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Abstract— This paper formulates a generic framework for the
social path planning problem. Previous works deal with very
specific cases of socially-aware motion planning. Instead, here
we propose a mathematical formulation that can be considered
the preliminary steps towards a general theoretical setting,
incorporating previous work as sub-cases. Social path planning
is analyzed into 6 different subproblems. Furthermore, a review
of the state of the art about the different aspects of the
social path planning problem is included. Most importantly, an
extended model for the O-space for groups of people engaged in
a social interaction is proposed. Preliminary results for actual
social path planning solutions under the proposed formulation
are shown, proving the powerfulness of the approach and its
generalization. Finally, a concrete discussion about future work
is provided.

I. INTRODUCTION
The classical path planning problem has been deeply

studied during the last decades. Many different, interesting
versions of the problem and solutions have been proposed,
turning this field into one of the most studied within artificial
intelligence as applied to robotics.

For instance, 2D navigation can be considered as a
solved problem in most of the scenarios. However, very
often the community proposes new problems that previous
approaches are not able to successfully solve. This is the
case of the socially-aware path planning, which has recently
become much more important as human-robot interaction
becomes increasingly frequent, and robots are expected to
become an increasingly important part of our everyday lives.
If the common path planning approaches are applied in
mixed human-robot environments, the robot will execute
movements that might well distract humans, making them
feeling uncomfortable. Also, if the task of the robot is to
interact with humans, the robot should be able to gracefully
approach humans, and enter and exit their conversational
circles, without alarming or distressing them, while signaling
its intentions in a human-understandable way.

As shown in the following section, a lot of work have
been done towards enabling robots to properly behave in
a socially-acceptable manner. However, most of these ap-
proaches seem to be very ad-hoc and there is not a clear
formulation of the problem. Therefore, one of the main points
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of this paper is to establish the basic formulation of the social
path planning problem, so future works can be addressed
under the same mathematical background. This will ease the
research tracking and results comparison. This formulation
takes into account the previous partial formulations available
in the literature but an important novelty is introduced: the
social path planning problem is divided into 6 different
subproblems. By correctly combining these subproblems,
most of the navigation tasks for social robots can be modeled.

The paper is structured as follows: the next section pro-
vides a detailed state of the art of the social path planning
problem. Section III describes the mathematical formulation
which is intended to be a basis for future work in this
field. Following that, in section IV social spaces models
are detailed. In section V the current work in this field is
outlined. Lastly, section VII outlines the conclusions and
discusses future work.

II. BACKGROUND

How social space is managed by humans was first studied
by E.T. Hall in 1966 [1]. He demonstrated that some factors,
such as the distance between two people, are influenced
by their relationship. The study of these factors and their
role in the human-human relationships received the name
of proxemics [2]. Concretely, Hall defines proxemics as
“the study of humankind’s perception and use of space”.
A modern study about the distance-relationship influences is
shown in [3].

During the recent years, human-robot interaction has
became one of the most important fields in the current
robotic research. Robots do not have to carry out their task
only efficiently, but also in a human-friendly way, engaging
and behaving in a socially acceptable manner in a robot
companion context [4]. Recent work can be divided into 3
categories (figure 1): 1) human-robot proxemics, 2) human-
aware planning and navigation, and 3) robot-to-human ap-
proaching and behaving. While the first group focuses on
the low-level and mainly static configurations, the other two
groups study high-level robot behaviors.

In the first group, human-robot proxemics, we consider
those works which study the human reactions to robots in
different contexts. Walters et al. [5] found that the social
rules applied for a robot when interacting with humans
depend on whether the human is standing in an open space,
against a wall, or sitting. This work was later extended
by taking into account the robot’s shape, height and task
carried out [6]. The recent sensing technologies allow the
creation of novel algorithms for labelling and measuring of



proxemics variables. Mead et al. [7] details a set of metrics
extracted from social sciences works and carry out a pilot
study with these metrics, showing that real-time automated
annotation is possible. This supposes a great advance towards
online robot actuation scaling depending on the human
reactions. Actuation scaling refers to the modification of
different variables according to the parameters sensed from
the environment (i.e. robot velocity modulation depending on
the distance to the objective). Within this group, we would
like to include the works related to automatic identification
of positive/negative interaction acceptance from the human
point of view, as this an important feature for a social robot
towards appropiate behaviour [8]. Finally, Laga et al. [9]
proposes a model for the personal space modelling based on
the mixture of two Gaussian functions. This model is deeply
analyzed in [10]. This model is extended in [11] using a
mixture of four Gaussian functions.

