
On the Integration of Hardware-Abstracted Robot Skills
for use in Industrial Scenarios

Mikkel Rath Pedersen1, Lazaros Nalpantidis1, Aaron Bobick2 and Volker Krüger1

Abstract— In this paper, we present a method for program-
ming robust, reusable and hardware-abstracted robot skills.
The goal of this work is to supply mobile robot manipulators
with a library of skills that incorporate both sensing and action,
which permit robot novices to easily reprogram the robots to
perform new tasks, as well as provide a more clear mapping
between human and robot actions. Critical to the success of this
approach is the notion of hardware abstraction, that separates
the skill level from the primitive level on specific systems.
Leveraging a previously proposed architecture, we construct
two complex skills by instantiating the necessary skill primitives
on two very different mobile manipulators. The skills are
parameterized by task level variables, such as object labels and
environment locations, making re-tasking the skills by operators
feasible.

I. INTRODUCTION

Manufacturing companies are currently experiencing a
paradigm shift from mass production to mass customization;
therefore, current production equipment and entire produc-
tion lines need to be adjusted to follow this development,
including industrial robots and automation equipment. For
highly customized products, or product portfolios with large
variations, a lot of manual labor is usually present. Human
labor is the pinnacle of versatility when it comes to manu-
facturing, as a skilled worker can be shown new tasks and in
most cases immediately reproduce them. In other words, if
a human has a basic set of skills, then the repertoire of tasks
the he/she can perform is impressively large. It is for this
reason that we propose a similar structure for the mobile
industrial manipulators of the future, as it is necessary to
have methods for effortless reprogramming of robots at the
task level, rather than the robot level, as well as provide
an easier mapping between human and robot action. In task
level programming, a robot program is a sequence of robot
skills that specify a production-related goal.

To establish a fitting representation of robot skills for task-
level programming has been the focus of research around
the world [1]–[7]. The various concepts of skills is quite
different, but most of them are composed of primitive,
formal descriptions of sets of robot motions, called action or
motion primitives. These primitives are simple, atomic robot
movements that can be combined to form more complex
behavior [8]–[11], which is often called a robot skill. As
such, no single, unified definition of a skill in terms of
robotics exists. In this paper, we present our model of a

1Department of Mechanical and Manufacturing Engineering, Aalborg
University Copenhagen, 2450 Copenhagen, Denmark

2School of Interactive Computing, Georgia Institute of Technology,
Atlanta, GA 30318, USA

robot skill, that has been previously discussed in [12], and
show how these skills can be implemented and used, using
a few skills as examples.

In contrast to the skills themselves, the skill primitives
[5]–[7] are rather well defined in the robotics community;
although several different descriptions exist, most of them
loosely follow Mason’s work on compliant controllers [13],
which paved the ground for the Task Frame Formalism (TFF)
introduced by Bruyninckx and De Schutter [14], [15]. Recent
work has expanded upon this idea, for instance enabling the
use of any sensor and controller in the same task frame (e.g.
visual servoing combined with force control), and operating
in a dynamic task frame [16]–[18].

The concept of skills presented in this paper is comparable
to the manipulation primitive nets, described best in [17].
These nets are sequences of manipulation primitives, with
simple decisions based on the outcome of each single ma-
nipulation primitive in the net. In these nets, however, each
manipulation primitive needs its own explicitly specified
parameters, e.g. a specific force or velocity in a specific di-
rection. This makes this particular implementation unsuitable
for robotics novices in a factory hall. Instead, we propose a
method for specifying parameters on a higher level, the skill
level, and instead letting the system infer the parameters for
the lower level primitives.

In this paper we will show our skill paradigm applied for
two of the most important robot skills for manipulation - the
pick up and place skills. These are very complex skills, in
that they require a high degree of both sensing and motion
to be sufficiently general. Being sufficiently general, they
can also be used in almost any task, be it machine tending,
part feeding, etc. In order to further show the capabilities
of our approach, we show that the skills can easily be
ported to a totally different robot, and can be sequenced to
program a robot task. As our experimental platforms we use
a commercially available PR2 robot and a custom industrial
mobile manipulator, the Little Helper.

In section II, we introduce the reader to the concept of
skills used in this work, along with a brief explanation of
the skill primitives. In section III, we will present the outline
of two skills, as well as the necessary skill primitives for
these. After this, we present the implementation of these
skills on two very different robots in section IV. We will
briefly present the roadmap for future work and conclude
this paper in sections V and VI.

