PROGRAMMING WITH JAVA (2/2)
~ Tutorial ~

Baptiste Vergain®
INFO0062 - Object Oriented Programming

2023

1 Greatly inspired by the work of former assistant, Jean-Francois Grailet.

Introduction
e0

Important remark

If you are following this tutorial, this means that you went through the
PROGRAMMING WITH JAVA (1/2) tutorial dealing with the installation of Java
on your machine. If not, please follow the first part before starting this one.

Introduction
oe

Regarding IDE

There are two main approach when programming in Java:

@ either your use an IDE (integrated development environment) which are
very complete software that let you edit code and set up complex project,
and even compile and run them for you,

@ or you simply use a code editor of your liking (Visual Studio Code, Emacs,
Atom, Vim, ...) and then, compile and run your programs by hand using
command-line.

We highly encourage you to chose the latter solution, as it will allow you to
have a better understanding of what happens during the compilation or at
runtime, and will probably help you debug your code at some point. For this
reason, this tutorial will solely focus on dealing with your code via
command-line interface (CLI).

Compile and run using CLI
0000000000

Getting used to CLI

o Please note that commands can greatly differ between Windows and
Linux/MacOS.
e Commands under Linux/MacOS are well documented online:
o A tutorial is available here.

@ Windows' command prompt tutorials are usually technical, but exceptions
exist.

o A tutorial is available here.

@ For this course, all you really need is to be able to browse your filesystem.
e You can do the rest (managing/creating source files) the usual way.

@ Most essential commands:

o Linux/MacOS: cd, 1s
o Windows: cd, dir

https://ubuntu.com/tutorials/command-line-for-beginners##1-overview
https://red-dot-geek.com/basic-windows-command-prompt-commands/

Compile and run using CLI
0®00000000

A very simple program (I)

m To show how to use javac and java, we are going to use a simple example.

Next slide gives you a program simply displaying "Hello world I".
m The details of implementation are left for later.

E.g., what the args of the main () can be used for.

For now, just copy the code in a HelloWorld. java file.
m For convenience, place it in a new folder you will use only for this course.

Name it INFO0062, for instance.

Under Windows, you can place it in your Document s folder.

Compile and run using CLI
[e]e] lelelelele]e]e]

A very simple program (II)

HelloWorld. java

public class HelloWorld
{

public static void main(String args[])

{
System.out.println("Hello world !");

Compile and run using CLI
[e]e]e] lelelele]e]e]

Compiling and running our HelloWorld class (I)

m Open your terminal (Linux/macOS) or command prompt (Windows).

m Place yourself in the directory containing your code.
macOS/Linux: cd (Change Directory) followed by the path to said directory
Windows: cd (idem) followed by the path to said directory
In both cases, use ". /" to denote the path w.r.t.2 your current directory

m You can also use one command to check the content of the current directory.

macOS/Linux: 1s (with -1 for more details)

Windows: dir

cd ./Documents/INFO0062

2with respect to, FR: vis-a-vis de

Compile and run using CLI
0000e00000

Compiling and running our HelloWorld class (II)

m To compile HelloWorld. java, run this command:

javac HelloWorld. java

m No message should be displayed if compilation worked.

m If compilation is successful, you can run it with:

java HelloWorld

m That'sit!

Compiling and running our HelloWorld class (III)

Compile and run using CLI
0000080000

[&f C:\Users\Usen\Documents\INFO0062\HelloWorld.java - Notepad++ - =] X
Fichier Edition Recherche Affichage Encodage Langage Poramétres Outils Macro Exécution Modules d'extension Documents ? X
Py 2 & =) gt ERER ©| (o] 4
| B ectpse i = HeloWorld java E3
c-class HelloWorld
static-void main(String args[])
System.out.println("H)i
)
a2 L)
UTF-8 INS

Windows (CR LF)

length: 128 lines: 7 Ln:5 Col:43 Sel:0]0

[Java source file

Compile and run using CLI
000000e000

Compiling and running our HelloWorld class (V)

[Invite de commandes - [a] X

Compile and run using CLI
0000000800

Compiling and running a Java program made of several classes

m At compilation, you must provide all source files to javac.

m Upon running the program, you only need to provide the main class.
m For example, let's compile exercise 2 from the first exercise series:
GroceriesList. java (main class)

Groceries. java, Item. java (additional classes)

m Run these commands:

javac Item.java Groceries.java GroceriesList.java
java GroceriesList

Compile and run using CLI
0000000080

Compilation options (I)

m javac places .class files in the same folder as the . java files.

If you want to separate both kinds of files, you can create an output directory.
m Use the -d flag of javac to do so.

m If we want MyClass.classin abin/ folder:

‘ javac -d bin MyClass. java ‘

m To run a .class file located in a bin/, you will have to type

‘ java -cp bin MyClass ‘

m -cp is another flag of javac used to specify where to look for .class.

Compile and run using CLI
000000000 e

Compilation options (I1)

m Note that you can provide paths to javac.

m For instance, if you place your . java files in a folder src/:

javac -d bin src/MyClass.java

m Infact, placing . javain src/ and .class inbin/ is a common practice.
Both kinds of files are clearly isolated from each other.
Home folder can consist of documentation, usage examples, etc.

This convention is followed by Eclipse IDE to manage projects.

	Introduction
	Compile and run using CLI