In the second group, human-aware planning and naviga-
tion, we put together all the research focused on how a
robot should navigate towards a given point in a legible,
human-friendly manner. One of the basic works is [12].
Here, the rules for an harmonious human-robot interaction in
navigation scenarios are specified. In this work, a great effort
is done towards creating a generic framework for human-
aware robot navigation. However, only individuals and other
robots are taken into account. There is no specification
about how the robot should behave in the presence of group
of humans. Sehestedt et al. [13] proposes a learning-based
approach in which the nodes of a roadmap receive different
weights depending on the observed human behaviors. They
tested this approach in an office environment, resulting in
a robot leveraging the corridors even if the path is longer,
close to the most likely human paths. More recently, Guzzi
et al. [14] proposed a human-inspired reactive and proactive
motion planner, where the actions the robot follows are
computed with a heuristic observed for humans [15], [16].
Another different problem within this group is mobile robot
navigation through crowds of dynamic agents with uncertain
trajectories. Most of the approaches suffer from the freezing
problem, when the environment is complex enough, the
planner considers that all forward paths are unsafe, and
the robot freezes in place. Trautman et al. [17] solved this
problem by applying joint collision avoidance: not only
one agent on the crowd should care about collisions, but
all of them do. This model is called social forces [18].

Social Path Planning

1) Human-robot
proxemics

2) Human-aware
navigation

3) Robot-to-human
behaving

3.a) Start HRI
3.b) Approaching
3.c) Maintain interaction

Fig. 1: State of the art classification

Other approaches focuses on how the human should be
modelled when the robot wants to avoid them. A simple
obstacle avoidance algorithm creates agressive movements
which make the humans not comfortable with the robot
motion. Kruse et al. [19] proposes a cost-based method which
takes into account the human proxemics and field of view
in order to navigate in a legible way. The Gaussian mixture
model proposed in [9], [10] is employed in order to create
a human friendly planner in [20], [21] called RiskRRT. This
planner takes into account both single humans and couples
of humans engaged in a social interaction.

Moving on to the last case, the main problem of the third
category, i.e. robot-to-human approaching and behavior, is:
how should a robot approach a human to successfully start an
interaction? We can divide this problem into three different
phases: a) to select the best goal pose to start the human-
robot interaction, b) to perform the approaching towards that
goal in a friendly, non-agressive way and c) to have a socially
acceptable behaviour once the interaction has been success-
fully initiated. An interesting approach to static humans is
the one proposed by Mead et al. [22]. They train the robot
with different poses to establish the interaction depending on
the objectives of the interaction so that the robot is later able
to decide which pose to select depending on the purpose of
the interaction. Also, Satake et al. [23] study how a robot
should approach people in order to start a positive interaction
in malls. For static humans, different approaches have been
taken into account: Dautenhahn et al. [24] studied how the
humans prefer to be approached while seating and proposed
a cost-based path planning method to imitate the preferred
behavior. However, Koay et al. [25] obtained results that were
opposite to previous works when designing a human-friendly
manipulation planner. Concretely, the difference attends to
the robot approaching direction preference when the robot
task is to give an object to the humans. They justified this
difference by assuming that there are cohabituation effects
in human-robot interaction that may play an important role.
Avrunin et al. [26] proposes a simple approaching method
depending on the shoulders and head orientation of the hu-
man to be approached. Regarding dynamic humans, Carton
et al. [27] proposed a method for walking humans which
estimates the future position of the human and computes a
smooth path towards the predicted point.

Most of these approaches take into account the subprob-
lems a) and b) at the same time since it is complex to
separate those two problems. However, Henkel et al. [28]
proposes a very interesting approach in which the robot’s
behavior scales according to proxemics measurements. Their
experiments show that a perception-based scaling method is
more comfortable for humans. This means that the robot
behavior should not be fixed but should depend on what the
robot senses.

Finally, the subproblem c) has been very briefly addressed
in the literature. Assuming that an interaction has been
already started, how should the robot behave in order to
behave as the human expects? Pedica et al. [29] propose
a method which provides reactive behavior to agents within



the interaction in order to simulate unconscious reactions
and dynamic motions within the interaction. Feil-Seifer et
al. [30] proposes a learning-based method in which a human
and a robot walk together to a given point in a comfortable
way for the human. A very interesting approach is given
in [31]. Here, an algorithm for approaching, interacting and
disengaging from a group of 3 humans is given. Although
the results are poorly reported, they assure that the robot
behaves as humans do.