II. CONCEPTUAL OVERVIEW OF SKILLS AND TASKS

We will now introduce the definitions of skills and tasks
used in this work. We present a layered structure, where
tasks are the highest abstraction layer, and also the layer
that is easiest to understand for robotics novices. Each task is
composed of a sequence of skills, each of which is composed
of a number of skill primitives, where the primitive layer is
the most robot-oriented layer. See also Fig. 1. We will start
by explaining the concept of a task.

Fig. 1: The three layers of the skill model. The skills
can access and alter information in the world model, and
the tasks can only access the information, and alters it
through the skills. The only hardware-specific parts are the
skill primitives, so the hardware abstraction layer (HAL) is
between the primitives and the skills.

We define tasks as sequences of robot skills, and the
sequences can either be pre-programmed by an operator or
generated by a task-level planner, either offline or ad hoc.
Tasks are characterized by a relation to a production-related
goal in the factory; for instance a machine tending task could
be insert part P in machine M, start the machine, remove
part, place on workpiece tray. The basis for a given task is
a set of known state variables, such as locations of known
objects, current state of production equipment, etc. The task
uses skills to change these state variables to a desired goal
setting.

We define a robot skill as a fundamental software building
block, that incorporates both sensing and action. In order for
the skills to be useful for task-level programming, they must
both change the world state through sensing or action [7],
and be self-sustained, so they can be used in any task. Self-
sustainability implies that each skill should be

• parametric in its execution, so it will perform the same
basic operation regardless of input parameter,

• able to estimate if the skill can be executed based on
the input parameter and world state, and

• able to verify whether or not it was executed success-
fully.

A graphical representation of a skill, implementing all of
these aspects, is shown in Fig. 2.

The skill uses the current world state as input, along with
a parameter, which is provided at task programming time.
As an example, for the pick object skill the parameter is
the specific object that needs to be picked up. The skill
initially checks that all preconditions for executing the skill
are satisfied, based on the inputs. If true, the skill executes
the sequence of skill primitives that changes the world state
to the desired goal setting. After execution, it is verified that

The 43rd Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

graphical representation of skills, where the skill tem-
plate serves as a communication tool between the skill
developer and the application programmer. However,
these pre- and postconditions need to be connected to
the real robot, i.e. to be testable before they actually jus-
tify their existence.

B. Contribution

In this study different application scenarios are ana-
lyzed to provide a terminology that can assist in all lev-
els of task-level robot programming, from the developer
of the basic capabilities of the robot to the shop floor
worker who will program new tasks. Using this termi-
nology,

• a concept of robot skills is utilized to analyze pro-
duction processes, and identify what skills are
needed for certain task domains, and

• the skills and tasks abstraction is proposed to en-
capsulate, convey, and reuse expert knowledge to
create robust robot programs.

II. DEFINITION OF TASKS AND SKILLS

In this section we will introduce our definitions of
the key terms of this paper. Similar to papers that model
human action using an abstraction hierarchy of action
primitives, actions and activities [6,15], or that model
language out of phonemes, words and sentences [17],
we will denote the same type of hierarchy by using the
terms motion primitives, skills and tasks. Motion primi-
tives perform basic motion commands of the robot, and
skills are basic functionalities the robot has.

A. Tasks

Tasks are in this context, quite intuitively, character-
ized by attaining a certain production-related goal in the
factory hall, e.g. fill feeder A or load part B into machine
C. We say that a task can be decomposed into a se-
quence of skills from the set S of skills if there exists a
robot that is able to complete a task by using the skills
from S. Tasks are defined based on measurable state
variables, and the robot uses its skills to change these
state variables. State variables can be either measured
with vanishing uncertainty by dedicated sensors, e.g. by
those that are built into the manufacturing systems, or
by sensors on the robot, such as vision, torque or tactile
sensors.

B. Skills

Skills are the foundation of task-level programming,
and provide the building blocks for the robot to com-
plete the task. Which skills are available to a robot de-
pends on its hardware and its sensors. In Sec. IV-A we
discuss a method for defining skills that are somewhat
independent of the hardware they run on, without loss of
generality.

