
Object-Oriented Programming

Exercise session 10

Exercise 1

A programmer decides to write a simulator of a referendum. In his simulation, voters are each
modeled by a separate thread while polling stations (i.e., the places where voters will go to record
their vote) act as shared resources. Each voter is assigned to a given polling station. Then, at
its assigned station, each virtual voter spends a few minutes to register to vote (this process is
modeled in the simulation by a short delay), this amount varying from one voter to another, then
gives his vote for the referendum. As several voters will go to a same given polling station, the
programmer used synchronization mechanisms to simulate the voters queueing at said station.

Open the source code of the simulator, which you will �nd in a referendum/ subfolder provided
along with this document, and have a look at its various classes. In particular, review the Voter
and PollingStation classes and observe how they communicate and the mechanisms they use
for synchronization. Then, compile the simulator, run it a few times and answer the following
questions.

� What is the practical e�ect of the synchronized keyword in the signature of the welcome()
method in PollingStation ? Why is it relevant in this simulation ?

� Remove this keyword, re-compile the simulator and run it several times. What happens
now ? How does it a�ect the outcome ?

� Suppose that the operations of the welcome() method are split into two separate methods,
one for registering the voter and another one to get his or her decision. Would it change
the outcome of the referendum? Why ?

Exercise 2

In order to increase the realism of the simulator, the programmer wants you to expand it by
modeling in it a foreign agent who will try to in�uence voters while they are queueing. The agent
will temper with their Facebook feed in order to insert a story about workers from Park county
(Colorado, USA) who claim immigrants took their jobs. Upon reading this news story, a voter
has 10% more chances of voting Leave.

In the simulator, the foreign agent will be modeled by one additional thread class ForeignAgent,
which will be instantiated once. This thread will have references to all Voter objects in order to
be able to in�uence them. However, you should also take account of the fact that a voter can only
be in�uenced if he or she consults his or her Facebook feed while queueing to vote. The chances
for this event to occur are of 10% for retired people, 25% for working people and 40% for students.
After implementing it, include the ForeignAgent thread to the simulation and run it.

Tips :

� Modify the Voter class so the foreign agent is able to in�uence all voters.

� To check from what part of the population a voter is from, use the instanceof operator.

1



Exercise 3

In modern jogging events, such as the 15km de Liège Métropole or the Maasmarathon, each
participant wears a bib 1 which is designed to notify the starting and the �nish lines when (s)he
has crossed either of them. Thanks to this bib, a runner can be timed accurately, but it also allows
the organizers to automatically display his/her name on a monitor (along with the time) as soon
as (s)he crosses the �nish line.

Your task is to simulate such a monitor with the wait() and notify() methods. To help you,
you will �nd a Runner class in the subfolder jogging provided along with this statement, as well
as a TimeReporting interface. Have a look at them �rst.

Then, create a FinishLine class implementing the TimeReporting interface as well as a
Monitor thread class which receives an amount of runners to monitor and which the task consists
in consulting the FinishLine until all runners have crossed it. Finally, create a test program to
ensure your implement works.

Tips :

� You can assume a Runner crosses the starting line as soon as its thread starts.

� You can take inspiration from the example program shown in the last slide of the theoretical
course. Don't forget to also carefully review the previous slides as well.

1. FR : un dossard

2