III. MATHEMATICAL FORMULATION
In this section we detail a mathematical formulation

for the socially-acceptable path planning problem. Let us
consider a bi-dimensional, euclidean space C. Those two
dimensions correspond with the plane of the floor. This space
is composed by the union of the obstacles space Cobs and
obstacles-free space Cfree. Humans are expected to be in
Cfree, so they are not treated as simple obstacles. We denote
as H = 〈Hi, . . . ,HN 〉 the set composed by N humans in the
environment. The state of a given human i is composed by
its position, heading and velocity: Hi = 〈xiH , yiH , θiH , viH〉.
The set of humans can be split into two different subsets:
Hgroup composed by those humans which are engaged in a
social interaction, and Hind the rest of individuals (walking
around).

Every human within H becomes automatically part of the
social space shared by all the individuals. Therefore, they
create unintentional reactions on other people. Focusing on
proxemics, the influence of individuals in Hind is modelled
with their personal spaces Φi. On the other hand, people
belonging to Hgroup will be arranged in F-formations [32]
(subgroups) which are the organization of the personal spaces
shared by the humans enganged in a group. The O-space
is the center space of the people within the group, the P-
space surrounds the O-space and contains the people taking
part in the interaction, and the R-space is the rest of the
area. In this case, the social agent is the group itself and
not the individual people on it. Therefore, the model to take
into account should be the F-formation instead every person
individually. Hence, we denote the social influence created
by the group of humans Hj

group as Φj . The modelling of
these social spaces are detailed in the following section.

The robot state is denoted as R = 〈xR, yR, θR, vR〉. For
our purpose, we consider that the robot is assigned to an
objective by a higher-level algorithm. Then, the robot should
accomplish this objective, with a path ΓR, in a human-
friendly manner. This formulation is represented in figures 2
and 3.

Analyzing the state of the art, we have differentiated 6
different cases which can be given in a robotic social path
planning framework. These cases are divided taking into
account whether the humans to consider in the planning
problem are engaged in social interactions or they can be
considered as individuals:

1) Single human, individual (figure 2):
a. Robot to point. Regular path planning considering

humans as obstacles.

b. Full interaction: 1) approach human, 2) interact, keep
interaction, 3) disengage.

c. Follow human.
2) Group of humans (figure 3):

a. Robot to point. Regular path planning considering
group of humans as obstacles.

b. Observe group, ask for permission to enter.
c. Full interaction: 1) enter the group, 2) interact, keep

interaction, 3) disengage.
By the correct addition of these different subproblems, it

is possible to model most (if not all) the possible social path
planning scenarios that could be given for a robot that is
trying to navigate together with humans in its surroundings.
Therefore, the free space Cfree can be modelled as:

Cfree =
⋃

Φi ∀i ∈ Hind ∪Hgroup (1)

In the first case, single human, it is important to differ-
entiate between full interaction (1.b) and human following
(1.c). In the full interaction, we consider the problem of
approaching to the human, interacting with him/her and
disengaging in a human friendly manner. Following human
can be considered as a way of keeping interaction. However,
this implies a different kind of relative motions between
human and robot so it is actually a different problem. Also,
for the group of humans division, we do not consider the
following group problem, as it can be reduced to following
one of the humans within the group.

According to [12], a human-friendly, harmonious interac-
tion should accomplish the next 6 rules:

1) Collision-free: Maintains robot safety.
2) Interference-free: the robot should not enter the personal

space of any human unless it is its objective.
3) Waiting: If the robot enters the personal space of a

human, it has to stop a fixed amount of time.
4) Human priority: Humans always have the highest pri-

ority.
5) Robot intrusion: If a robot enters the workspace of other

robot, it should leave this space as soon as possible,
while the other robots should stop their activities.

6) Robot priority: Robots with lower priority should yield
to robots with higher priority.

This rules are accepted in the literature as high-level re-
quirements for successful human-robot interaction. However,
this set of rules can create new problems if they are taken
into account strictly. In section VI some of these problems
are outlined.