How to automatically select the right set of skills to
accomplish a task, however, is an open question.[16] In
the present paper we suggest finding the skills by ana-
lyzing real-world implementations and Standard Oper-
ating Procedures (SOP) from an industrial partner. This

way, the identification of the set of skills is consistent
with human intuition.

One core property and main justification for using
skills is their object-centeredness. Classic robot pro-
grams are usually based on 3D coordinates, e.g. a pick
up function requires the object to be at an a-priori de-
fined 3D location. Skills, on the other hand, are not ap-
plied on 3D locations but on objects, i.e. pick up
<object>. In order to instantiate e.g. the pick up
skill on object, the robot will use a sensing device
such as a video camera or a range scanner to first detect
and then localize the object. Once the 3D location is
available, the robot is in principle able to execute the
classic function for picking up the object.

A second core property of a skill is that each one
needs pre- and postconditions to ensure and verify a
correct functioning: Before the robot can execute a skill,
all preconditions need to be fulfilled, e.g. reachability of
the object is a precondition of the pick up <ob-
ject> skill. If the object is not reachable, the skill
cannot be executed. A check of the postconditions will
verify if the expected outcome of the skill was satisfac-
torily met, i.e. that the executed skill was successful.
Thus, the pre- and postconditions are effectively a query
on the world state, that evaluates to true or false.

Fig. 1. Skill model

Robot skills have two very distinct features; execu-

tion and inspection, each requiring a different form of
object interaction. Thus, a robot skill is expected to
modify the state of the real world and concurrently up-
date the systems state variables. A model of a robot skill
is shown in Fig. 1. Queries on the state variables and
input parameters (which are provided at task-level pro-
gramming time) serves as a means of testing if the pre-
conditions of the skill execution are met, either by prior
knowledge or ad hoc inspection. If the preconditions are
met, the skill is executed, based on the parameters and
the state variables. Parameters are thus stored in the task
description and are for instance objects or locations, e.g.
<red box> for the locate or pick up skill or
<warehouse> for the move to skill.

The postconditions are two-part in relation to the
skill; prediction and evaluation. The prediction specifies
formally what the expected effect of executing the skill
is, and can thus be used to select an appropriate skill for
achieving a desired goal state. The evaluation checks
that the state variables after execution is within an ex-
pected range and updates the state variables to reflect
the actual state after the skill execution.

Since skills are goal-oriented, the prediction of a skill
must devise a change in the state variables. This change

Fig. 2: Model of a robot skill

the current, measured state variables are satisfactory. This is
done by comparing them to the prediction of the outcome
(see Fig. 2), which is established from the parameter input
and initial state setting.

Pre- and postconditions are required for both robustness
and planning. There is no reason to attempt to execute a
skill if the preconditions are not satisfied, and the skill is
only correctly executed if the postconditions are satisfied.
Furthermore, if there exists a task-level planner that is able
to create tasks as sequences of skills, the same planner would
be able to deal with precondition failures, by planning a
sequence of skills that satisfies the preconditions. In the case
of postcondition failures, however, the case is not as trivial,
since a planner would still utilize the same library of skills,
resulting in a similar task as the one currently being executed.
In this case it might be feasible to simply retry the skill a
few times, call an operator, or render the skill invalid for the
next planning attempt.

Using these definitions of tasks and skills, and based
on our findings in the FP7 project TAPAS and numerous
experiments on the shop floor, a total of 566 manual tasks in
a production facility have been analyzed [19], and we have
shown that it is possible to break down most of these tasks
into a set of only 13 distinct robot skills, and even less in
simpler domains [12].

A. Skill primitives

In order for the robot skills to be robust, hardware-
abstracted and easy to implement for robot skill developers,
they must themselves be composed of lower-level skill
primitives. We will not attempt to provide a strict definition
of what a skill primitive is and what it is not. Instead, we
see skill primitives as traditional macros, that perform a
basic function directly which may be readily provided by the
robot system. Comparing to skill primitives in humans, they
are intuitively the motions and sensing we perform without
thinking further about it. As such, a robot skill primitive
could be as rudimentary as closing the gripper on the robot,
or as advanced as planning and performing collision-free
motion of a robot arm.

Being the only interface to the hardware in this model,
these components are also effectively the hardware abstrac-
tion layer. Ideally, this means that any single skill primitive
can be changed, as long as the same interfaces are main-
tained.

It is important to note that, for the sake of generality,
we do not distinguish between skill primitives that purely
perform motions and primitives that purely perform sensing.

