1) 16 ka14 = 5e-04 (sec−1)
6 ka5 = 2.352e-02 (sec−1) 17 ka15 = 0.01 (sec−1)
7 ka6 = 5.6e-05 (sec−1) 18 ka16 = 5.3216e+04 (µM−2sec−1)
8 ka7 = 5.6e-05 (sec−1) 19 ka17 = 1e+05 (µM−2sec−1)
9 ka8 = 5.6e-05 (sec−1) 20 ka18 = 4 (µM−1sec−1)
10 ka9 = 5.6e-05 (sec−1) 21 ka19 = 1000 (µM−2sec−1)
11 ka10 = 12600 (µM−1sec−1) 22 ka20 = 2 (µM−2sec−1)

Table A.8: Model of Schliemann: Parameters related to receptor

1 ka21 = 2e-05 (µMsec−1) 12 ka27 = 1e-04 (sec−1)
2 kd21 = 1e-04 (sec−1) 13 ka28 = 3.3e-05 (sec−1)
3 ka22 = 3e-06 (µMsec−1) 14 ka29 = 3.3e-04 (sec−1)
4 kd22 = 1e-04 (sec−1) 15 ka30 = 1e-04 (sec−1)
5 ka23 = 7.028e-07 (µMsec−1) 16 ka31 = 3.3e-05 (sec−1)
6 kd23 = 1e-04 (sec−1) 17 ka32 = 3.3e-05 (sec−1)
7 ka24 = 2.413e-04 (µMsec−1) 18 ka33 = 1e-01(sec−1)
8 kd24 = 1e-04 (sec−1) 19 ka34 = 3.3e-04 (sec−1)
9 ka25 = 3e-06 (µMsec−1) 20 ka35 = 3.3e-04 (sec−1)
10 kd25 = 1e-04 (sec−1) 21 ka36 = 3.3e-04 (sec−1)
11 ka26 = 1e-04 (sec−1)

Table A.9: Model of Schliemann: Parameters related to NFκ-b
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22 ka37 = 50 (µM−1sec−1) 32 kd46 = 5e-04 (sec−1)
23 ka38 = 0.02 (sec−1) 33 ka47 = 0.1 (µM−1sec−1)
24 ka39 = 3.45 (µM−1sec−1) 34 ka48 = 0.001 (sec−1)
25 ka40 = 0.2 (µM−1sec−1) 35 ka49 = 2.5e-06 (sec−1)
26 ka41 = 10 (µM−1sec−1) 36 ka50 = 0.5 (sec−1)
27 ka42 = 1.67e-04 (sec−1) 37 ka51 = 3.333e-07 (sec−1)
28 ka43 = 1 (sec−1) 38 ka52 = 6.25e-02 (sec−1)
29 ka44 = 5e-07 (sec−1) 39 ka53 = 4.4e-07 (sec−1)
30 ka45 = 0.8 (sec−1) 40 ka54 = 3.275e-02 (sec−1)
31 ka46 = 2.5e-03 (sec−1)

Table A.10: Model of Schliemann: Parameters related to NFκ-b

1 ka55 = 1e-04 (µMsec−1) 13 ka63 = 1e-04 (sec−1)
2 kd55 = 1e-04 (sec−1) 14 ka64 = 0.05 (µM−1sec−1)
3 ka56 = 2.5e-05 (µMsec−1) 15 ka65 = 0.05 (µM−1sec−1)
4 kd56 = 1e-04 (sec−1) 16 ka66 = 0.05 (µM−1sec−1)
5 ka57 = 2e-07 (µMsec−1) 17 ka67 = 1.2e+06 (µM−1sec−1)
6 kd57 = 1e-04 (sec−1) 18 kd67 = 600 (sec−1)
7 ka58 = 1e-04 (sec−1) 19 ka68 = 6 (µM−1sec−1)
8 ka59 = 1e-04 (sec−1) 20 ka69 = 5e-05 (sec−1)
9 ka60 = 1e-04 (sec−1) 21 ka70 =0.5 (µM−1sec−1)
10 ka61 = 1e-04 (sec−1) 22 ka71 =0.5 (µM−1sec−1)
11 ka62 = 9.446e-07 (µMsec−1) 23 ka72=1e+06 (µM−1sec−1)
12 kd62 = 1e-04 (sec−1) 24 kd72 =600 (sec−1)

Table A.11: Model of Schliemann: Parameters related to caspases

Model of Aslam et al. MATLAB codes for the model of Aslam et al.
are available at http://www.nature.com/msb/journal/v5/n1/suppinfo/
msb200938_S1.html. The table A.12 shows the values of parameters used for
numerical simulations. These values correspond to nominal parameters values
provided in Aslam et al. (2009).

