Introduction to pinhole cameras

Lesson given by **Sébastien Piérard** in the course "Introduction aux techniques audio et vidéo" (ULg, Pr. J.J. Embrechts)

INTELSIG, Montefiore Institute, University of Liège, Belgium

October 30, 2013

Optics: the light travels along straight line segments

The light travels along straight lines if one assumes a single material (air, glass, etc.) and a single frequency. Otherwise . . .

Optics: behavior of a lens

Assuming the Gauss' assumptions, all light rays coming from the same direction converge to a unique point on the focal plane.

Optics: an aperture

Optics: a pinhole camera

A pinhole camera is a camera with a very small aperture. The lens becomes completely useless. The camera is just a small hole. High exposure durations are needed due to the limited amount of light received.

What is a camera?

A camera is a function:

- $(x \ y \ z)$ in the world 3D Cartesian coordinate system
- $(x \ y \ z)^{(c)}$ in the 3D Cartesian coordinate system located at the camera's optical center (the hole), with the axis $z^{(c)}$ along its optical axis, and the axis $y^{(c)}$ pointing upperwards.
- $(u \ v)^{(f)}$ in the 2D Cartesian coordinate system locate in the focal plane
- $(u \ v)$ in the 2D coordinate system screen or image

$(x y z) \rightarrow (x y z)^{(c)}$

$$\begin{pmatrix} x^{(c)} \\ y^{(c)} \\ z^{(c)} \end{pmatrix} = R_{3\times3} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$

$(x y z) \rightarrow (x y z)^{(c)}$

$$\begin{pmatrix} x^{(c)} \\ y^{(c)} \\ z^{(c)} \end{pmatrix} = R_{3\times3} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$

R is a matrix that gives the rotation from the *world* coordinate system to the *camera* coordinate system. The columns of R are the base vectors of the *world* coordinate system expressed in the *camera* coordinate system. In the following, we will assume that the two coordinate systems are orthonormal. In this case, we have $R^TR = I \Leftrightarrow R^{-1} = R^T$.

$(x y z)^{(c)} \rightarrow (u v)^{(f)}$

$$(x y z)^{(c)} \rightarrow (u v)^{(f)}$$

We suppose that the image plane is orthogonal to the optical axis. We have :

$$u^{(f)} = x^{(c)} \frac{f}{z^{(c)}}$$

 $v^{(f)} = y^{(c)} \frac{f}{z^{(c)}}$

$(u v)^{(f)} \rightarrow (u v)$

$$(u\,v)^{(f)} \to (u\,v)$$

We have :

$$u = (u^{(f)} - \frac{v^{(f)}}{\tan \theta})k_u + u_0$$
 $v = v^{(f)}k_v + v_0$

The parameters k_u and k_v are scaling factors and (u_0, v_0) are the coordinates of the point where the optical axis crosses the image plane. We pose $s_{uv} = -\frac{k_u}{\tan \theta}$ and obtain:

$$\begin{pmatrix} su \\ sv \\ s \end{pmatrix} = \begin{bmatrix} k_u & s_{uv} & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} su^{(f)} \\ sv^{(f)} \\ s \end{pmatrix}$$

Often, the grid of photosensitive cells can be considered as nearly rectangular. The parameter s_{uv} is then neglected and is considered as 0.

The complete pinhole camera model

With homogeneous coordinates the pinhole model can be written as a linear relation:

$$\begin{pmatrix} su \\ sv \\ s \end{pmatrix} = \begin{bmatrix} k_u & s_{uv} & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{3\times3} & t_y \\ t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} su \\ sv \\ s \end{pmatrix} = \begin{bmatrix} \alpha_u & S_{uv} & u_0 & 0 \\ 0 & \alpha_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{3\times3} & t_y \\ k_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} su \\ sv \\ s \end{pmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

with $\alpha_u = f k_u$, $\alpha_v = f k_v$, and $S_{uv} = f s_{uv}$.

Questions

Question

What is the physical meaning of the homogeneous coordinates?

Think about all concurrent lines intersection at the origin and the three first elements of the homogeneous coordinates with $(x \ y \ z)$ on a sphere . . .

Question

How many degrees of freedom has $M_{3\times4}$?

 $(m_{31}m_{32}m_{33})$ is a unit vector since $(m_{31}m_{32}m_{33}) = (r_{31}r_{32}r_{33})$.

The calibration step: finding the matrix $M_{3\times4}$

The calibration step: finding the matrix $M_{3\times4}$

$$\begin{pmatrix} su \\ sv \\ s \end{pmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

therefore

$$u = \frac{m_{11} x + m_{12} y + m_{13} z + m_{14}}{m_{31} x + m_{32} y + m_{33} z + m_{34}}$$

$$v = \frac{m_{21} x + m_{22} y + m_{23} z + m_{24}}{m_{31} x + m_{32} y + m_{33} z + m_{34}}$$

and

$$(m_{31} u - m_{11})x + (m_{32} u - m_{12})y + (m_{33} u - m_{13})z + (m_{34} u - m_{14}) = 0$$

$$(m_{31} v - m_{21})x + (m_{32} v - m_{22})y + (m_{33} v - m_{23})z + (m_{34} v - m_{24}) = 0$$

The calibration step: finding the matrix $M_{3\times4}$

 m_{34}

Questions

Question

What is the minimum value for n?

5.5

Question

How can we solve the homogeneous system of the previous slide ?

Apply a SVD and use the vector of the matrix \boldsymbol{V} corresponding the smallest singular value.

Question

Is there a conditions on the set of 3D points used for calibrating the camera?

Yes, they should not be coplanar.

Intrinsic and extrinsic parameters

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} = \underbrace{\begin{bmatrix} \alpha_u & S_{uv} & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{intrinsic parameters}} \underbrace{\begin{bmatrix} R_{3\times3} & t_y \\ R_{2\times3} & t_z \end{bmatrix}}_{\text{extrinsic parameters}}$$

The decomposition can be achieved via the orthonormalising theorem of Graham-Schmidt, or via a QR decomposition since

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} \alpha_u & S_{uv} & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} m_{33} & m_{23} & m_{13} \\ m_{32} & m_{22} & m_{12} \\ m_{31} & m_{21} & m_{11} \end{bmatrix} = \begin{bmatrix} r_{33} & r_{23} & r_{13} \\ r_{32} & r_{22} & r_{12} \\ r_{31} & r_{21} & r_{11} \end{bmatrix} \begin{bmatrix} 1 & v_0 & u_0 \\ 0 & \alpha_v & S_{uv} \\ 0 & 0 & \alpha_u \end{bmatrix}$$

Questions

Question

What is the minimum of points to use for recalibrating a camera that has moved ?

3 since there are 6 degrees of freedom in the extrinsic parameters.

Question

What is this?

Bibliography

D. Forsyth and J. Ponce, *Computer Vision: a Modern Approach*. Prentice Hall, 2003.

R. Hartley and A. Zisserman, *Multiple View Geometry in Computer Vision*, 2nd ed. Cambridge University Press, 2004.

Z. Zhang, "A flexible new technique for camera calibration," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 22, no. 11, pp. 1330–1334, 2000.