For example, both an object detector and a point-to-point
robot arm motion are skill primitives.

We will now go on to present the implementation of the
pick and place skills.

III. IMPLEMENTATION OVERVIEW

This section will present the challenges in implementing
the pick and place skills, which is the initial implementa-
tion of skills following the concepts mentioned above. As
such, we divide this section into two subsections. First, we
will briefly present the outline and contents of both skills,
following the model introduced in II. After this, we present
a general overview of both skills, along with aspects of the
implementation that is necessary for both. In this section we
will also introduce the implementation of the skill primitives
that are the same for both robots.

A. Skill descriptions

The pick skill aims to fulfill the goal of picking up a
known object in the world model. The skill is designed to
assume that the object is within reach of the robot, without
the need of driving to the object location. Knowing that the
object is within reach, the robot will re-detect the object,
to get an accurate and up to date object pose. After this, it
will pick up the object, and lift it away from the table. This
ends the execution phase of the skill. It will then need to be
verified that the execution was successful, which is done by
a) checking if an object is in the gripper, and b) no object
is at the previous location. The steps involved are shown in
Table I, and the skill primitives used are marked with the
abbreviation SP.

TABLE I: Pick skill

Parameter Previously detected object
Preconditions Object known in world model

Object within reach
Gripper empty

Execution SP: Redetect and update pose of object
SP: Open gripper

Calculate pregrasp and grasp pose
SP: Planned, collision-free arm motion to

pregrasp pose
SP: Motion into grasp pose
SP: Close gripper
SP: Motion away from table

Postconditions Object in gripper
Object not at previous location

Similarly to the pick skill, the place skill assumes the
position to place the object is within reach of the robot arm.
The goal of the place skill in this implementation is to put
down the object in the gripper at a specific location on a
known surface. A robust and general place skill, that can
handle advanced contact definitions, e.g. assembly tasks, is
out of scope of this particular work. The robot will have to
move the gripper to a position above the desired final position
of the object, after which it will move down, normal to the
table, until contact. After this, it will open the gripper and
move it away from the object, which concludes the execution
phase. Finally, it is verified that the gripper is empty, and the

object is placed at the desired position. The steps involved
in the place skill are shown in Table II.

TABLE II: Place skill

Parameter (x, y) location on previously detected surface
Preconditions Surface known in world model

Place location within reach
Object in gripper
Place location empty

Execution Calculate pre-place and place poses
SP: Planned, collision-free arm motion to
SP: Motion down to contact with surface
SP: Open gripper
SP: Motion away from object

Postconditions Gripper empty
Object at correct location
Gripper is away from object

B. General implementation

Certain prerequisites in the form of skill primitives need
to be satisfied in order to implement the skills on the robots.
Besides simple motion commands, such as gripper motions,
the relatively advanced skill primitives necessary for this
implementation are:

• Collision-free arm navigation
• Object detection, recognition and grasp planning
• Cartesian motions with force feedback
Furthermore, it is necessary to have a suitable represen-

tation of the world state, which we have implemented as
well. The world model in this initial implementation contains
information about previously detected objects and surfaces,
in global coordinates. This implementation also enables
advanced querying (e.g. return objects currently located on
table 1) and updating poses of surfaces and objects ad hoc.
When starting up the robot, we perform an initial scan of the
scene, and save information regarding objects and surfaces,
or load a previously saved world state.

The current implementation relies heavily on available
ROS packages for the primitives. However, due to the
layered architecture, the primitive layer could in principle
be any other software structure, that facilitates a package-
like structure and a well-defined communication framework.

For the object and surface detection skill primitive, we
use the ROS package tabletop_object_detector,
which performs tabletop segmentation, object detection and
object recognition based on measured point clouds of the
environment, captured with a Kinect camera. This package
is furthermore utilizing a database of known objects, with
a set of simulated grasp poses for the PR2 parallel gripper
for each object. For the purpose of example, this package is
adequate, and can easily be exchanged with a more suitable
primitive when needed.

In order for the robot to safely manipulate objects in
semi-structured environments, such as production facilities,
a skill primitive that performs collision-free arm motions is
also required. In order to do this, we use the ROS stack
arm_navigation, that is fully integrated to work with
the PR2.

