MATH 0504: Mathématiques Appliquées

Calendrier

  Théorie Exercices
Ven 17/09 Introduction (slides) [Strauss § 1.1-1.4] -
Ven 24/09 Well-posed problems and PDE classification (slides) [Strauss § 1.5-1.6] § 1
Ven 01/10 The wave equation (slides) [Strauss § 2.1, 2.2] § 2
Ven 08/10 The diffusion equation (slides) [Strauss § 2.3]; Approximations of diffusions (slides) [Strauss § 8.1-8.2] -
Ven 15/10 Von Neumann stability analysis (slides); Approximation of waves (slides) [Strauss § 8.3] § 3
Ven 22/10 Diffusion on the whole line (slides) [Strauss § 2.4, 2.5] § 4
Ven 29/10 Boundary problems (slides) [Strauss § 4.1, 4.2] § 4
Ven 05/11 No class -
Ven 12/11 Laplace's equation (slides) [Strauss § 6.1, 6.2, 6.3] § 5
Ven 19/11 Nonlinear PDEs (slides) [Strauss § 14.1, part of 12.1]; Approximations of Laplace's equation and finite elements (slides) [Strauss § 8.4, 8.5] § 5
Ven 26/11 Krylov subspace methods: Conjugate Gradients (slides) [T&B § 32, 38 ,40] § 6
Ven 03/12 Singular value decomposition (slides) [T&B § 4] § 6
Ven 10/12 More on singular value decomposition (slides) [T&B § 5] § 7
Ven 17/12 Q & A -