IV. SOCIAL SPACE MODELING

A correct model of the social spaces Φi (personal space
in case of individuals and O-space in case of groups)
is mandatory if a socially acceptable robot navigation is
desired. As pointed out earlier, the model completely changes
depending if the humans in the environment are individuals
(not engaged in any social interaction) or if they belong to an
F-formation (engaged in an interaction with other humans).
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Fig. 2: Subproblems for a single human.

The following subsections detail the models proposed in the
literature for both cases.

A. Single human cases

The model for single humans have been already proposed
in previous work. Actually, there are two different models,
a two-Gaussian mixture model [10] and an extended, four-
Gaussian mixture model [11]. Here, we focus on the initial
two-Gaussian mixture model since it is simpler and already
accepted by other authors.

The personal space around the human i can be defined
as the mixture of two Gaussian functions, one for the front
of the individual ΦF

i and another one for its rear part ΦR
i .

A Gaussian function Φ is defined by its center p and its
covariance matrix Σ as follows:

Φ(q) = e(− 1
2 (q−p)T Σ−1(q−p)) (2)

Therefore, the personal space Φi can be evaluated at every
point q in the human surroundings, taking p as the human
position p = (xiH , y

i
H), as:
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Fig. 3: Subproblems for a group of humans.

Φi(q) = δ(yq)ΦF
i (q) + (1− δ(yq))ΦR

i (q) (3)

where q = (xq, yq)T and δ(yq) = 1 if yq ≥ 0 (q is in front
of the human), and 0 otherwise. This allows to orientate
the model according the human heading. The covariances
matrices for each Gaussian are as follows:

ΣF
i =

(
σ2
x 0

0 4σ2
x

)
ΣR

i =

(
σ2
x 0

0 σ2
x

)
(4)

with σ2
x = 0.45/2 = 0.255m when modeling the personal

space. The original formulation includes some modifications
to the Gaussian function attending to the age and gender.

Figure 4 shows the results of this model in humans with
different headings.

B. Group of Humans Cases

Now, humans are not treated individually but every group
is modeled as a unique agent. An O-space model for F-
formations is proposed in [20]. However, it is mandatory
to expand this model since it is valid only for groups of 2



people. Therefore, we create a more generic version of the
O-space model in which as many humans as needed can be
taken into account.

First, the original model is based on the pose (position
and orientation) of two humans engaged in a interaction.
Given the positions of two humans, H1 = (x1, y1) and H2 =
(x2, y2), and their orientations with respect the global frame,
φ1 and φ2, a point Vi is computed as the intersection of the
vectors beginning in H1 and H2 with directions φ1 and φ2

respectively. Also, the point H12 is defined as the mean point
between the two humans. The point C is defined as the mean
point between Vi and H12. Also, the distance DH is defined
as the Euclidean distance between H1 and H2. Finally, the
distance Di is defined as the Euclidean distance between
H12 and Vi

Therefore, the O-space is modelled as a 2-dimensional
Gaussian Φi as follows:

Φi(Q) = e(− 1
2 (Q−C)T Σ−1(Q−C)) (5)

where C is the center of the Gaussian function and Q is the
point which is being evaluated. Σ is the covariance matrix
defined as:

Σ =

(
σ2
x 0

0 σ2
y

)
(6)

with σx = DH/4 and σy = Di/2 except for the case where
φ1 = −φ2, where σy = 0.6. The Gaussian function has to be
rotated in order to have the direction of

−−−→
H12C. This model

is shown in figure 5.a).
In order to generalise this model, let us assume N hu-

mans engadged in an iteraction. We assume that the people
involved in the group are keeping a formation close to a
circle, which is a typical assumption taking into account
the shape of the F-formations. Also, we assume an ordered
numbering of the humans within the group (clockwise or
counter-clockwise). For every couple of adjacent humans,
i and j, the original model is computed. Therefore, there
will be N centers Cij . The center for the new Gaussian is
computed as the centroid for all the computed centers Cij .
DH is therefore redefined as the average distances between
all the humans in the group:

DH =
1

N

(
N−1∑
i=1

(DH,i i+1) +DH,N1

)
(7)

Fig. 4: Two-Gaussian mixture personal space model for
individuals.

and Di is computed as the average of twice the distance of
the average point for every couple Hij and their correspond-
ing center Cij :

Di =
2

N

N−1∑
j=1

(Di,j j+1) +Di,N1

 (8)

An schema of the proposed model is depicted in fig-
ure 5.b). Its results are shown figure 6.