It is not always feasible to plan every motion of a robot
arm, especially not during manipulation of parts for which
we do not have a model we can input in the collision map.
Therefore, a skill primitive that enables motions according
to the Task Frame Formalism has been implemented. This
primitive is a layer on top of a low level controller, that
controls the joints of the robot arm directly. Therefore, the
TFF primitive is not performing real-time control of the
joints of the robot arm directly, and is therefore strictly not
a TFF controller. However, this primitive does enable us
to specify the desired position, velocity or applied force in
any direction and in any known frame, until a certain stop
criterion is met, e.g. a traveled distance, a velocity, or an
external force in a particular direction.

We will give a more detailed description of the implemen-
tation in the next sections.

IV. IMPLEMENTATION ON TWO ROBOTS

We begin by presenting the implementation on the PR2
robot, which has essentially served as an initial prototyping
platform for the skill concept introduced in II. In this
description, we will present how each skill primitive was
implemented, and how it fits into the skill itself. Finally,
we describe the necessary steps in order to transfer this
implementation from the research platform, that the PR2
is, to an entirely different robot, the industrial mobile robot
Little Helper.

The skills have all been implemented as classes in Python,
that inherit from a base skill class. This base class contains
methods for adding pre- or postconditions, as well as eval-
uating all conditions. It also contains an empty method for
interfacing to the ROS topics and actions, that are used in
the specific skill implementation, and an empty method for
execution. When implementing a skill, the programmer must
overwrite these two functions with skill-specific ones, as well
as add pre- and postconditions to the skill. In this way, it
is ensured that all skills maintain the same vocabulary for
calling the functions within the skill.

A. Implementation on the PR2

The following two sections provide a detailed description
of the implementation of the skills, according to the outline
in Table I and II, respectively.

1) Pick skill: As a unique ID identifies each object in
the world model, this ID is used as the parameter for the
pick skill. The world model is queried for the information
regarding this particular object, e.g. the type of object, pose,
and surface it is resting upon. The preconditions object within
reach and object known in world model can be determined
based on this query. The precondition check for the gripper
being empty is tested on the internal joint state of the robot. If
any of the preconditions fail, the skill terminates and outputs
which precondition(s) failed.

In the execution phase, it is first necessary to redetect the
scene by calling the object detector primitive, to accurately
update the object pose in the robot coordinate system. This
is due to the fact that the world model for a mobile robot

will be populated with object poses in world coordinates,
and current navigation and localization are not sufficiently
precise for manipulation.

The grasp pose is selected based on a series of presim-
ulated grasps, available for the specific object type in the
database of objects. The chosen grasp is a selected as a
tradeoff between the pose difference between the current
gripper pose and the available grasp poses, and the success
probability from grasp simulations. The pre-grasp pose is
similar to the grasp pose, with an offset in the gripper frame,
to ensure a collision-free approach to the object.

The end-effector is moved to the pre-grasp pose, by using
the arm navigation primitive. The planner used is the SBL
planner [20] from the Open Motion Planning Library [21].

In order to approach the object, the robot makes use
of the TFF skill primitive, and performs a TFF motion
into the grasp pose. This motion is specified as a ve-
locity in the end-effector frame, towards the grasp pose,
and the stop criterion is either the approach distance
used to calculate the pre-grasp pose, or when sensing a
contact with the object. The TFF primitive outputs de-
sired positions to a cartesian position controller with force
and velocity feedback, the JTTaskController in the
pr2_manipulation_controllers package. A sepa-
rate PI control of velocity and force has been implemented,
where a desired pose is sent to the cartesian controller, based
on the velocity or force feedback directly from the controller,
respectively. After the motion reaches the stop criterion, the
gripper is closed to grasp the object. The pose of the object
in the world model is then updated to the current pose in the
gripper frame, and a flag is set to indicate that this object is
currently in the gripper. The collision model of the object is
also attached to the arm, to enable future planned motions
with the object in the gripper.

The TFF motion performing the lift is also a velocity
command, with the stop criterion being a pre-programmed
lifting height. This motion is carried out in a direction normal
to the surface, to ensure there is no collision with the surface.

If any of the previous steps fails, the skill terminates and
outputs at exactly which step it failed, and for what reason.

After the execution the postconditions are verified. Check-
ing if the object is in the gripper is tested on the current grip-
per joint configuration, and comparing this to the known joint
configuration for the chosen grasp. The detection primitive is
called again, in order to ensure no objects are present at the
location the object was picked from. If both postconditions
are satisfied, the skill is concluded, and the robot returns to
a waiting state.

