MATH 0504: Mathématiques Appliquées

Calendrier

  Cours Exercices
Ven 18/09 Introduction (slides) [Strauss § 1.1-1.4] -
Ven 25/09 Well-posed problems and PDE classification (slides) [Strauss § 1.5-1.6] § 1 [1.1, 1.2, 1.4, 1.7]
Ven 02/10 The wave equation (slides) [Strauss § 2.1, 2.2] § 2 [2.1(a,b), 2.4, 2.11, 2.12]
Ven 09/10 The diffusion equation (slides) [Strauss § 2.3]; Approximations of diffusions (slides) [Strauss § 8.1-8.2] -
Ven 16/10 Von Neumann stability analysis (slides); Approximation of waves (slides) [Strauss § 8.3] § 3 [3.1(a,b,c), 3.6, 3.7]
Ven 23/10 Diffusion on the whole line (slides) [Strauss § 2.4, 2.5] § 4 [4.2, 4.5, 4.7, 4.8]
Ven 30/10 Boundary problems (slides) [Strauss § 4.1, 4.2] § 4 [4.1, 4.6]
Ven 06/11 No class -
Ven 13/11 Laplace's equation (slides) [Strauss § 6.1, 6.2, 6.3] § 5 [5.1(a,b,c), 5.4, 5.5]
Ven 20/11 Nonlinear PDEs (slides) [Strauss § 14.1, part of 12.1]; Approximations of Laplace's equation and finite elements (slides) [Strauss § 8.4, 8.5] § 5
Ven 27/11 Krylov subspace methods: Conjugate Gradients (slides) [T&B § 32, 38 ,40] § 6
Ven 04/12 Singular value decomposition (slides) [T&B § 4] § 6
Ven 11/12 More on singular value decomposition (slides) [T&B § 5] § 7
Ven 18/12 No class -