Model of Connor and Stevens We used the model and parameters im-
plemented by B. Ermentrout available at http://www.math.pitt.edu/~bard/
bardware/neurobook/allodes.html. This model is drawn from the original

http://www.nature.com/msb/journal/v5/n1/suppinfo/msb200938_S1.html
http://www.nature.com/msb/journal/v5/n1/suppinfo/msb200938_S1.html
http://www.math.pitt.edu/~bard/bardware/neurobook/allodes.html
http://www.math.pitt.edu/~bard/bardware/neurobook/allodes.html
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paper of Connor and Stevens (1971). Based on the ODE file of B. Ermentroutx,
we implemented and simulate the model in MATLAB .

A.2 Numerical tools

Diagrams of bifurcations Diagrams of bifurcations for the model of
Eissing et al. (2004) and Aslam et al. (2009) were drawn using the software
XPP-AUT (Ermentrout, 2002).

Numerical simulations Numerical simulations of deterministic systems
were performed using the numerical integration solver ode15s in MATLAB.
This solver has been chosen because its is performant for stiff problems. Switch
models are stiff because they present slow modifications of variables before and
after the switch and fast variations during the switch. Integrating the models
with the classical solver ode45 will lead to particularly long times of integration.

Stochastic simulations were performed using the sdodde solver in MATLAB.
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A.3 Saddle node bifurcation in planar phase portraits

We present the conditions to obtain a saddle node bifurcation in the slow-fast
model reductions presented in Chapter 8.

Conditions to observe a saddle node in the restorative model

Let us assume that that the system (8.4) posses a saddle node bifurcation at
(V, n) = (V̄ , n̄), we can compute the Jacobian matrix of the system at this
point:

J =

∂V̇∂V ∂V̇

∂n
∂ṅ

∂V

∂ṅ

∂n

∣∣∣(V̄ ,n̄) =
(

1− V̄ 2 −1
ε m −ε

)

where m = ∂n∞(V )
∂V

∣∣∣(V̄ ,n̄) , is the slope of the tangent to the n-nullcline at the
saddle node.
At the saddle node bifurcation:

(i) det(J) = ∂V̇

∂V

∂ṅ

∂n
− ∂V̇

∂n

∂ṅ

∂V
= ε[V̄ 2 − 1 +m] = λ1λ2 = 0

(ii) Tr(J) = ∂V̇

∂V
+ ∂ṅ

∂n
= 1− V̄ 2 − ε = λ1 + λ2 = λ2

By (i),

(iii) ∂V̇

∂V
= ∂V̇

∂n

∂ṅ

∂V

∂ṅ

∂n

−1
⇔ 1− V̄ 2 = m

By (ii) and (iii),

(iv) λ2 = m− ε

To get a saddle node bifurcation, we have to impose λ2 < 0. Assuming n∞(V )
is a positive monotone increasing function of V , i.e m > 0, we get:

m ≤ ε

A saddle node bifurcation with an attractive center manifold can only occur
if the n-nullcline intercepts the V -nullcline with a slope smaller than ε. This
means that the n-nullciline should be almost parallel to the V -axis in the phase
plane and that the saddle-node bifurcation of the slow-fast model is very close
to the minimum of the first branch of the cubic. In fact, for ε = 0, the saddle-
node bifurcation should correspond to the minimum.
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Conditions to observe a saddle node in the regenerative model

Let us assume that that the system (8.5) posses a saddle node bifurcation at
(V, n) = (V̄ , n̄), we can compute the Jacobian matrix of the system at this
point:

J =

∂V̇∂V ∂V̇

∂n
∂ṅ

∂V

∂ṅ

∂n

∣∣∣(V̄ ,n̄) =
(

1− V̄ 2 −2n̄
ε m −ε

)

where m = ∂n∞(V )
∂V

∣∣∣(V̄ ,n̄) , is the slope of the tangent to the n− nullcline at
the saddle node.
At the saddle node bifurcation:

(i) det(J) = ∂V̇

∂V

∂ṅ

∂n
− ∂V̇

∂n

∂ṅ

∂V
= ε[V̄ 2 − 1 + 2n̄m] = λ1λ2 = 0

(ii) Tr(J) = ∂V̇

∂V
+ ∂ṅ

∂n
= 1− V̄ 2 − ε = λ1 + λ2 = λ2

By (i),

(iii) ∂V̇

∂V
= ∂V̇

∂n

∂ṅ

∂V

∂ṅ

∂n

−1
⇔ 1− V̄ 2 = 2n̄m

By (ii) and (iii),

(iv) λ2 = 2n̄m− ε

A saddle node is ensured by λ2 < 0. Assuming m > 0 as in Franci et al.
(2013b), the sign of λ2 depends on the location of the saddle node in the phase
plane:

• n̄ > 0 : λ2 = 2n̄m−ε. For the center manfiold to be attractive, m should
be small, i.e O(ε).

• n̄ < 0 λ2 = 2n̄m− ε. λ2 < 0 for any value of ε.

The condition n̄ > 0 typically describes the upper branch of the V -nullcline.
This branch is similar to the V -nullcine of the classical slow-fast restorative
planar reduction. The condition n̄ < 0 corresponds to the lower branch of the
V -nullcline associated with regenerative excitability.
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