2) Place skill: Similar to the objects, detected surfaces
are identified in the world model with a unique ID. The
parameter to the place skill is therefore the ID of the surface,
and the (x, y) location to place the object on that surface.
In this implementation, the coordinate is explicitly specified
when calling the skill, but initial experiments with simple
gesture recognition for parameter input show that this is
a feasible approach [22]. The first precondition checks are
whether or not the surface is known in the world model, and

if the desired location is within the workspace of the robot,
similar as the checks in the pick skill. The world model is
also queried to obtain knowledge of the object in the gripper,
based on the flag set after picking up the object. Calling
the object detection primitive reveals whether or not there
already is an object at the specified location, in which case
that particular precondition fails.

The execution phase initially calculates the place pose
from the (x, y) location in the table frame, specified in the
parameter. This is the desired final pose of the object, and
since the object pose in the gripper is known from the world
model, the final pose of the gripper is easily deduced. The
pre-place pose is an offset of the place pose in the direction
normal to the surface.

We again use the arm navigation primitive to conduct a
planned motion to the pre-place pose. In this way we can
still avoid collision with both the arm and the object in the
gripper, since the object was added to the collision model of
the arm. Upon reaching the pre-place pose, the TFF primitive
is used to move the grasped object toward the surface, in the
direction of the surface normal. This motion is terminated
once a contact is sensed with the table, and the gripper is
opened. The collision model of the object is now detached
from the arm, as it is no longer needed.

In order to avoid colliding with the object when moving
away from it, this is also carried out as a TFF motion in the
gripper frame, similar to the approach motion in the pick
skill. The stop condition is a distance greater than the length
of the gripper fingers, to ensure the gripper is clear from the
object.

After the gripper is moved away, the pose of the object is
updated to be the desired place pose. This is then verified as
a post-condition by re-detecting the scene, and if the object
is within an acceptable placing tolerance, the pose of the
object is updated to be the actual, detected pose. The checks
if the gripper is empty (fully open) and away from the object
are measured based on the internal robot state.

B. Implementation on the Little Helper

The Little Helper (see Fig. 3) relies on a KUKA Light
Weight Robot (LWR) arm for manipulation, which is not
fully compatible with ROS. Furthermore, the system consists
of a Schunk WSG-50 parallel gripper for manipulation, and
a Neobotix MP-L655 mobile differential drive platform for
mobility. Both of these latter components are fully integrated
with ROS.

The primary tasks in porting the skills to the Little
Helper are to implement missing primitives, modifying the
interfaces with the primitives, and to make adjustments in
the various geometric calculations within the skill. This is
primarily calculating gripper poses, but also mapping the
joint configurations of a grasp with the PR2 gripper to that
of the gripper on the Little Helper. Considering nearly no
attention to hardware abstraction was taken when initially
developing the skills on the PR2, the skills were working
on the Little Helper within 1-2 days and with low effort. If

(a) (b)

Fig. 3: The two robots used for experiments: (a) the PR2
robot and (b) the Little Helper robot at a production facility

the skills had initially been developed in a generic manner,
it would have taken even less time and work.

On the Little Helper, we are using a skill primitive that
sends cartesian or joint poses directly to the KUKA con-
troller, which then handles inverse kinematics, path planning
and joint interpolation. This has the drawback that it is not
possible to perform collision-free arm navigation and TFF-
like motions. It is, however, very important to again stress
the fact that the interfaces to the different primitives are the
same. So when the arm navigation and TFF skill primitives
are working on the Little Helper, they can directly be used
by the skills. This shows how easily skill primitives can be
exchanged, as long as their interfaces are the same.

In the initial experiments with the PR2, we have used the
robot in a stationary position. On the Little Helper, however,
we have implemented one more skill, which is the simple
drive to station skill. This skill uses the ROS navigation
system to navigate the mobile base in a known map to a
workstation that is previously saved in the world model. This
skill only has the precondition check of whether or not the
station is known in the model. The skill will then call the
navigation primitive, in order to bring the mobile robot from
the current position to the saved workstation, and check that
the robot is at the goal.