V. CURRENT WORK

In order to prove the validity of the proposed formulation,
we include preliminary results of the current research in this
field. We have integrated the proposed formulation in the Fast
Marching Square (FM2) path planning algorithm [33] which
has proved to be a very reliable and versatile algorithm [34].
The detail of this approach is a matter of future work. How-
ever, the results included in this paper delight the usefulness
of the novel approach. For instance, in figure 7 depicts
the results of this method applied to the subproblem 1.a:
humans as obstacles. Concretely, figure 7 b) shows the FM2

velocities map (an artificial velocities potential which is an
intermediary step of the algorithm) and how the humans are
modeled with the personal space model detailed previously.
This velocities map can generate a velocity profile for the
computed path that also includes desirable characteristics
for a human-friendly path planner (such slowing down when
approaching humans).

Also, figure 8 includes the preliminary results for the
subproblem 2.a: groups of humans as obstacles. In this case,
the FM2 velocities map shows the O-space model included
in the approach. The result is a path that smoothly avoids
the group.

VI. DISCUSSION

Although it is not the focus of this paper, we consider
that the set of rules proposed in [12] are very strict. In fact,
rules 2, 3 and 4 can turn the robot into a clumsy agent
in a social environment, freezing it for a while or always
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(b) Generalised model.

Fig. 5: Generalisation of the O-space model.



Fig. 6: Gaussian model of the O-space for groups of N
people.

(a) Environment map with indi-
viduals on it.

(b) FM2 velocities map and the
final path.
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(c) Velocities profile along the trajectory.

Fig. 7: Preliminary results. The start point is at the top of
the map and the path provided avoids personal spaces except
when it means to get very close to obstacles.

giving priority for humans. Also, there are some cases in
which it is impossible to avoid to interfere in the personal
space of the humans, such as crowded places, small rooms
or tight corridors. Also, an strict application of these rules
can decrease optimality in robot the robot behavior. Although
we are trying the robot to have a friendly behavior, we also
have to keep the paths and motions as optimal as possible in
terms of path length, smoothness, safety, energy consumption
and execution time. Therefore, it could happen that a small
interference with a human could save a lot of energy or time
to the robot, which is worthy to take into account from an
engineering point of view.

Despite all the developed work, there is a very important
issue that has not been deeply taken into account. For a
given situation it is probable that robots should not behave as
humans [35]. To assume that robot-human interaction should
be similar than human-human interaction should always be
verified. In fact, if robots are going to interact with humans
they should have a socially acceptable behavior. But this does
not mean that the acceptable behavior for a robot have to be
the same than for a human. Also, human social behavior is,
most of the times, unintentional. When interacting, humans

Fig. 8: Results for the solution of a group of humans as
obstacle. W with the O-space model, saturation at 0.5m and
the final path.

try to maximize their individual comfort [9]. However, there
is no evidence that the human reactions are optimal to
achieve this comfort. In other words, if robots are designed
to imitate humans it could happen that this is not the best
approach to maximize the comfort of the humans the robot
is interacting with.

VII. CONCLUSIONS

Along this paper a set of contributions have been detailed,
with the aim of establishing the basis for the future work
in the field of human-robot interaction, specially in robot
navigation tasks.

First of all, a detailed review of the state of the art was
included. The papers discussed are classified attending the
specific problem they try to solve. The special classifica-
tion framework that we have introduced (three categories
of papers, and six specific subproblems) was also useful
towards exposing the partiality off existing works. While
some of these papers have no mathematical formulation,
others propose very different formulations depending on the
different subproblems.

Therefore, in this paper we have detailed a novel clas-
sification as well a mathematical formalization of all the
different cases that can be given while navigating close
to humans. All the elements to take into account in each
subproblem are detailed. Therefore, a generic formulation
is given, that can act as a concrete basis for future work.
This will allow to easily compare approaches across their
structural characteristics, but also in terms of performance,
efficiency, etc.

Also, within the context of a generic problem formulation,
a novel O-space model was introduced. The contribution is
the generalization of this model to groups of N people.
Groups of people have been very briefly studied in the
human-robot literature, and thus we are addressing this
omission through our model.

Finally, preliminary results of a real-world implementa-
tion, and several interesting points were discussed which we



consider as some of the key points of this field during the
next years.
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