Using these three skills, we can easily create small scripts,
that is essentially task descriptions. In the following is shown
a simple function that calls the skills to get a box of rotor
caps, for rotors used in a domestic water pump, and transport
them to a rotor press, where the final rotor is assembled:
def g e t b o x o f r o t o r c a p s () :

Dr ive t o r o t o r cap p r e s s
d r i v e t o s t a t i o n (’ warehouse ’)
Get ID o f a box o f r o t o r s near t h e r o b o t
b o x i d = g e t o b j e c t i d (’ f u l l r o t o r b o x ’ , n e a r = ’ warehouse ’)
Pick up a box o f r o t o r s
p i c k u p (b o x i d)
Place on r o b o t p l a t f o r m a t a s p e c i f i c p o s i t i o n
p l a c e (’ p l a t f o r m ’ , 0 . 3 0 , 0 . 5 5)
Dr ive t o t h e r o t o r a s s e m b l y s t a t i o n
d r i v e t o s t a t i o n (’ r o t o r p r e s s s t a t i o n ’)
Pick up t h e box from t h e p l a t f o r m
p i c k u p (b o x i d)
Place t h e box on t h e t a b l e n e x t t o t h e p r e s s
p l a c e (’ r o t o r p r e s s t a b l e ’ , 1 . 4 0 , 0 . 2 5)
re turn

This is only the very basic way of using skills to program

tasks, and being able to specify robot tasks as simple as
the example above opens up the door to a lot of different
possibilities in Human-Robot Interaction, that can output
scripts like this. Recent experiments include both gesture
input for the parameters, and specifying the sequence of
skills in a GUI.

V. FUTURE WORK

It is our intention to further develop the library of skills,
with the 10 (less advanced) skills that are missing for the
logistic domain described in [12]. We will do this only on
the Little Helper. When we have a sufficient library of skills,
we will use them for improved human-robot interaction,
so an operator can select the sequence of skills, and their
parameters, in a GUI or through direct interaction with the
robot. It is imperative that this will be extensively tested in
a real production facility. Furthermore, we will experiment
with using simple planners to create sequences of skills, and
more advanced ones to deal with skill failures, both as pre-
and postcondition failures, and during execution.

VI. CONCLUSION

In this paper we have presented a model for programming
robust, hardware-abstracted robot skills, for use in task-
level programming, following a structure similar to how
we humans use basic skills to form more complex tasks.
One can argue that the implementation has a number of
shortcomings, such as requiring a database of known objects
with corresponding grasps. However, we would like to argue
that the modular concept of the skills allows to very easily
change such components to accommodate the needs of the
different scenarios. Our skill model can easily accommodate
future extensions, both in skill primitives and world state
knowledge. In principle, this concept looks very promising,
because the skills are self-sustained, in that they know when
they fail and why, and are parametric in their execution.
But also because the skills are highly modular, since they
are composed of lower level skill primitives. Getting a
skill, explicitly designed for one robot, to work on another
robot proved to be effortless, given the right skill primitives.
However, having the right skill primitives readily available
can be the limiting factor in a skill implementation, if the
skill is to be implemented in the exact same manner on all
robots.

For demonstrations of the described implementations, see
the attached video.

ACKNOWLEDGMENT

The authors would like to thank the Center for Robotics
and Intelligent Machines (RIM) at Georgia Institute of Tech-
nology for the opportunity of using the PR2 for experiments.
Especially, we would like to thank Tucker Hermans from
RIM for always being helpful.

This work has partly been supported by the European
Commission under grant agreement number FP7-260026-
TAPAS.

REFERENCES

[1] M. Lopes and J. Santos-Victor, “A developmental roadmap for learning
by imitation in robots,” IEEE Transactions on Systems, Man and
Cybernetics, Part B (Cybernetics), vol. 37, pp. 308–321, Apr. 2007.

[2] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, pp. 14 – 23, Mar.
1986.

[3] C. Breazeal and B. Scassellati, “Robots that imitate humans,” Trends
in Cognitive Sciences, vol. 6, no. 11, p. 481–487, 2002.

[4] R. Dillmann, “Teaching and learning of robot tasks via observation
of human performance,” Robotics and Autonomous Systems, vol. 47,
no. 2, p. 109–116, 2004.

[5] S. Schaal, “Is imitation learning the route to humanoid robots?,”
TRENDS IN COGNITIVE SCIENCES, vol. 3, no. 6, p. 10, 1999.

[6] A. Björkelund, L. Edstrom, M. Haage, J. Malec, K. Nilsson, P. Nugues,
S. Robertz, D. Storkle, A. Blomdell, R. Johansson, M. Linderoth,
A. Nilsson, A. Robertsson, A. Stolt, and H. Bruyninckx, “On the
integration of skilled robot motions for productivity in manufacturing,”
in Assembly and Manufacturing (ISAM), 2011 IEEE International
Symposium on, pp. 1 –9, May 2011.

[7] N. Krüger, J. Piater, F. Wörgötter, C. Geib, R. Petrick, M. Steedman,
A. Ude, T. Asfour, D. Kraft, D. Omrcen, et al., “A formal definition
of object-action complexes and examples at different levels of the
processing hierarchy,” PACO-PLUS Technical Report, available fro m
http://www. paco-plus. org, 2009.

[8] T. B. Moeslund, A. Hilton, V. Krüger, and L. Sigal, Visual Analysis
of Humans: Looking at People. Springer-Verlag New York Inc, 1 ed.,
2011.

[9] V. Krüger, D. Kragic, A. Ude, and C. Geib, “The meaning of action:
a review on action recognition and mapping,” Advanced Robotics,
vol. 21, no. 13, p. 1473–1501, 2007.

[10] A. F. Bobick, “Movement, activity and action: the role of knowledge
in the perception of motion.,” Philosophical Transactions of the Royal
Society B: Biological Sciences, vol. 352, pp. 1257–1265, Aug. 1997.
PMID: 9304692 PMCID: 1692010.

[11] G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, “Premotor cortex
and the recognition of motor actions,” Brain Research. Cognitive Brain
Research, vol. 3, pp. 131–141, Mar. 1996. PMID: 8713554.

[12] S. Bøgh, O. S. Nielsen, M. R. Pedersen, V. Krüger, and O. Madsen,
“Does your robot have skills?,” in Proceedings of the 43rd Interna-
tional Symposium on Robotics (ISR), (Taipei, Taiwan), Aug. 2012.

[13] M. T. Mason, “Compliance and force control for computer controlled
manipulators,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. 11, pp. 418 –432, June 1981.

[14] H. Bruyninckx and J. De Schutter, “Specification of force-controlled
actions in the ”task frame formalism”-a synthesis,” Robotics and
Automation, IEEE Transactions on, vol. 12, pp. 581 –589, Aug. 1996.

[15] J. De Schutter and H. Van Brussel, “Compliant robot motion i. a
formalism for specifying compliant motion tasks,” The International
Journal of Robotics Research, vol. 7, pp. 3–17, Aug. 1988.

[16] T. Kröger, B. Finkemeyer, and F. Wahl, “Manipulation primitives
— a universal interface between sensor-based motion control and
robot programming,” in Robotic Systems for Handling and Assembly
(D. Schütz and F. Wahl, eds.), vol. 67 of Springer Tracts in Advanced
Robotics, pp. 293–313, Springer Berlin / Heidelberg, 2011.

[17] B. Finkemeyer, T. Kröger, and F. M. Wahl, “Executing assembly tasks
specified by manipulation primitive nets,” Advanced Robotics, vol. 19,
pp. 591–611, June 2005.

[18] T. Kröger, B. Finkemeyer, S. Winkelbach, L.-O. Eble, S. Molken-
struck, and F. Wahl, “A manipulator plays jenga,” Robotics Automation
Magazine, IEEE, vol. 15, pp. 79 –84, Sept. 2008.

[19] S. Bøgh, M. Hvilshøj, M. Kristiansen, and O. Madsen, “Identifying
and evaluating suitable tasks for autonomous industrial mobile manip-
ulators (AIMM),” The International Journal of Advanced Manufactur-
ing Technology, vol. 61, pp. 713–726, July 2012.

[20] G. Sánchez and J.-C. Latombe, “A single-query bi-directional prob-
abilistic roadmap planner with lazy collision checking,” in Robotics
Research (R. A. Jarvis and A. Zelinsky, eds.), vol. 6, pp. 403–417,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[21] Kavraki, Lydia E., “The open motion planning library (OMPL),” 2010.
[22] M. R. Pedersen, C. Høilund, and V. Krüger, “Using human gestures

and generic skills to instruct a mobile robot arm in a feeder filling
scenario,” in Proceedings of the IEEE International Conference on
Mechatronics and Automation (ICMA), (Chengdu, Sichuan, China),
Aug. 2012.

